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Cervicovaginal secretions, or their components collected, are referred to as

cervicovaginal lavage (CVL). CVL constituents have utility as biomarkers

and play protective roles in wound healing and against HIV-1 infection.

However, several components of cervicovaginal fluids are less well under-

stood, such as extracellular RNAs and their carriers, for example, extracel-

lular vesicles (EVs). EVs comprise a wide array of double-leaflet membrane

extracellular particles and range in diameter from 30 nm to over one

micron. The aim of this study was to determine whether differentially regu-

lated CVL microRNAs (miRNAs) might influence retrovirus replication.

To this end, we characterized EVs and miRNAs of primate CVL during

the menstrual cycle and simian immunodeficiency virus (SIV) infection of

macaques. EVs were enriched by stepped ultracentrifugation, and miRNA

profiles were assessed with a medium-throughput stem-loop/hydrolysis

probe qPCR platform. Whereas hormone cycling was abnormal in infected

subjects, EV concentration correlated with progesterone concentration in

uninfected subjects. miRNAs were present predominantly in the EV-

depleted CVL supernatant. Only a small number of CVL miRNAs changed

during the menstrual cycle or SIV infection, for example, miR-186-5p,

which was depleted in retroviral infection. This miRNA inhibited HIV

replication in infected macrophages in vitro. In silico target prediction and

pathway enrichment analyses shed light on the probable functions of miR-

186-5p in hindering HIV infections via immunoregulation, T-cell regula-

tion, disruption of viral pathways, etc. These results provide further evi-

dence for the potential of EVs and small RNAs as biomarkers or effectors

of disease processes in the reproductive tract.

The cervicovaginal canal is a potential source of bio-

logical markers for forensics investigations [1–4],
reproductive tract cancers [5–7], and infections [8–10].

Cervicovaginal secretions may be collected by swab,

tampon, or other methods, or secretion components

may be liberated by a buffered wash solution and
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collected as cervicovaginal lavage (CVL). In addition

to utility as biomarkers, constituents of cervicovaginal

secretions, including proteins, certain microbes, and

metabolites, exert function, for example, by playing

protective roles in wound healing [11] and against

HIV-1 infection [12–22]. A large and important body

of work has thus examined biomarker potential and

functional roles of numerous entities in the cervicov-

aginal compartment.

Compared with secreted proteins, metabolites, and

the microbiome, however, several components of cervi-

covaginal fluids are less well understood, including

extracellular RNAs (exRNAs) and their carriers, such

as extracellular vesicles (EVs) and extracellular ribonu-

cleoprotein complexes (exRNPs). EVs are potential

regulators of cell behavior in paracrine and endocrine

fashion due to their reported abilities to transfer pro-

teins, nucleic acids, sugars, and lipids between cells

[23]. EVs comprise a wide array of double-leaflet mem-

brane extracellular particles, including those of endo-

somal and cell-surface origin [24,25], and range in

diameter from 30 nm to well over one micron (large

oncosomes) [26]. EV macromolecular composition

tends to reflect, but is not necessarily identical to, that

of the cell of origin [27]. EVs have been isolated from

most cells, as well as biological fluids [23,28], including

cervicovaginal secretions of humans [29] and rhesus

macaques [30].

MicroRNAs (miRNAs) are one of the most studied

classes of exRNA. These noncoding RNAs average

22 nucleotides in length and, in some cases, fine-tune

the expression of target transcripts [31,32]. Released

from cells by several routes, miRNAs are among the

most frequently examined biomarker candidates in

biofluids and, along with some other RNAs, are

reported to be transmitted via EVs [33–36]. miRNAs

are found not only in EVs, but also in free Arg-

onaute-containing protein complexes; the latter may

outnumber the former, at least in blood [37,38].

Many miRNAs are also highly conserved [32], and

abundant species typically have 100% identity in

humans and nonhuman primates [39]. [For this rea-

son, we will refer to hsa- (Homo sapiens) and mml-

(Macaca mulatta) miRNAs without the species desig-

nation unless otherwise warranted by sequence dispar-

ity.] While miRNAs have been profiled in

cervicovaginal secretions and menstrual blood, mostly

in the forensics setting [4,40,41], their associations

with EV and exRNP fractions require further study.

A recent publication reported that EVs from healthy

vaginal secretions inhibited HIV-1 infection [29].

Another report found that CVL EVs (styled “exo-

somes”) were present at higher concentrations in

cervical cancer and that two miRNAs were also

upregulated [5]. Our laboratory described a reduction

of CVL EVs in a severe endometriosis case compared

with reproductively healthy primates [30]. However,

our study, along with others, was limited by the

absence of molecular profiling of EV cargo [30].

Many immunocompetent cell types populate the

female reproductive tracts, among which are vaginal-

resident macrophages. These cells reside in the lamina

propria and participate in the host’s innate immune

responses via specialized phagocytic elimination and

limited antigen-presenting capability [42,43]. Once acti-

vated, for example, by sensing interferon-c (IFN-c)
from Th1 effectors cells [43], vaginal macrophages

increase their degradative ability. The recruitment of

vaginal macrophages is sex hormone-dependent, and

their phagocytotic capability is not impaired by the

low pH of the microenvironment [43,44]. Numerous

papers have demonstrated that CD68+ macrophages

express receptors CD4, CCR5, and CXCR4, indicating

that they are susceptible to infection by both R5 and

X4-tropic HIV-1 virus during genital infection and

transmission [42,43,45–47].
Here, we performed targeted miRNA profiling of

EV-enriched and EV-depleted fractions of CVL and

vaginal secretions collected from healthy and retro-

virus-infected rhesus macaques. We queried how CVL

EVs and miRNAs are affected by the menstrual cycle,

an important potential confounder of biomarker stud-

ies [48]. Similarly, we assessed possible associations

with simian immunodeficiency virus (SIV) infection.

We report an association of miR-186 levels with SIV

infection and find that this miRNA also appears to

have antiretroviral effects in HIV-infected macro-

phages. These studies provide baseline information for

easily accessed CVL markers including EVs and miR-

NAs that may become useful tools in the clinic.

Materials and methods

Sample collection

Cervicovaginal lavage and whole blood samples were col-

lected weekly for 5 weeks from two uninfected (control)

and four SIVmac251-infected (infected) rhesus macaques

(M. mulatta) as previously described [30]. All macaques

were negative for simian T-cell leukemia virus and simian

type D retrovirus and were inoculated intravenously. Ani-

mals were sedated with ketamine at a dose of

7–10 mg�kg�1 prior to all procedures. CVL was per-

formed by washing the cervicovaginal cavity with 3 mL

of PBS (Thermo Fisher Scientific, Waltham, MA, USA.

Cat #: 14190-144) directed into the cervicovaginal canal
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and re-aspirated using the same syringe. Materials and

procedures for sample collection are depicted in Fig. S1.

Volumes of CVL yield across collection dates were docu-

mented in Table S1. Whole blood (3 mL) was collected

by venipuncture into syringes containing acid citrate dex-

trose (ACD) solution (Sigma-Aldrich, St. Louis, MO,

USA. Cat #: C3821).

Study approvals

All animal studies were approved by the Johns Hopkins

University Institutional Animal Care and Use Committee

and conducted in accordance with the Weatherall Report,

the Guide for the Care and Use of Laboratory Animals,

and the USDA Animal Welfare Act.

Sample processing

Sample processing began within a maximum of 60 min of

collection and utilized serial centrifugation steps to enrich

EVs as described previously [30], based on a standard EV

isolation protocol [49]. Specifically, fluids were centrifuged:

(a) 1000 g for 15 min at 4 °C in a tabletop centrifuge; (b)

10 000 g for 20 min at 4 °C; and (c) 110 000 g for 2 h at

4 °C with a Sorvall Discovery SE ultracentrifuge (Thermo

Fisher Scientific) with an AH-650 rotor (k factor: 53.0;

Fig. S1B). Following each centrifugation step, most super-

natant was removed, taking care not to disturb the pellet.

After each step, supernatant was set aside for nanoparticle

tracking analysis (NTA; 200 µL) and RNA isolation

(200 µL) following the second and third steps. The pellet

was resuspended in 400 µL of PBS after each centrifuga-

tion step. After the final step, the remaining ultracen-

trifuged (UC) supernatant was concentrated to

approximately 220 µL using Amicon Ultra-2 10-kDa

molecular weight cutoff filters (Merck KGaA, Darmstadt,

Germany. Cat #: UFC201024). Two hundred microliter of

the concentrate was used for RNA isolation, and the

remainder was retained for NTA. All samples reserved for

RNA isolation were mixed with 62.6 µL of RNA isolation

buffer (Exiqon, Vedbaek, Denmark. Cat #: 300112. Lot #:

593-84-9n) containing three micrograms of glycogen and

5 pg of synthetic cel-miR-39 as previously described [50].

Processed samples were analyzed immediately or frozen at

�80 °C until further use.

For plasma, whole blood was centrifuged at 800 g for

10 min at 25 °C. Supernatant was centrifuged twice at

2500 g for 10 min at 25 °C. The resulting platelet-poor

plasma was aliquoted and frozen at �80 °C.

Hormone analysis

Levels of progesterone (P4) and estradiol-17b (E2) were

measured in plasma samples shipped overnight on dry ice

to the Endocrine Technology and Support Core Lab at the

Oregon National Primate Research Center, Oregon Health

and Science University.

Nanoparticle tracking analysis

Extracellular particle concentration was determined using a

NanoSight NS500 NTA system (Malvern, Worcestershire,

UK). CVL samples were diluted as needed and specified in

Table S2 to ensure optimal NTA analysis. At least five 20-s

videos were recorded for each sample at a camera setting

of 12. Data were analyzed at a detection threshold of two

using NANOSIGHT software version 3.0.

Western blot

Western blot was used to detect the presence of EV protein

markers and the absence of nucleoporin (nuclear marker)

in CVL and enriched CVL EVs. Twenty microliter of sam-

ples from each fraction was lysed with 5 µL 1 : 1 mixture

of RIPA buffer (Cell Signaling Technology, Danvers, MA,

USA. Cat #: 9806S) and protease inhibitor (Santa Cruz

Biotechnology, Dallas, TX, USA. Cat #: sc29131). Eight

microliter of Laemmli 49 sample buffer (Bio-Rad, Her-

cules, CA, USA. Cat #:161-0747 Lot #: 64077737) was

added per sample, and 30 µL of each was loaded into a

Criterion TGX 4–15% gel (Bio-Rad. Cat #: 5678084 Lot #:

64301319) after 5 min of 95 °C incubation. The gel was

electrophoresed by application of 100 V for 100 min. The

proteins were then transferred to a PVDF membrane (Bio-

Rad. Cat #: 1620177, Lot #:31689A12.), which was blocked

with 5% milk (Bio-Rad. Cat #: 1706404. Lot #: 64047053)

in PBS + 0.1%Tween�20 (Sigma-Aldrich, Cat #: 274348

Lot #: MKBF5463V) for 1 h. The membrane was subse-

quently incubated with mouse anti-human CD63 (BD Bio-

sciences, San Jose, CA, USA, Cat #: 556019 Lot #:

6355939) and mouse monoclonal IgG_2b CD81 (Santa

Cruz Biotechnology, Cat #: 166029 Lot #: L1015) primary

antibodies, at a concentration of 0.5 µg�mL�1 overnight.

After washing the membrane, it was incubated with a goat

anti-mouse IgG-HRP secondary antibody (Santa Cruz

Biotechnology, Cat #: sc-2005 Lot #: B1616) at a 1 : 5000

dilution for 1 h. The membrane was then incubated with a

1 : 1 mixture of SuperSignal West Pico Stable Peroxide

solution and Luminol Enhancer solution (Thermo Scien-

tific, Rockford, IL, USA, Cat #: 34080 Lot #: SD246944)

for 5 min. The membrane was visualized on Azure 600

imaging system (Azure Biosystems, Dublin, CA, USA).

The second blot was done in a reducing environment using

10 mM DTT (Promega, Madison, WI, USA, Cat #: P1171

Lot #: 0000198991). Same procedures were followed with

rabbit anti-human TSG101 (Cat #: ab125011 Lot #:

GR180132-14), rabbit polyclonal antinucleoporin (Abcam,

Cambridge, MA, USA, Cat #: ab96134 Lot #: GR22167-

18) primary antibodies. Subsequent incubation with goat

anti-rabbit IgG-HRP secondary antibody (Abcam, Cat #:
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sc-2204 Lot #: B2216). All antibodies were used at the

same concentration as the first blot. Membrane was visual-

ized on the Azure imaging system.

Single-particle interferometric reflectance

imaging

Both CVL-derived and dendritic cell LK23-derived EVs

were diluted 1 : 1000 and incubated on ExoView (Nano-

View Biosciences, Brighton, MA, USA) chips that were

printed with anti-CD63 (BD Biosciences, Cat#: 556019)

and anti-CD81 (BD Biosciences, Cat #: 555675) antibodies.

After incubation for 16 h, chips were washed as per the

manufacturer’s protocol and imaged in the ExoView scan-

ner by interferometric reflectance imaging.

Electron microscopy

Gold grids were floated on 2% paraformaldehyde-fixed

CVL-derived samples for 2 min and then negatively stained

with uranyl acetate for 22 s. Grids were observed with a

Hitachi 7600 transmission electron microscope in the Johns

Hopkins Institute for Basic Biomedical Sciences Micro-

scope Facility.

Total RNA isolation and quality control

RNA isolation workflow is shown in Fig. S1C. RNA lysis

buffer was added into each sample as described above prior

to freezing (�80 °C). Total RNA was isolated from thawed

samples using the miRCURY RNA Isolation Kit-Biofluids

(Exiqon, Cat #: 300112. Lot #: 593-84-9n) as per the manu-

facturer’s protocol with minor modifications as previously

described [50]. Total RNA was eluted with 50 µL RNase-free

water and stored at �80 °C. As quality control, expression

levels of several small RNAs (sRNAs) including snRNA U6,

miR-16-5p, miR-223-3p, and the spiked-in synthetic cel-

miR-39 were assessed by TaqMan miRNA assays (Applied

Biosystems/Life Technologies, Carlsbad, CA, USA) [51].

miRNA profiling by TaqMan low-density array

A custom 48-feature TaqMan low-density array (TLDA)

was ordered from Thermo Fisher, with features chosen based

on results of a human CVL pilot study (GVH and KWW,

unpublished data). Stem-loop primer reverse transcription

and preamplification steps were conducted using the manu-

facturer’s reagents as previously described [52] but with 14

cycles of preamplification. Real-time quantitative PCR was

performed with a QuantStudio 12K instrument (Johns Hop-

kins University DNA Analysis Facility). Data were collected

using SDS software and Cq values extracted with EXPRESSION

SUITE v1.0.4 (Thermo Fisher Scientific). Raw Cq values were

adjusted by a factor determined from the geometric mean of

10 relatively invariant miRNAs. Normalizing to the

geometric mean of multiple carefully selected housekeeping

miRNAs is a biologically relevant and recommended nor-

malization method [53]. The selection process for these

invariant miRNAs was to (a) rank miRNAs by coefficient of

variation; (b) remove miRNAs with high average Cq (> 30),

non-miRNAs, and those with low amplification score; (c)

select the lowest-CV member of miRNA families (e.g., the

17/92 clusters); and (d) pick the top 10 remaining candidates

by CV: let-7b-5p, -miR-21-5p, -27a-3p, -28-3p, -29a-3p, -30b-

5p, -92a-3p, -197-3p, -200c-3p, and -320a-3p.

Individual RT-qPCR assays

Individual TaqMan miRNA qPCR assays were performed

as previously described [52] on all UC pellet samples from

all animals across all weeks for miRs-19a-3p (Thermo

Fisher Assay ID #000395), -186-5p (Thermo Fisher Assay

ID #002285), -451a-5p (Thermo Fisher Assay ID #001105),

-200c-3p (Thermo Fisher Assay ID #002300), -222-3p

(Thermo Fisher Assay ID #002276), -193b-3p (Thermo

Fisher Assay ID #002367), -181a-5p (Thermo Fisher Assay

ID #000480), -223a-3p (Thermo Fisher Assay ID #002295),

-16-5p (Thermo Fisher Assay ID #000391), -106a-5p

(Thermo Fisher Assay ID #002169), and -125b-5p (Thermo

Fisher Assay ID #00449). We also measured miR-375-3p

(Thermo Fisher Assay ID #00564), which was not included

on the array. Data were adjusted to Cqs of miR-16-5p.

Blood cell isolation and monocyte-derived

macrophage culture

Total peripheral blood mononuclear cells (PBMCs) were

obtained from freshly drawn blood from human donors

under a Johns Hopkins University School of Medicine

IRB-approved protocol (JHU IRB #CR00011400). Blood

was mixed with 10% ACD (Sigma-Aldrich, Cat #: C3821

Lot #: SLBQ6570V) with gentle mixing by inversion.

Within 15 min of draw, blood was diluted with equal vol-

ume of PBS + 2% FBS and gently layered onto room tem-

perature Ficoll (Biosciences AB, Uppsala, Sweden, Cat

#:17-1440-03 Lot #: 10253776) in Sepmate-50 tubes

(STEMCELL Technologies, Vancouver, BC, Canada, Cat

#: 15450 Lot #: 06102016) and centrifuged for 10 min at

1200 g. Plasma and PBMC fractions were removed, washed

in PBS + 2% FBS, and pelleted at 300 g for 8 min. Pellets

from five tubes were combined by resuspension in 10 mL

red blood cell (RBC) lysis buffer (4.15 g NH4Cl, 0.5 g

KHCO3, 0.15 g EDTA in 450 mL H2O; pH adjusted to

7.2–7.3; volume adjusted to 500 mL and filter-sterilized);

total volume was brought to 40 mL with RBC lysis buffer.

After incubation at 37 °C for 5 min, the suspension was

centrifuged at 400 g for 6 min at room temperature. The

cell pellet was resuspended in macrophage differentiation

medium with macrophage colony-stimulating factor

(M-CSF) and 20% FBS (MDM20) to a final concentration

2024 FEBS Open Bio 10 (2020) 2021–2039 ª 2020 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

miRNA profiling of primate cervicovaginal lavage Z. Zhao et al.



of 2 9 106 cells�mL�1. PBMCs were plated at 4 9 106 cells

per well in 12-well plates and cultured in MDM20 for

7 days. One half of the total volume of medium was

replaced on day 3. On day 7, cells were washed three times

with PBS to remove nonadherent cells. The medium was

replaced with macrophage differentiation medium with M-

CSF and 10% serum (MDM10) and cultured overnight

prior to transfection.

miRNA mimic transfection

Differentiated macrophages were transfected with 50 nM

miRNA-186-5p (Qiagen, Foster City, CA, USA. Cat #:

MSY0000456 Lot #: 286688176) using Lipofectamine 2000

(Invitrogen/Life Technologies, Carlsbad, CA, USA, Cat #:

11668-019 Lot #:1467572) diluted in OptiMEM Reduced

Serum Medium (Gibco, Grand Island, NY, USA, Cat #:

31985-070 Lot #: 1762285). Controls included mock trans-

fections and transfection of 50 nM double-stranded siRNA

oligo labeled with Alexa Fluor 555 (Invitrogen, Fredrick,

MD, USA, Cat #: 14750-100 Lot #: 1863892). Plates were

incubated for 6 h at 37 °C. After incubation, successful

transfection was confirmed by examining uptake of labeled

siRNA with an Eclipse TE200-inverted microscope (Nikon

Instruments, Melville, NY, USA). Transfection medium

was removed. The plates were washed with PBS and refed

with 2 mL fresh MDM10 medium.

HIV infection

HIV-1 BaL stocks were generated from infected PM1 T

lymphocytic cells and stored at �80 °C. 24 h after mimic

or mock transfections; macrophages were infected with

HIV BaL and incubated overnight (stock, 80 lg p24�mL�1,

diluted to 200 ng p24�mL�1). At days 3, 6, and nine postin-

fection, 500 lL supernatant was collected for p24 release

assays and cells were lysed with 600 lL mirVana lysis buf-

fer for subsequent RNA isolation and analysis.

HIV p24 antigen ELISA

Supernatant samples were lysed with Triton X (Perkin

Elmer, Waltham, MA, USA, Cat #: NEK050B001KT Lot

#: 990-17041) at a final concentration of 1%. The DuPont

HIV-1 p24 Core Profile ELISA kit (Perkin Elmer, Cat #:

NEK050B001KT Lot #: 990-17041) was used as per the

manufacturer’s instructions to measure p24 concentration

based on the provided standard.

Total RNA isolation

Total RNA was isolated using the mirVana miRNA Isola-

tion Kit as per the manufacturer’s protocol (Ambion,

Vilnius, Lithuania. Cat #: AM1560 Lot #: 1211082). Note

that this procedure yields total RNA, not just sRNAs.

After elution with 100 lL RNase-free water, nucleic acid

concentration was measured using a NanoDrop 1000 spec-

trophotometer (Thermo Fisher Scientific, Wilmington, DE,

USA). RNA isolates were stored at �80 °C.

HIV Gag RNA RT-qPCR

Real-time one-step reverse transcription–quantitative PCR

was performed with the QuantiTect Virus Kit (Qiagen, Cat

#:211011 Lot #: 154030803). Each 25 lL reaction mixture

contained 15 lL of master mix containing HIV-1 RNA

standard, 100 lM of FAM dye, and IBFQ quencher labeled

Gag probe (50 ATT ATC AGA AGG AGC CAC CCC

ACA AGA 30), 600 nM each of Gag1 forward primer (50

TCA GCC CAG AAG TAA TAC CCA TGT 30) and

Gag2 reverse primer (50 CAC TGT GTT TAG CAT GGT

GTT T 30), nuclease-free water, and QuantiTect Virus RT

mix, and 10 lL serial-diluted standard or template RNA.

No-template control and no reverse transcriptase controls

were included. Linear standard curve was generated by

plotting the log copy number versus the quantification cycle

(Cq) value. Log-transformed Gag copy number was calcu-

lated based on the standard curve.

Data analysis

Data processing and analysis were conducted using tools

from Microsoft Excel (geometric mean normalization),

Apple Numbers, GraphPad Prism, the MultiExperiment

Viewer, and R/BioConductor packages including pheatmap

(http://CRAN.R-project.org/package=pheatmap; quantile

normalization, Euclidean distance, self-organizing maps,

self-organizing tree algorithms, k-means clustering).

Results

Abnormal menstrual cycle of SIV-infected

macaques and ovulation-associated changes in

CVL EV-enriched particles

Plasma and CVL were collected from two control and

four SIV-infected macaques over the course of 5 weeks

(Fig. S1). Amenorrhea (absence of menstruation) was

observed for infected subjects (K. Mulka, et al, unpub-

lished data). By NTA, CVL EV concentration in con-

trol animals increased during ovulation (Fig. 1A).

Transmission electron microscopy was performed for

representative fractions of CVL, revealing bacteria and

large particles in the 10 000 g pellet (Fig. 1B). The

100 000 g pellet included apparent EVs up to 200 nm

in diameter (Fig. 1C). EV markers (shown: CD63,

CD81, and TSG101) were confirmed by Western blot

(Fig. 1D). The nuclear marker nucleoporin was
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Fig. 1. EV composition during the

menstrual cycle. (A) Nanoparticle

concentrations of CVL UC pellets

monitored weekly over 5 weeks for two

SIV-negative (“control”) and four SIV-

infected rhesus macaques (Mean � SD).

Red arrows indicate time of ovulation for

two control animals, which were absent

for SIV-infected animals. (B) Transmission

electron micrographs of CVL pellets from

the 10 000 g pellet (left) and 110 000 g

pellet (right) confirm presence of bacteria

and EVs/EV-like particles, with several

respective diameters indicated. Scale

bar = 500 nm. (C) Western blot analysis

suggests enrichment of EV markers CD63,

CD81, and TSG101 in 110k pellet fraction

of CVL from uninfected animals (n = 2).

Vaginal tissue homogenate and DC (LK23)

110k pellet controls were also positive for

CD63 and CD81. Nuclear marker

nucleoporin was detected in tissue

homogenate but not in putative EV

samples. Dashed lines were added to

indicate the grouping of the ladder and the

samples on the TSG101 and nucleoporin

blots. (D) SP-IRIS confirmation of EV

markers on CVL and DC EVs. Shown are

averages of tetraspanin-positive particles

bound to anti-CD63 and anti-CD81

antibodies and detected by label-free

imaging (mean � SD).
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detected only in tissue samples (Fig. 1D). The relative

EV tetraspanin profiles of both CVL and control EV

samples were corroborated with single-particle interfer-

ometric reflectance imaging: CVL EVs had a higher

CD63 expression, and dendritic cell EVs had higher

CD81 expression.

TLDA reveals an extracellular miRNA profile of

the cervicovaginal compartment

Based upon preliminary findings from a study of

human CVL (Hancock and Witwer, unpublished data),

we designed a custom TLDA to measure 47 miRNAs

expected to be present in CVL, along with the snRNA

U6. CVL from all subjects and at all time points was

fractionated by stepped centrifugation to yield a

10 000 g pellet (10 K pellet), a 100 000 g pellet (UC

pellet), and 100 000 g supernatant (UC supernatant).

Total RNA from all fractions was profiled by TLDA.

Raw (Fig. S2A), quantile normalized (Fig. S2B), and

geometric mean-adjusted Cq values (Fig. S2C) were

subjected to unsupervised hierarchical clustering. This

clustering did not reveal broad miRNA profile differ-

ences associated with sample collection time, menstrua-

tion, or SIV infection.

Distribution of miRNAs across CVL fractions

Across the three examined CVL fractions (p10, p100,

S100), the 10 most abundant miRNAs (lowest Cq val-

ues) were miRs-223-3p, -203a-3p, -24-3p, -150-5p, -21-

5p, -146a-5p, -92a-3p, -222-3p, -17-5p, and -106a-5p.

The average normalized Cq value for each miRNA

was greater (i.e., lower abundance) in the p100 than

the s100 fraction (Fig. 2A and inset) and indeed in

p10 and p100 combined (Fig. 2B), suggesting that

most miRNA in CVL, as reported for various other

body fluids, is found outside the EV-enriched frac-

tions. Considering all fractions, the differences between

the EV-enriched and EV-depleted fractions were signif-

icant even after Bonferroni correction for all features

except U6. On average, the s100 fraction contained

86.5% of the total miRNA from these three fractions.

In the p10 fraction, the average miRNA was detected

at 10.5% its level in the s100 fraction (SD = 5.7%).

miR-34a-5p had the lowest (5.9%) and miR-28-3p the

highest (33.7%) abundance compared with s100. In

the p100 fraction, miRNAs were on average 5.6%

(SD = 2.4%) as abundant as in s100. The least repre-

sented in p100 was miR-27a-3p (2.3%), and the best

represented was again miR-28-3p (13.4%). Together,

the content of the EV-enriched fractions (p10 and

p100) as a percentage of the total is shown in Fig. 2B

for individual miRNAs. miRNA rank was significantly

correlated across fractions, despite minor differences in

order (Fig. 2C).

qPCR Validation

Individual stem-loop RT/hydrolysis probe qPCR

assays were used to verify TLDA results for eleven

selected miRNAs plus miR-375-3p (not included on

the array), which was also measured because of a

reported association with goblet cells [54]. Some miR-

NAs were chosen due to high expression levels. miR-

181a-5p was measured due to its association with

endometrial cells [55,56]. miR-125b-5p has been

reported as a diagnostic marker of endometriosis [57].

Other miRNAs (miRs-186-5p, -451a-5p, -200c-3p,

-222-3p, -193b-3p) were selected based on our previous

experience and results from other studies evaluating

miRNAs in the context of HIV-1 and SIV infections.

Results of qPCR assays, adjusted by miR-16-5p for

each sample (since we found relatively low qPCR vari-

ation of miR-16-5p, a commonly used normalizer

[58]), are shown in Fig. 3A. Figure 3B compares

miRNA ranks (1–11) by TLDA and individual qPCR,

which are generally in concordance. Note that expres-

sion of RBC miRNA miR-451a-5p was low, suggesting

minimal contamination from blood for most samples.

miRNA association with retroviral infection

status

An association of miRNA abundance with infection

status could yield novel biomarkers as well as clues to

roles of miRNA in modulating infection. However, the

small number of subjects in our study was a challenge.

Nevertheless, by considering all subjects and time

points together for both infected and uninfected sub-

jects, microarray data suggested a slightly reduced

abundance of miRs-186-5p, -222-3p, and -200c-3p in

infected samples (Fig. 4A) based on statistical analysis

of ΔCq values, while qPCR revealed differential abun-

dance of miRs-186-5p and -125b-5p (Fig. 4B). miR-

186-5p was thus identified by both techniques as

potentially associated with retroviral infection.

miR-186-5p transfection has minimal effects on

cellular HIV RNA abundance but reduces p24

release from monocyte-derived macrophages

To assess a possible influence of miR-186-5p (“miR-

186”) on retroviral replication, we introduced double-

stranded miR-186-5p mimic or control RNA into

monocyte-derived macrophages derived from three
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Fig. 2. Relative abundance of miRNAs in different CVL fractions from all subjects (n = 6). (A) Abundant miRNAs in descending order based

on Cq values normalized to the geometric mean for each sample. Inset: average of all miRNAs in UC pellet and UC supernatant. Error bars:

SEM. (B) miRNA expression in EV-enriched fractions (p10, p100) as a percentage of total estimated expression (p10 + p100+S100 by Cq) in

ascending order, from miR-27a-3p (7.9%) to miR-28-3p (32.0%). (C) miRNAs in each fraction (10 000 g pellet = p10, 110 000 g

pellet = p100, 110 000 g supernatant = S100, and) are significantly correlated (P < 0.0001, Spearman).
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donors 24 h before infecting the cells or not with HIV.

Upon M-CSF stimulation, the primary macrophages

should be activated toward the alternative M2 pheno-

type [59–61]. Post-infection, EVs and miRNAs were

mostly likely released from uninfected and infected

macrophages alike. At days 3 and 6 postinfection, we

quantitated full-length HIV-1 transcript using a gag

qPCR with standard curve. In cells from only one of

three donors were fewer HIV-1 copies associated with

miR-186-5p mimic transfection (Fig. 5). Overall, there

was no statistically significant difference in HIV RNA

between the conditions.

However, at the same time points and also out to

9 days postinfection, a different result was seen for

capsid p24 release into the supernatant. For infected

but untransfected cells, measurable p24 was observed

by 3 dpi, and p24 counts increased by twofold or more

by 9 dpi (Fig. 6A) for multiple replicate experiments

with cells from three donors. Compared with infected,

untreated controls, mock-transfected cells (not shown),

and cells transfected with a negative control RNA (la-

beled with a fluorophore to assess transfection effi-

ciency), miR-186-5p transfection was associated with a

significant decline of released p24 at all time points

(ANOVA with Bonferroni correction; Fig. 6B–D). The

negative control condition showed a suppressive trend

that reached nominal significance at 9 dpi. However,

miR-186-associated suppression was significantly

greater at all time points.

p24 inhibition by miR-186-5p is correlated with

transfection efficiency

Despite the statistical significance of miR-186-5p-asso-

ciated p24 inhibition, substantial variability was

observed, including between donors/experiments; we

therefore hypothesized that either donor- or experi-

ment-specific factors were responsible for the variabil-

ity. The transfection experiments were repeated using

macrophages from five additional donors (labeled 1–
5). While significant but variable inhibition of p24

release after miR-186-5p transfection was observed for

three donors (1, 2, and 5), little or no inhibition was

seen for donors 3 and 4 (Fig. 7). It should be noted

that miR-186-5p antisense inhibitors were also intro-

duced in these experiments. While they did not signifi-

cantly increase HIV p24 release (Fig. 7), they also did

not achieve a consistent knockdown of native miR-

186-5p (Fig. 8A).

One experimental variable that could affect the

degree of inhibition is the efficiency with which the

miRNA mimic is delivered into the cells. Since this

variable was not assessed in our previous experiments,

we measured it for the five new experiments. Despite

Fig. 3. miRNA qPCR validation. (A) qPCR validation for UC pellet samples, all subjects (n = 6), and time points (individual dots). (B) Ranks of

abundant miRNAs by qPCR and TLDA.

2029FEBS Open Bio 10 (2020) 2021–2039 ª 2020 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

Z. Zhao et al. miRNA profiling of primate cervicovaginal lavage



using the same nominal concentrations of miRNA

mimics for our experiments, a nearly 100-fold range of

miR-186-5p concentration was observed between the

lowest and highest efficiency transfections (Fig. 8A),

which increased miR-186-5p levels from around 5-fold

to nearly 500-fold, respectively. Strikingly, the miR-

186-5p level was inversely correlated with released p24

across these five donors (Fig. 8B).

Discussion

Cervicovaginal lavage EVs and exRNPs, like EVs in

the uterus [62,63], may offer information about the

health of the reproductive tract and may also facilitate

or block transmission of infectious agents. Proteomic

analyses of human [64] and rhesus macaque [65] CVL

have suggested a core proteome and a highly variable

proteome that responds to changes in pregnancy sta-

tus, menstruation, infection, and other stressors. How-

ever, exRNA and EV profiles are less understood in

this compartment. Thus, one major finding of this

study is a partial profile of miRNAs of EV-enriched

and EV-depleted fractions of CVL fluid of primates.

We report that EVs can be liberated from vaginal

secretions by lavage and that these EVs can be concen-

trated using a standard stepped centrifugation

Fig. 4. miR-186-5p downregulation: SIV.

miR-186-5p fold change for all infected

animals (n = 4) was determined using

ΔΔCt method using miR-16 and uninfected

animals (n = 2) as controls. Log2 (fold

change) for both TLDA and qPCR analyses

was plotted for 11 selected validation

miRNAs. Statistical analyses were

performed on ΔCt values. For TLDA, miRs-

186, -222, and -200c were significantly

less abundant in the CVL p100 fraction of

infected subjects (mean � SEM, multiple

t-test, Bonferroni–Dunn correction),

**P < 0.01, ***P < 0.001. For qPCR

analysis, miRs-186 and -125b were

significantly less abundant (multiple t-test,

Bonferroni–Dunn correction), **P < 0.01,

***P < 0.001.

Fig. 5. miRNA-186-5p mimic transfection

inconsistently suppresses HIV-1 gag

mRNA production. Apparent

downregulation of gag mRNA (qPCR assay

with standard curve) was observed in miR-

186-transfected monocyte-derived

macrophages from only one of three

donors compared with mock miRNA-

transfected cells. Overall, results were

insignificant by t-test (mean � SEM),

P > 0.1, with multiple replicates of cells

from human donors (n = 3).
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procedure, with enrichment of positive (membrane-as-

sociated) markers while a cellular negative control was

not detected.

Both EV-replete and EV-depleted fractions of CVL

contained abundant miRNA. As reported for other

biological fluids [37,38], miRNA concentration was

highest in the EV-depleted CVL fractions, not in EV-

enriched UC pellets, consistent with packaging of most

extracellular miRNA into exRNPs; the function, if

any, of extracellular miRNAs in the cervicovaginal

tract of healthy individuals remains to be determined.

We observed minimal differences in extracellular

miRNA profiles between SIV-infected and uninfected

subjects or, surprisingly, even during the menstrual

Fig. 6. miRNA-186-5p inhibits p24 release. Monocyte-derived macrophages from human donors were infected with HIV-1 BaL. (A) p24

production increased > 2-fold for all donors from 3 to 9 days postinfection (dpi), untreated cells. (B–D) Transfection of miR-186-5p mimic

was associated with a decrease of p24 release compared with untransfected controls and mock miRNA mimic-transfected controls at the

indicated time points; ns = not significant, *P < 0.05, **P < 0.01, ****P < 0.0001 (mean � SEM, ANOVA followed by Bonferroni correction

for multiple tests). Results were from a total of eight to 11 replicate experiments with cells from all human donors (n = 3).
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Fig. 7. miRNA-186-5p inhibits p24 release in a donor-specific manner. Monocyte-derived macrophages from human donors were infected

with HIV-1 BaL. (A–C) Compared with mock-transfected controls, transfection of miR-186 mimic was associated with a significant decrease

of p24 production from 3 to 9 days postinfection, respectively (dpi) in donors 1, 2, and 5 (biological replicate n = 3, technical replicate n = 2).

(D, E) For donors 3 and 4, transfection of miR-186 mimic was ineffective in inhibiting p24 release compared with mock-transfected controls

(biological replicate n = 3, technical replicate n = 2); ns = not significant, *P < 0.05, ****P < 0.0001 (mean � SEM, two-way ANOVA

followed by Bonferroni correction for multiple tests).

Fig. 8. miR-186-5p abundance post-transfection and correlation with p24 release. (A) Abundance of miR-186-5p in macrophages post-

transfection, as assessed by qPCR and compared (fold change) with the average of control macrophages (Mean � SD). (B) Correlation of

macrophage miR-186-5p and p24 concentration released in supernatant 3 days postinfection. P(two-tailed) = 0.0019 (correlation),

R2 = 0.9731 (linear regression).
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cycle, suggesting a certain stability of extracellular

miRNA in the compartment. Correlation of miRNA

concentrations in EV-depleted and EV-replete fractions

was also apparent. Based on relative abundance com-

pared with miRNAs of other cellular/tissue origins

(e.g., heart- and lung-specific miR-126, kidney-specific

miR-196b, and liver-specific miR-192) [66,67], miR-

NAs in EVs and exRNPs of CVL are likely derived

from epithelial cells (including goblet cells) and cells of

the immune system (as suggested, e.g., by myeloid-en-

riched miR-223 and lymphocyte-enriched miR-150)

[68]. Of the most abundant miRNAs we identified,

some have been ascribed tumor-suppressive roles in

cancers [69–75]. Also, miR-223 and miR-150 have been

described as “anti-HIV” miRNAs [76] among a variety

of reported antiretroviral sRNAs, both host and viral

[77–82]. Given their relative abundance in the vaginal

tract, a common site for HIV infection, these miRNAs

may contribute to antiviral defenses.

Along these lines, a second major finding of this

study is a possible role for miR-186-5p in antiretrovi-

ral defense, bolstered by the observation that exoge-

nous miR-186-5p transfection efficiency correlates

inversely with HIV p24 release. Previous publications

have identified protein constituents in the CVL with

anti-HIV efficacies (e.g., [7,21,22]). Our identification

of miRNA as a potential anti-HIV agent adds an ele-

ment of complexity to the picture of tissue-specific

antiretroviral defense. In contrast with an early report

of direct binding of host miRNAs to retroviral tran-

scripts and subsequent suppression [76], it now appears

that this mechanism of suppression may be relatively

uncommon [83]. Anti-HIV miRNAs may be more

likely to exert effects through control of host genes

instead (e.g., [84]). Our data also support the conclu-

sion that reduction of HIV RNA levels is not the main

mechanism for miR-186-mediated suppression of HIV

release.

How, then, might miR-186-5p, whether endogenous

or exogenous (therapeutically introduced) contribute to

antiretroviral effects? Combining several miRNA target

prediction, validation, and enrichment analysis

approaches [85–91], we noticed a few putative miR-186-

5p targets and related pathways that may merit

follow-up. One target of miR-186-5p that was validated

experimentally by multiple methods is FOXO1 [92],

an important contributor to apoptosis but also

immunoregulation via IFNc pathways. Another promi-

nent validated target, P2X7R [93], is involved in mem-

brane budding, T-cell-mediated cytotoxicity, cellular

response to extracellular stimuli, and T-cell homeosta-

sis/proliferation. There is also evidence that miR-186-5p

targets the HIV coreceptor CXCR4 [94]. Pathway

enrichment analyses [90,91] suggest that miR-186-5p

targets participate significantly in infection-related net-

works, including prion diseases, viral carcinogenesis,

and responses to measles and herpes simplex virus infec-

tions. Although miRNA target prediction algorithms

are imperfect, and validation efforts are of varying qual-

ity [95,96], these findings may shed some light on how

miR-186-5p is involved in responses to HIV.

We would like to emphasize several aspects of the

study that open the door to future research:

� We used stepped ultracentrifugation without density

gradients because of the small sample volumes avail-

able. Although stepped ultracentrifugation remains a

widely used method for EV enrichment [49,97], sub-

sequent gradients or alternative isolation methods

could be attempted with larger volume samples to

increase purity in future. Possibly, our study overes-

timates the abundance of miRNAs in CVL EVs,

and differential packaging into EVs and exRNPs is

masked by contamination of our EV preps with

exRNPs.

� Our qPCR array approach and focus on miRNAs

leaves room for additional work. While we are confi-

dent that our array captured most of the abundant

miRNAs in CVL, sequencing short and longer

RNAs could reveal additional markers.

� The small number of subjects and the absence of

obvious menstrual cycle in infected subjects preclude

strong conclusions about EV or miRNA associations

with either infection or the menstrual cycle. For

example, we did not observe the expected increase in

miR-451a or other RBC-specific miRNAs during

menstruation. However, since only two animals

showed evidence of cycling, experiments with more

subjects and larger sample volumes are needed.

� Our previous criticisms of miRNA functional studies

[98] also apply to our results here. Additional work

is needed to assess the potential of miR-186-5p to

regulate retrovirus production at endogenous levels,

for example by showing that it is present in active

RNPs [99] and that it interacts directly with specific

host or viral targets. However, it is also important

to note that miR-186-5p could have therapeutic ben-

efit even if it must be delivered at supraphysiologic

concentrations. Finally, it is possible, but must be

demonstrated, that miR-186-5p acts in a paracrine

fashion via EV or exRNP shuttles.

� We have investigated the effects of miR-186-5p only

in monocyte-derived macrophages. We chose to

begin with this cell type because of the abundance

of miR-223 and the known role of macrophages in

the epithelium. We would like to reiterate the
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importance of other cell types in the vaginal tissue

during HIV-1 infection [100,101]; thus, this antiviral

effect of miR-186-5p should also be investigated in

other cell types.

Overall, the results presented here support further

development of CVL and its constituents as a window

into the health of the cervicovaginal compartment in

retroviral infection and beyond. Furthermore, delivery

of miR-186-5p could act to suppress retrovirus release.
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