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Abstract

The goal of this article is to consider data solutions to investigate the differential pathways that 

connect climate/weather variability to child health outcomes. We apply several measures capturing 

different aspects of climate/weather variability to different time periods of in utero exposure. 

The measures are designed to capture the complexities of climate-related risks and isolate their 

impacts based on the timing and duration of exposure. Specifically, we focus on infant birth 

weight in Mali and consider local weather and enviromnental conditions associated with the 

three most frequently posited potential drivers of adverse health outcomes: disease (malaria), heat 

stress, and food insecurity. We focus this study on Mali, where seasonal trends facilitate the 

use of measures specifically designed to capture distinct aspects of climate/weather conditions 

relevant to the potential drivers. Results indicate that attention to the timing of exposures and 

employing measures designed to capture nuances in each of the drivers provides important 

insight into climate and birth weight outcomes, especially in the case of factors impacted by 

precipitation. Results also indicate that high temperatures and low levels of agricultural production 
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are consistently associated with lower birth weights, and exposure to malarious conditions may 

increase likelihood of nonlive birth outcomes.
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Introduction

Warming and drying represent one of the most direct impacts of climate change on humans. 

Communities reliant on rainfed agriculture to meet their food and nutrition needs are at 

high risk for negative health and economic outcomes associated with climate change (Brown 

et al. 2015; IPCC et al. 2013). In rural Sahelian Africa, where inconsistent rainfall may 

result in droughts or flooding events and where temperatures can spike to extremely high 

levels, subsistence communities face notable agricultural, health, and livelihood challenges 

associated with climate change (Davenport et al. 2017; Grace et al. 2015). In these contexts 

and for these communities, seasonal rainfall is vital for producing the food needed to meet 

the family’s nutritional and caloric demands. Inadequate rains constrain household food 

production, putting the health and security of families at risk. High temperatures can impact 

agricultural yields (in different ways, depending on the setting and the precipitation), or 

they can cause heat waves that lead to heat stress and associated adverse health outcomes 

(Muller et al. 2011; Strand et al. 2011). Warm temperatures and wet conditions can also 

create an ideal setting for malaria transmission (Kudamatsu et al. 2016; Tanser et al. 2003). 

Consequently, a rainy, warm season that may seem positive for agricultural production may 

result in increased exposure to disease or an increased risk of exposure to heat stress.

Because of these complexities, research exploring the effects of climate on malnutrition 

often straggles to isolate and identify the mechanisms underlying the relationship between 

a climate measure and a health outcome. In other words, it is difficult to explain why the 

relationship between seasonal rainfall totals and a measure of malnutrition, for example, 

is negative in some cases and positive in others (Bakhtsiyarava et al. 2018; Davenport 

et al. 2017; Grace et al. 2012). Similarly, high temperatures are generally assumed 

to have a negative impact on health outcomes, but research investigating temperature 

conditions and health outcomes has been inconsistent, showing both positive associations 

and nonsignificant associations using varying metrics (Xu et al. 2012; Zhang et al. 2017).

Our goal here is to consider exposure timing to examine the differential pathways that 

connect climate/weather variability to child health. To this end, we use climate indicators 

designed to capture the complexities of different climate-related risks and isolate their 

impacts based the timing and duration of exposure. Specifically, we focus on individual

level infant birth weight with attention to local seasonal weather conditions associated 

with the three most frequently posited potential drivers of adverse health outcomes: 

disease (malaria), heat stress, and food insecurity. The approach used here exploits highly 

spatially and temporally detailed data to examine exposure conditions and isolate different 

enviromnental factors associated with child health. This project therefore advances spatial 
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and enviromnental demography because it combines a diverse set of climate and health data 

capable of capturing a range of factors of importance to child health.1

We focus on Mali, where the vast majority of individuals are dependent on rainfed 

agriculture and where malaria is endemic (WHO 2017). Additionally, Mali’s seasonal 

variability—a hot, dry season and a single rainy, warm, and short growing season—

facilitates the temporal isolation of specific types of climate-related exposures (see Figure 

1).

To conduct our analysis, we incorporate three measures of climate conditions that are 

designed to capture the specific potential pathways of interest: disease, heat stress, and 

food insecurity. These measures reflect the spatial and temporal complexities of each of the 

three pathways and are derived from related research. We modify the measures somewhat 

from their original development to accommodate the available data as well as to account 

for the temporal and geographic aspects of the Mahan context. We match each indicator to 

individual birth weights to investigate how exposure to specific conditions during pregnancy 

impacts health outcomes.

Data on individual-level birth weights come from multiple periods (2000, 2006, and 2012) 

of the spatially referenced Malian Demographic and Health Survey (DHS). These data are 

merged with the spatially and temporally varying climate measures based on the location 

and timing of individual exposures.

Background

Climate and Weather and Children’s Health Outcomes

In this article, we focus on one child health outcome: birth weight. Birth weight is one of 

several commonly investigated anthropometric measures of child health (other frequently 

considered measures are height-for-age and weight-for-age) used to assess overall health 

of individuals and of a population. Understanding risk factors associated with birth weight 

variation or low birth weight (when an infant weighs less than 2,500 grams at birth) may 

also help to identity children at greatest risk for morbidity and mortality (Black et al. 

2008; Mosley and Chen 1984; Victora et al. 2008). Conceptual frameworks useful for 

understanding and designing interventions to improve child health include birth weight as 

one of many factors of interest. As with other children’s health outcomes, birth weight varies 

by individual child according to biological variations and a wide range of enviromnental 

conditions experienced during key periods (in this case, pregnancy) (Black et al. 2008; 

Kramer 1987, 2003). Although child health and development frameworks differ in some 

ways, the general structure is that broad factors relating to politics, the economy, and 

(more recently) climate/weather lead to more local region–specific factors; these in turn 

impact household/individual factors, which then impact biological responses and finally the 

health outcome (see Grace 2017; Kramer 2003; Mosley and Chen 1984; UNICEF 1991, 

2017). In practice, applying these kinds of frameworks implies that broad-level shocks will 

1A range of health outcomes could be evaluated using the approaches we describe here as long as the pathways and exposure periods 
were properly matched.
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have differential impacts on birth weight (or other health outcomes) depending on, for 

example, the socioeconomic status of a household or an individual’s educational attaimnent 

or prenatal care history.

In demographic and social science research, climate and weather are conceptualized 

more broadly as enviromnental or contextual factors (Kramer 2003; Mosley and Chen 

1984; UNICEF 2017). As interdisciplinary research on the climate-health relationship has 

expanded, the data and tools used to this relationship have resulted in some important 

shifts in the ways that researchers link climate/weather data to health data. In applied 

and interdisciplinary research, climate and weather factors are often more directly tied to 

community-, household-, or individual-level responses and are commonly used to proxy 

factors of interest related to disease, food security, or climate shocks (Eissler et al. 2019; 

Sellers and Gray 2019). In fact, in a recent review of climate and undernutrition, Phalkey 

et al. (2015) reimagined the UNICEF framework to highlight the role of climate/weather 

factors2 at individual and household scales, noting “that a large proportion of the mediating 

factors are climate/weather sensitive” (p. E4526). In this analysis, we focus on birth weight 

as an outcome variable with established linkages to prenatal exposure to disease, heat stress, 

and food security. However, noting the connection between birth weight, child health, and 

mortality, the approach that we use here can easily be expanded to investigate associated 

outcomes, such as infant mortality, chronic or acute malnutrition, cognitive development, 

and related factors.

Using Climate and Weather Data to Estimate Exposure to Stressors

Research investigating the impacts of climate on early child health (including birth 

weight) in sub-Saharan Africa has produced mixed results (e.g., Bakhtsiyarava et al. 2018; 

Kudamatsu et al. 2016; see also Phalkey et al. 2015; Xu et al. 2012). Three factors may 

explain the nonconvergent results in climate and health studies: (1) the wide range of 

climate data sources and climate variable definition; (2) the nuanced and complex biological 

response to climate conditions (or extremes), including acclimatization; and, likely most 

importantly, (3) an individual’s socioeconomic status, which impacts access to resources to 

alleviate negative health outcomes. Researchers have often focused on aggregate rainfall 

and temperature trends and have theorized that these climate measures impact health 

outcomes through various pathways—primarily disease (Kudamatsu et al. 2016), food 

insecurity (Davenport et al. 2017), or heat stress (Asamoah et al. 2018; Phalkey et al. 

2015; Xu et al. 2012). However, the linkages between climate and health are complex and 

difficult to detect using aggregate climate conditions. For example, seasonal or annual total 

precipitation provides little information on local agricultural yields, and annual average 

maximum temperature provides little information on heatwave frequency and duration.

Seasons when climate conditions are likely to increase the likelihood of malaria transmission 

can be identified based on historical norms, but monthly climate data can help to 

refine the spatial and temporal detail allowing for variability across years and over 

space. In other words, aggregate climate conditions do not always adequately reflect the 

2The framework proposed by Phalkey et al. (2015) focused on food security, the food system, infectious disease, and the impact of 
these factors over time and within households.
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within-season variability that drives negative health outcomes. Applying measures that 

have been developed precisely to capture agricultural productivity and food availability, 

malaria conditions, and heat waves to analyses of child health outcomes associated with 

malnutrition, malaria, and heat stress will help decipher the different pathways that link 

climate to adverse health outcomes. Our analyses focus on the three pathways: malaria 

(disease), food insecurity, and heat stress.

Malaria—Malaria likely increases the risk of stillbirth and spontaneous abortion, but it also 

is linked to low birth weight, especially in the case of first births in malaria-endemic areas 

(Desai et al. 2007; Kramer 2003; Kudamatsu et al. 2016; McFalls and McFalls 1984). Large

scale,3 spatially referenced, individual-level disease histories are virtually non-existent for 

sub-Saharan African countries, making it impossible to investigate an individual’s specific 

health background and their later-life health. Aggregate measures of disease presence 

capturing a country’s disease experience are also non-existent or insufficient because highly 

detailed community-level data on malaria cases or outbreaks are difficult to come by. 

Ultimately, this lack of data leads researchers to develop alternative strategies for measuring 

the potential for malaria presence in a given area during a given time frame. In some cases—

normally, smaller-scale studies—researchers will identify the typical rainy season months as 

those with high malaria transmission (e.g., Berry et al. 2018). At small scales, this approach 

may be used to capture some shifts in yearly conditions, but it would be challenging to apply 

to a large sample of communities to compare outcomes over time and space. Some analysts, 

especially in studies with data spanning many countries and years, use different measures 

of rainfall or more sophisticated composite indicators that consider temperature trends and 

rainfall trends together.

In the case of the combined temperature and rainfall index, high-frequency climate data 

are used to derive a malaria index capable of identifying, over space and time, climate 

conditions that support the existence of the parasite and the vector needed to transmit 

malaria (for details on the construction and validation of the malaria index, see Kudamatsu 

et al. 2016; Tanser et al. 2003). This more complex and physically based indicator is capable 

of capturing variation over time and space that coarser measures are not able to capture. This 

measure has been used to investigate patterns of infant mortality across sub-Saharan Africa 

(Kudamatsu et al. 2016). We use this composite climate-based measure to identify months 

and locations (with a spatial resolution of ~5 kilometers) in which the parasite and vector are 

likely to be present and transmission rates are expected to be higher.

Table 1 presents the criteria used to define the binary malaria index. All criteria must be 

satisfied for a location (grid cell) to be considered potentially malarious.

Food Insecurity—Food insecurity is associated with adverse health outcomes for pregnant 

and breastfeeding women and their children. Food insecurity can lead to low birth weight 

3Extensive surveillance data exist for many sites across Africa and worldwide. Surveillance systems (see, e.g., In-Depth Data 
Repository; http://www.indepth-network.org/) are designed to follow individuals and regularly track different key events, including 
disease, births, and deaths. Unfortunately, data of this sort are geographically limited to specific communities and can be challenging 
to combine with other, similar surveys in different places because questionnaires can vary greatly. Furthermore, access to the 
individual records dramatically varies across sites and over time.
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when women are exposed during prepregnancy or early or later stages of pregnancy 

(Bloomfield et al. 2013; Kramer 2003). Other outcomes of food insecurity include low 

height-for-age (stunting) and low weight-for-age (wasting), among a wide range of other 

adverse health outcomes that can last into adulthood (many of which are associated with 

in utero exposures). A wide range of factors drive community- or household-level food 

insecurity, with food availability featuring prominently in studies focused on sub-Saharan 

Africa and small-scale farming households (Butt et al. 2005; Grace et al. 2016; Smith and 

Haddad 2001). Ideal measures of household food availability would include information on 

farm yield, agricultural storage, presence of locally available food for purchase, diversity and 

quality of available food, perceptions of food security, migration, and remittances (Barrett 

2010; Myers et al. 2017; Timmer 2012), and would be available on a monthly (or finer) 

scale or a seasonal time scale for each household. As expected, data of this type are rarely 

available for sub-Saharan African households and are never available with the temporal and 

spatial detail suitable for a study of individual-level child health outcomes.

As a solution, researchers and development agencies (e.g., USAID Famine Early Warning 

Systems Network [FEWS NET]) have estimated food availability and, consequentially, 

food insecurity through the use of remotely sensed data of vegetation (Brown et al. 2012; 

Brown et al. 2015; Funk and Brown 2006; Funk and Budde 2009; Husak and Grace 

2016). In this research, we use the Normalized Difference Vegetation Index4 (NDVI) as 

a proxy for community-level food availability. Specifically, we use NDVI data from a data 

series provided by the Integrated Climate Data Center at Universität Hamburg (Pinzon 

and Tucker 2014). These data are a quality-controlled version of the NDVI data provided 

by the National Aeronautics and Space Administration’s Global Inventory Monitoring and 

Modeling System (NASA-GIMMS; Tucker et al. 2005). NDVI serves as a measure of 

greenness and is available at a relatively fine spatial (1/12-degree grid cell, or roughly 8 

kilometers) and temporal (bimonthly) resolution. Thus, NDVI allows for a proxy measure 

of vegetation that varies throughout the year and at a scale that is fine enough to reflect 

village- or community-level variation over space and time. Although food security is more 

complex than food availability alone, NDVI in semiarid zones such as in Mali captures 

the interannual variability of yield across all crops. NDVI is particularly relevant in Mali 

because the vast majority of Mahan fanners rely on rainfall as their primary source of 

moisture, particularly in communities far from surface water (Husak and Grace 2016; FEWS 

NET livelihood reports for Mali, https://fews.net/west-africa/mali).

For estimates of a village’s food security, an analyst identifies the area where agriculture is 

likely to be produced and spatially aggregates the maximum NDVI of pixels within that area 

to estimate the annual growing season’s crop production. Relative changes in this aggregate 

NDVI value enable the analyst to identify years when that community likely produced more 

or less food, with a consequential increase or decrease in food security (Bakhtsiyarava et 

al. 2018). Although not optimal, NDVI as a proxy for food security allows researchers to 

4Under some circumstances, the Moderate Resolution Imaging Spectroradiometer (MODIS) Enhanced Vegetation Index (EVI) might 
be preferred over NDVI. The EVI has been optimized to have a more sensitive response to densely vegetated regions and to minimize 
canopy-soil variations. In our data, and in West Africa generally, the EVI and NDVI are highly correlated (Zoungrana et al. 2015) and 
show negligible differences when used interchangeably in the food insecurity pathway models.
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(1) produce more policy-relevant findings through the use of an approach common across 

development agencies,and (2) address food security research questions in data-poor regions 

without any time-varying information about smallholder farming practices.

Linking regional aggregate NDVI with food insecurity requires the assumption that the 

relative changes in NDVI between years are due predominantly to crop health and 

subsequently agricultural yield. However, it is possible that certain communities transitioned 

to a drought-tolerant crop, which may lead to a false flag if that drought-tolerant crop is less 

green than the previous selection. A low NDVI value for a robust harvest of a less-green 

drought-tolerant crop would appear to indicate food insecurity, when in fact this decline is 

due entirely to agronomic strategy.

Another potentially confounding factor when considering ND VI as a proxy for food 

insecurity concerns communities’ coping strategies when yields are suboptimal, and the high 

prioritization of maximizing the health of pregnant women and infants. One such strategy is 

circular migration, in which one or more family or community members leave to seek wage

earning opportunities elsewhere, thus reducing the number of mouths to feed and increasing 

the per capita food stores. In some Mahan communities, circular migration is widespread 

and represents a normal part of the transition to adulthood (Hertrich and Lesclingand 2012, 

2013), but it may be less common under certain conditions, including during periods of 

drought (Findley 1994; Grace et al. 2018). The impacts of migration on food security in the 

origin communities in Mali is not well understood. The very limited migration data included 

in standard, country-representative population/health surveys, especially in countries reliant 

on short-term migration, constrain analyses and prevent us from taking circular migration 

into account.

Heat Stress—Heat stress is hypothesized to have negative impacts on the placenta and 

the developing fetus and is therefore related to adverse pregnancy outcomes, such as low 

birth weight and preterm birth (Rylander et al. 2013). The impact of exposures during 

different stages of pregnancy is not well understood, but it is theorized that exposure to high 

temperatures during conception and early stages of pregnancy may delay conceptions or 

increase the likelihood of miscarriage, possibly resulting in heavier babies at birth given 

that only the healthiest fetuses result in live births (Barreca et al. 2018; Wilde et al. 

2017). Exposure during later stages of pregnancy has inconsistent outcomes but is typically 

associated with increased risk of preterm birth, thus resulting in lower birth weights (Basu et 

al. 2016; Schifano et al. 2016). However, in some subsistence-based farming settings, mainly 

those in the tropics, increased temperatures may correspond to increased agricultural yields, 

which may be associated with higher birth weights (Davenport et al. 2017; Ray et al. 2019).

Temperature measures used in climate-health analyses in low-income countries rely on a 

relatively coarse spatial scale (usually 25–50 kilometers) and either a fine (daily maximum 

values, for example) or coarse (monthly or yearly averages) temporal scale. There are 

several approaches used to aggregate temperature data with health or other population data. 

Among the common approaches are calculating annual, seasonal, or monthly means of daily 

maximum values, or deriving heat wave indicators, which often identify sequences of days 

when the daily maximum exceeds a specific threshold or percentile of the temperature 
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distribution for a given location (see Phalkey et al. 2015; Zhang et al. 2017). Where 

available, hourly measures of temperature data can provide additional context (Jiao et al. 

2019), for example, by examining the impact of excessive nighttime or morning temperature 

on health outcomes.

Pathways in Application—Although the concepts of disease, food insecurity, and heat 

stress are general, how each stressor is measured is context-dependent. Therefore, to 

appropriately investigate these pathways in application, we must consider the particular 

context of Mali as it relates to each pathway. Figure 1 highlights general rainfall and 

temperature trends over a given year in Mali. Notably, the hot season occurs from March 

to May, with temperatures decreasing as the rains begin in May. The rainy season is the 

primary agricultural growing season for Malians. Planting typically occurs sometime in 

June, and harvest follows in September. Mali has a clear north-south rainfall gradient, with 

much lower levels of rainfall in the north and higher levels in the south. In addition, within

country rainfall variability is fairly high: villages as close as 10–20 kilometers apart may 

experience different rainfall conditions that modify the start, length, and overall quality of 

the season. As in other malaria-endemic contexts, the primary malaria season occurs during 

the growing season, with most cases occurring in June-September. However, similar to the 

situation for food security and agricultural production, within-country variability in rainfall 

during a given year results in spatial variability in malaria transmission as well. Thus, in 

research investigating climate and health, spatial and temporal variability in enviromnental 

conditions and exposures requires a consideration of the conditions where each person lives.

Identifying the specific mechanism using cross-sectional, observational data is challenging, 

especially because some of these conditions are interrelated and because the climate 

measures used to capture rainfall and temperature variability are necessarily proxy measures, 

which may reflect factors that are not explicitly accounted for in the theoretical design. 

As the field of climate-health scholarship rapidly grows, researchers increasingly note the 

potential for climate and weather conditions to impact health outcomes through many 

potential pathways (Phalkey et al. 2015). To better isolate the contributions to adverse health 

outcomes associated with each of these potential drivers, we use different measures derived 

from different remotely sensed and physically based data sets. Each measure has been 

validated in other research and is modified here for our study on birth weight outcomes in 

Mali.

Birth weight is used because it provides an easily identifiable period of risk: the 

pregnancy (approximately 9 months before a child’s birth date) and prepregnancy periods 

(approximately 9–12 months before a child’s birth date). Exposure to disease (malaria), 

heat stress, and food insecurity during pregnancy may affect infant birth weight. Timing of 

exposure is important: exposures during prepregnancy and early pregnancy may contribute 

to failed conceptions or spontaneous abortions and result in a selection bias, resulting in 

heavier babies at birth (see Catalano et al. 2016; Wilde et al. 2017; Zhang et al. 2017). Using 

trimester-specific measures of exposure allows us to consider the differential risks associated 

with each trimester on birth weight outcomes.
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To separate temperature effects associated with agriculture from those associated with heat 

stress, we exploit Mali’s unique agricultural calendar. Specifically, the hot season (March–

May), when temperatures can exceed 45°C, does not overlap with the rainy growing season 

(June–September). Focusing on different categories of temperatures conditions allows us 

to examine the impact of heat waves on pregnancy outcomes separately from the food 

production pathway. Similarly, considering rainfall alone combines conditions that are ideal 

for malaria and for agricultural production. However, NDVI is an established measure of 

agricultural production in Mali, where vegetation is almost always indicative of a source 

of food (or cash, in the case of cash crops). Using NDVI to measure seasonal quality of 

the prior growing season will help account for the complicated relationships among rainfall 

malaria, and food insecurity. Table 2 summarizes the pathways, the measures and data, and 

timing considerations for use in this analysis. Details on the specific construction of each 

pathway are presented in the Measures section.

Data

Population Data

The population data used in this research come from the 2000, 2006, and 2012 cross

sectional Demographic and Health Surveys (DHS). Because of ease of use and consistency 

across periods, we use DHS data from IPUMS DHS (Boyle et al. 2018). DHS data contain 

highly detailed information on women’s and children’s health for the poorest countries 

in the world. These data are widely used for research and policy investigations related to 

health and development. The data contain information on individual-and household-level 

characteristics, including educational attaimnent, health, and household assets. The data also 

contain retrospective information on child and infant health outcomes as reported by the 

mother. The data are georeferenced at the level of the DHS community cluster. Clusters are 

spatially shifted (offset) up to 10 kilometers to maintain confidentiality of respondents but 

can be merged with other spatially referenced data as long as an appropriate spatial buffer5 

is incorporated into an aggregation strategy (see Davenport et al. 2017; Grace et al. 2019).

Environmental Data

Rainfall Data—For the rainfall data, we use the Climate Hazards Center InfraRed 

Precipitation with Station (CHIRPS) data set (Funk et al. 2014b). The CHIRPS data 

set, developed by the U.S. Geological Survey scientists in collaboration with the Climate 

Hazards Center at the University of California Santa Barbara, combines a high-resolution 

(0.05 degree) climatology (Funk et al. 2015) with time-varying station data and observations 

from geostationary weather satellites. The CHIRPS period of record, 1981 to present, 

compares reasonably well with in-situ rain gauge observations in Africa. Research projects 

supported by the U.S. Agency for International Development use CHIRPS for monitoring 

and forecasting rainfall across Africa (Funk et al. 2014a). We use these rainfall data in 

combined with temperature to quantify malaria risk.

5The spatial scale of the environmental data (described later) varies. In the cases where the spatial scale is finer than the DHS, we 
average the values within the buffer. In the case of temperature, for which the spatial scale is coarser, multiple DHS clusters fall within 
the same temperature pixel.
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Temperature Data—We use temperature data provided by Princeton University’s 

Terrestrial Hydrology Research Group (Sheffield et al. 2006). These temperature data 

were extracted from a data set (version 3)6 of complete meteorological forcings, including 

precipitation, air temperatures (minimum, maximum, and average), downward short- 

and longwave radiation, surface pressure, specific humidity, and wind speed. Since its 

development, the Princeton University data set has been used extensively in the literature. 

Most recently, it has been used to study health outcomes in sub-Saharan Africa (Davenport 

et al. 2017), characterize heat waves in West Africa (Odoulami et al. 2017), inform 

projections of climate and land use change in West Africa (Wang et al. 2017), quantify crop 

yield uncertainty in sub-Saharan Africa (Dale et al. 2017; Srivastava et al. 2017), and drive 

the Global Land Data Assimilation System (Rodell et al. 2004). These temperature data are 

provided at 0.25 degrees, which is the finest resolution currently available for daily global 

temperature data. Although the spatial resolution is coarser than that of the precipitation 

data, temperatures generally exhibit less spatial variability than precipitation and thus do 

not require such fine resolution. We use these temperature data to identify and compute 

heatwave events (i.e., the heat stress pathway), and we combine these temperature data with 

precipitation totals to quantify malaria risk.

Vegetation Data—The Normalized Difference Vegetation Index (NDVI) is a measure 

of vegetation health and thus a measure of crop production in a community. NDVI is a 

measure of greenness, which has been shown to be related to primary productivity and 

leaf area of plants (Sellers 1985; Townshend and Justice 1986), and provides a way to 

directly measure the impact of moisture and temperature conditions on vegetation health. In 

application, NDVI has been linked to local agricultural production and can be used to proxy 

variations in locally produced food (Grace et al. 2016; Husak et al. 2008). Here we use 

NDVI data from the Integrated Climate Data Center at Universitat Hamburg; this data set 

is a quality-controlled version of the NASA-GIMMS NDVI products (Tucker et al. 2005). 

The NDVI data are available at bimonthly (~15-day) time steps and 1/12-degree spatial 

resolution from 1981 to 2015.7 In this research, we consider seasonal maximum NDVI to 

be a proxy for crop production and ultimately food security and availability (i.e., the food 

insecurity pathway).

Measures

Outcome Variable—The outcome variable is birth weight, which reflects a clearly 

defined period of exposure: approximately nine months of gestation. This defined period 

allows us to carefully consider specific exposures. Given that DHS data generally do not 

contain information necessary to calculate exact conception date (or gestational age), we 

approximate the date of conception as the nine months prior to the birth date. Consistent 

with the literature on fetal growth and prenatal exposures, we consider each trimester 

of a pregnancy separately and include the important 0th trimester (the prepregnancy or 

conception period) (Bloomfield et al. 2013; Kramer 2003; Rylander et al. 2013). Birth 

6 http://hydrology.princeton.edu/data.pgf.php 
7This NDVI data series is not updated regularly and currently ends in December 2015. For analyses that require more recent NDVI 
data, the MODIS satellite imagery has been used to develop NDVI beginning in February 2000.
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weight is recorded based either on a respondent’s recall of her child’s birth or on a health 

card. Recall may be impacted by other factors and may not be completely accurate. We 

therefore include a dummy variable in the models indicating whether the birth weight 

information was from recall or from the medical card.

Among the 25.5% of respondents who did not report a birth weight for their child—either 

because they could not remember the child’s birth weight or because the child’s weight 

was not measured at birth—57% live in urban areas, and 66% are classified as having no 

educational attainment. However, 87% of rural and 86% of women living in pastoral areas 

reported birth weights. When considering birth weight reporting by month of birth, we find 

some variation, with most months having around 25% to 26% of missing data on birth 

weight. In the fall (August–November), information on birth weight is somewhat more likely 

to be missing than in other months, with about 27% to 28% of births having no birth weight 

recorded. Comparative figures for December and February are 23% and 24%, respectively. 

Apart from the lower reporting of birth weight among urban women, it does not appear 

that certain times or places are routinely excluded from the analysis. We therefore do not 

believe that there is a pattern to this missingness that correlates with any of the pathways 

investigated here, and we do not consider this limitation to inflate the relationships observed 

here.

A final and vitally important aspect of DHS data is the inclusion of information on length of 

time at current residence. A single question in the Mali DHS questionnaire asks, “How long 

have you been living continuously in this town/village?”8 Responses are recorded using an 

annual time scale. Although not optimal for measuring individual migrations or exposures 

to different enviromnental risks, this question allows us to link individuals to enviromnental 

exposures. In terms of pregnancy outcomes, respondents who have lived in the current 

community at least 12 months preceding childbirth are included in the analysis because the 

conditions that they were exposed to during pregnancy can be inferred.

For the 2000 and 2006 surveys, around 7% of the respondents were either not in the current 

community during the pregnancy period or did not provide a response to the question. 

This question was excluded in the 2012 survey, and we therefore conducted the analyses 

separately for those with and without tins residency information. No significant difference 

in results was detected when we compared results across groups with and without residency 

information and with and without aligned exposures (results available upon request). The 

final models presented here use all available data, regardless of residency information.

Independent Variables: Food Insecurity—We use growing season maximum NDVI 

values as our food insecurity measure. NDVI is best used as a comparative measure to 

indicate whether one area has more vegetation than a neighboring area or for comparing 

one period with another. The seasonal maximum NDVI is calculated for a 10-kilometer 

buffer centered on each DHS cluster. The growing season typically begins in mid-June and 

lasts through harvest in September. To investigate birth weight outcomes, we consider the 

8The question about length of time at the current residence is included in DHS surveys in other countries as well, but the question may 
be worded slightly differently.
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maximum NDVI of the growing season that occurred just before the pregnancy. This is the 

growing season that would impact the severity of food insecurity during the hunger season9 

occurring during the pregnancy. For a pregnancy that resulted in a birth in October of year 

t, we consider the NDVI from the growing season of year t. For a birth occurring in March 

of year t, we consider the growing season of year t – 1. In this way, we consider a buffering 

time between when the food was actually harvested and when the harvest may begin to be 

depleted. A lower NDVI value would indicate that the hunger season would start earlier for a 

given community, whereas a higher NDVI value would indicate that agricultural production 

was relatively improved (compared with other communities) and that more food would be 

stored, thus delaying and shortening the hunger season.

Independent Variables: Disease (Malaria)—Malaria is measured using the binary 

malaria index from Tanser et al. (2003), which is based on physically derived critical 

weather thresholds determined to sustain transmission of the vector. For each birth in our 

data set, we compute the number of malarious months for each of four trimester periods 

(i.e., with the three months leading up to conception considered the 0th trimester, and the 

1st–3rd trimesters following the standard definitions). This index ranges from 0 to 3, with 

lower values indicating lower risk of exposure to malaria during a given trimester and higher 

values indicating an increased risk.

Independent Variables: Heat Stress—Heat stress is measured using daily maximum 

temperatures from a data set on meteorological forcings developed by the Terrestrial 

Hydrology Research Group at Princeton University (Sheffield et al., 2006). Quadratic 

and cubic approaches have been used in other analyses in addition to a binned approach 

and a threshold approach (i.e., days above an arbitrary cutoff value). Based on this 

research, a threshold or binned approach best captures exposure to heat stress in hot 

and dry enviromnents, with the focus on the hotter end of the distributions. Use of 

binned temperatures produces highly correlated independent temperature variables that were 

ultimately not useful. For this analysis, after exploring several temperature thresholds and 

binned approaches, we use a simple count of the number of hot days above 100°F, which is 

consistent with other approaches (see Davenport et al. 2017; Deschenes et al. 2009; Grace 

et al. 2015). Exploratory analysis on the use of wet-bulb temperature, which considers 

humidity to capture the “feels like” temperature, does not dramatically vary from the 

analyses using the temperature data set reported here. In addition, the hottest time of year in 

Mali is also the driest time of year, indicating that wet-bulb temperature would not provide a 

better measure of the lived conditions.

Table 3 provides summary information on the data used in the analysis.

Analytic Approach

To investigate the differential impact of these different pathways linking climate and health 

outcomes, we estimate a suite of regression models using reported birth weight as the 

9The hunger season is the period when food stores from the previous year are depleted but harvests from the current year are not yet 
available. In a setting with a single growing season, like Mali, the hunger season tends to overlap with the growing season. For this 
project, we use the hunger season calendars from FEWS NET.
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continuous outcome variable. We use ordinary least squares (OLS) regression and adjust for 

clustering at the level of the mother (due to multiple children birthed to the same mother).10 

Because individual factors related to health and development are of known significance, we 

include these variables in the models to account for the variability in the outcome associated 

with them. Control variables are maternal education and age at birth, infant sex, infant’s 

birth order, and flooring type. The latter can be used as a measure of household wealth and 

development. Rather than include the DHS wealth indicator, which is designed for use when 

considering a single survey period and which may capture broad urban-rural differences 

in development, we use flooring type along with education level as coarse indicators to 

distinguish the poorest respondents (those with unfinished flooring and no educational 

attaimnent) from other respondents (those with finished flooring and primary or secondary 

education).We also adjust for month and year of birth, length of time at current residence, 

survey year, and the livelihood zone where the household is located.11 The first set of 

regression models (Models 1–3) includes these control variables and the climate indicators 

for the three pathways described in Table 2.

Finally, we consider the results using the OLS models but where the relevant exposure 

period associated with the particular characteristics of the location is not considered in 

the ways that we have described. In other words, instead of looking specifically at hot 

season temperature conditions during the pregnancy, we look at average monthly maximum 

temperature during each trimester of pregnancy. We consider rainfall similarly and look 

at average monthly rainfall during each trimester of pregnancy. We investigate the results 

from this more general approach that does not address specific pathways associated with 

the enviromnental measures to determine whether any significant differences in model 

performance emerge when we use the exposure-based approach focused on the different 

pathways.

Results

We present the results from the four models corresponding to the three pathways of potential 

impact: malaria, heat stress, and food insecurity. We present partial dependence plots for 

the key pathway variables; regression tables can be found in the appendix. Beginning with 

the food insecurity pathway, we measure agricultural production by NDVI and focus on 

trimester-specific exposures to the hunger season. Figure 2 presents the NDVI results four 

separate models corresponding to the period of pregnancy when the exposure occurred.

Our assumption is that a child born in year t is likely to weigh more when the t – 1 

seasonal maximum NDVI value is higher. When the conception period (what we call the 

0th trimester, occurring during year t) occurs during the hunger season, we see a positive 

association between birth weight (for the birth occurring around 12 months later) and the 

seasonal maximum NDVI value (from year t – 1) (p = .14). For the cases when the first 

10We also use multilevel regression models and conduct two separate models. We nest individuals within clusters in one model, and 
we nest individuals within mothers. In other words, we treat the cluster or the mother as a random effect. No significant difference in 
our findings results from these different analytic approaches.
11Data on livelihood zones come from FEWS NET and are used to capture broad trends in the ways that people produce food or earn 
money.
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trimester occurs during the hunger season, we see a similarly positive relationship (p = .10) 

between NDVI (from t – 1) and birth weight. We similarly see positive associations for both 

the second and third trimesters as well (p < .05 for both cases). Fetal weight gain occurs 

during the later stages of pregnancy, and the results indicate that a stronger prior agricultural 

season is associated with a heavier infant (Bloomfield et al. 2013).

To investigate the relationship between malaria and birth weight outcomes, we use an 

indicator variable that combines rainfall and temperature characteristics as a measure of 

conditions that would support the presence of malaria. In this case, each birth that resulted 

in a live birth (with a birth weight) is included in a single regression model, and the number 

of months during each trimester (again, including a Oth trimester) is considered. Figure 3 

shows these results and highlights a positive association between birth weight and exposure 

to malarious months in the third trimester. In other words, when a respondent was exposed 

to more malarious months during the last stage of pregnancy, her child’s birth weight was 

larger ( p < .01).

This result is inconsistent with our initial expectation that exposure to malaria would reduce 

birth weight. We believe that this counterintuitive result is explained by the association 

between greater exposure to malaria and an increased risk of spontaneous abortion during 

later trimesters. In other words, we speculate that the process by which malarious conditions 

impact pregnancy is through reducing the likelihood that less healthy pregnancies are carried 

to term and ultimately producing a group of healthier infants. Although the result initially 

seems counterintuitive, in fact, this idea is not new.

The potential that adverse enviromnental conditions contribute to miscarriages and 

stillbirths, or even prevent conceptions, and therefore result in infants who are healthier has 

been explored and documented in numerous studies focused on wealthy countries (Catalano 

and Bruckner 2006; Catalano et al. 2016; Wilde et al. 2017). Although not the central focus 

of our research (consequently detailed results are not presented but are available from the 

first author), we investigate this possibility in simple ways by considering how changes in 

malarious conditions during pregnancy relate to the sex of an infant: more malarious months 

associated with increased likelihood of female infants may indicate some prenatal selection. 

We also use data from the DHS on nonlive birth outcomes for Mali and investigate whether 

the risk of nonlive birth outcomes is associated with malarious conditions.

In terms of malarious conditions impacting the sex of an infant, results indicate that when 

the third trimester of a pregnancy has a greater share of malarious months, the likelihood of 

a female infant birth increases. No similar impact is observed in earlier stages of pregnancy. 

In terms of evaluating the impact of malarious exposure on pregnancy outcomes that do not 

result in live births, our analysis indicates that women who were exposed to more malarious 

conditions after Month 2 of pregnancy were more likely to experience a nonlive birth. Both 

sets of results support the notion that malarious exposure has a positive impact on birth 

weight through a selection process.

In the third model presented in Figure 4, we investigate the relationship between heat stress 

during each trimester and birth weight outcomes. To measure heat stress, we count the 
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number of hot days that each respondent was exposed to during her pregnancy. Here we 

look at all births and consider the count of hot days during each of the four trimesters. As 

discussed earlier, the hot season in Mali does not occur during the growing season but rather 

before the growing season. This setting then allows us to investigate high temperatures as 

an aspect of heat stress separately from considering how temperature conditions relate to 

agricultural production. Although the exact magnitude of the effect of heat stress on birth 

outcomes is highly uncertain, the general trend is a negative slope for exposures, indicating 

that an infant is likely to have lower birth weight when exposed to more days over 100°F 

during the third trimester ( p < .01) and first trimester (p = .06). Heat stress experienced 

by a pregnant woman during these two trimesters could potentially lead to preterm birth or 

intrauterine growth restriction, thereby increasing the risk of low birth weight (Rylander et 

al. 2013).

Finally, to improve our understanding of these results, we explore one final modeling 

approach: we calculate general average rainfall and temperature conditions during each 

trimester of the births in our sample. This approach, which mirrors commonly used 

approaches that have produced a range of different outcomes, is a simple and straightforward 

strategy that makes no assumptions about the pathways linking environmental conditions to 

health outcomes. The aim of this approach is to determine whether variability in weather 

conditions during pregnancy is associated with variability in birth weight outcomes. Figure 

5 displays the relationship between average monthly rainfall averaged over each trimester, 

and Figure 6 displays the relationship between average maximum temperature over each 

trimester.

The temperature results are consistent across the two models and suggest that either count 

of hot days or average temperature conditions experienced during a pregnancy could be used 

in related analyses. This finding makes sense given that Mali is a relatively warm place and 

that average temperature conditions are correlated with counts of hot days when hot days 

are defined as >100°F (correlation = .94 for all trimesters). Thus, higher counts of hot days 

will occur during the time when the average temperature is greater. In a place with more 

seasonal variability in temperatures or a growing season that corresponds with the hottest 

time of year,we anticipate that these different measures would produce more distinct results. 

The precipitation model, however, produces results that do not align with either the malaria 

pathway or the food security pathway. (The correlation between NDVI and precipitation is 

less than +/−.08 for all trimesters, which is not entirely surprising considering the disparate 

temporal scales between the variables.) Relative to this commonly used averaging approach, 

the pathway approach seems to reveal distinctly different patterns in the data. In fact, the 

direction and magnitude of results vary by trimester when the average precipitation approach 

is used. Because the pathway approach relies on measures that are more closely aligned with 

the ways that individuals living in Mali interact with the landscape, the pathway-specific 

results are likely to provide greater insight into the effect of precipitation and weather 

on children’s health. The pathways approach provides a way of directly quantifying the 

nonlinear and often indirect relationship between precipitation and agricultural yield, and 

thereby children’s health.
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Finally, we consider the outcome variable as a categorical variable, comparing low birth 

weight (LBW) infants with healthy birth weight infants. To construct this variable, we use 

the World Health Organization’s threshold by which any child with a weight below 2,500 

grams is considered LBW. With respect to the pathway variables, the results are generally 

consistent in terms of the direction of the relationship and the level of significance when 

the categorical variable rather than the continuous variable is used. A notable exception is 

when evaluating the impact of hot days. During the 0th trimester, if a woman is exposed to 

more hot days while pregnant, the risk of a LBW birth increases (a relationship that is not 

significant in the case of the continuous variable, although the direction of the relationship is 

the same). Another noteworthy finding is the significance of the birth weight recall variable. 

Using the continuous variable, we do not find any significant differences in birth weight 

depending on whether a respondent recalls the birth weight or has it documented on a 

health card. Alternatively, individuals who recall the birth weight of their infant are more 

likely to recall a LBW compared with those women who had the birth weight information 

documented on a health card.

Discussion

Demographic and public health research examining the negative impacts of climate change 

continues to reveal vulnerabilities and highlight groups at great risk for adverse health 

impacts. Pregnant women and children are frequently identified as those facing some of 

the greatest risks associated with climate change through factors associated with food 

security, disease, and heat stress (Phalkey et al. 2015; Rylander et al. 2013). In sub-Saharan 

Africa, children born with decreased birth weight or low birth weight potentially face 

a lifetime of ill health and reduced earnings—factors that may be felt by subsequent 

generations (Rylander et al. 2013). In sub-Saharan Africa, health risks associated with 

climate change, such as reduced birth weight, are compounded because in addition to direct 

effects associated with heat stress, many families and individuals rely on rainfed agriculture 

to meet their nutrition needs. Furthermore, in some countries, malaria is a constant cause of 

major illness, sometimes resulting in death.

Ongoing and dramatic improvements in the quantity and quality of high-frequency, remotely 

sensed data have facilitated dramatic improvements in climate data for use in population

enviromnent and climate-health research centered in sub-Saharan Africa. These data have 

been used in many disciplines to help address some of the major limitations in the 

availability of fine-scale, temporally varying quantitative data used to proxy food insecurity 

and disease exposure not included in the standard survey data set. Merging spatially 

referenced survey data with these high-frequency data sets has produced a growing body 

of research that generally indicates that climate and weather influence health outcomes, with 

many lingering questions about the directions of the relationships and mechanisms linking 

climate and health.

In this project, we selected a country with a very defined growing and hunger season 

(distinct from the hot season), high temperatures during the hot season, and high disease 

prevalence (with malaria being endemic) to examine an approach for isolating some of 

the most frequently cited mechanisms linking population, health, and the enviromnent. 
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We also focused specifically on infant birth weight. The approach we used here focused 

on measuring the pathways of interest using different data or indicators that are more 

closely aligned with the specific pathway of interest. Because the climate, topography, 

and development level of Mali is relatively consistent with other landlocked West African 

countries, these results can potentially be generalized to neighboring countries. Central, 

Eastern, and Southern Africa face different conditions (multiple growing seasons, highly 

variable topography within the country, presence of irrigated agriculture, and so forth), 

which may make the results less applicable. Nonetheless, the approach that we have outlined 

in terms of specifying the timing of exposure to better evaluate mechanisms connecting 

individual health outcomes documented in surveys and their climate/environmental contexts 

may be useful for structuring related questions in other contexts. Other outcomes beyond 

birth weight can be used as well, including chronic or acute health outcomes. The only 

requirements are that place of residence and exposure conditions be considered and that 

specific timing of exposures be appropriately linked to the pathways of interest.

Overall, our research demonstrates the complexity involved in quantitative studies of 

climate-health that rely on merging survey data and diverse sources of environmental 

data. Our results demonstrate the usefulness of deriving different contextually relevant 

measures capturing pathways linking precipitation variation and health. Based on our use of 

different enviromnental measures, the results of this research demonstrate the importance 

of local food production on the health outcomes of pregnant women. In general, our 

results indicate that more vegetation (as measured by NDVI) has a positive impact on 

birth weight outcomes. Notably, we constructed this as a lagged variable with the idea of 

measuring food in the community during the hunger period; therefore, the results indicate 

that women who experience pregnancies following a relatively (over time or over space) 

better season have babies with a higher birth weight. Malaria exposure, which is related 

to rainfall, produced results that seem to support a selection (or “culling”) hypothesis. 

When more months within a trimester (especially the third trimester) were characterized as 

malarious, we observed an increase in birth weight. These results were consistent across all 

model specifications and after we accounted for individual education or livelihood zones. 

Our analytic approach, which relies on different measures to capture different but related 

enviromnental conditions, highlights the ways that enviromnental conditions impact human 

health outcomes, especially with regard to conditions related to rainfall. These results can be 

useful for policy development because they highlight specific periods of greater risk: women 

in later stages of pregnancy seem to be at greater risk for adverse outcomes related to heat 

waves, whereas the second trimester of pregnancy may be when exposures to inadequate 

nutrition and malaria have the greatest impacts on birth outcomes.

This research provides insights into climate-health modeling, but the study’s limitations 

must also be considered. Birth weight data were reported in 75% of cases in the data 

we used, with the majority of the missing birth weight information concentrated among 

urban respondents. We included urban residence as a fixed effect in the models, and the 

concentration of missing birth weight among urban respondents likely resulted in biasing 

the results toward the null rather than in overinflating significance. Still, it represents a real 

limitation of the DHS data on birth weight.
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Further, the malaria index is not ideal (Tanser et al. 2003), likely mismeasuring some 

months. The malaria index considers temperature and rainfall, and most of the months that 

are assigned a value of 1 are growing season months. Our strategy of separating NDVI 

from malaria and using completely different timings and data should help to distinguish 

the effects of food availability from those of malaria exposure, but only to an extent. The 

malaria indicator is likely best suited for identifying malaria risks in places where malaria 

is epidemic or where there are historically few outbreaks. Therefore, the positive association 

observed between the third trimester and malaria exposure may capture some aspect of 

growing season conditions or some other artifact of the climatological conditions that make 

up the index.

Finally, at the beginning of this article, we discussed the methodological opportunities 

associated with using high-frequency spatial data of different spatial and temporal scales 

to better capture local contexts. In fact, this research largely focuses on the importance 

of considering local contexts—specifically, the geophysical and landscape contexts—to 

advance climate-health research. And although conceptual frameworks that highlight social, 

behavioral, and cultural factors underpin our research, the specific ways that individuals 

interact and respond to different environmental or health conditions and events is not 

captured here. We acknowledge that it is of fundamental importance to consider the social 

and cultural aspects of health with attention to how those factors vary over space and time. 

In Mali, for example, research has shown that child health is related to the marital and 

household status of the child’s mother and to factors related to the mother’s household 

status when she was a child herself (specifically, whether the mother was a fostered youth) 

(Castle 1995; Dettwyler 1993). Research also shows that poor water quality, time required 

to collect fuelwood for cooking, and inadequate financial resources to afford medical care 

during pregnancy, birth, and later on have significant impacts on children’s health and 

development (Adams et al. 2002; Bove et al. 2014; Dettwyler 1993). Furthermore, farmers 

and households may respond differently to similar enviromnental conditions, resulting in 

differing health and economic outcomes.

Thus, within these areas of research, not all individuals face the same outcomes despite 

sharing similar enviromnental exposures. It is clear from the research that adverse health 

outcomes, such as low birth weight, result from multiple interacting factors. Dettwyler 

(1993:36) noted that there is a culturally and contextually important “safety net of 

overlapping support systems” created by a family and community to guard the health of 

children. In the case of adverse health outcomes such as low birth weight, these children 

have slipped through the complex safety net. Among researchers, very little is known about 

locally relevant safety nets or how pregnant women manage extreme heat, exposure to 

malaria, or food insecurity. It is a challenge for quantitative data and analyses to capture 

and measure the range of safety nets, and it is one of the important limitations of this 

research and the growing field of climate-health research. None of the data sets used in 

this analysis provide insight into management or coping strategies associated with health 

decisions used in the face of climate change. In addition to worthwhile and ongoing efforts 

by quantitative researchers to use existing data to better capture important climate features, 

qualitative research that investigates resource management and climate adaptation strategies 
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at the household and individual levels is greatly needed to further advance research in this 

area. ■
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Mali climatology from 1981–2016 (averaged over DHS clusters). The bolded line with dots 

represents daily maximum temperature averaged over the month. Finer line with diamonds 

represents daily minimum temperature averaged over the month. Bars represent average 

monthly precipitation totals. Temperature data are obtained from the Global Meteorological 

Forcing data set (Sheffield et al. 2006). Precipitation data are obtained from the Climate 

Hazards Infrared Precipitation with Stations (Funk et al. 2014b).
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Fig. 2. 
The relationship between NDVI values (year t – 1) and birth weight according to trimester

specific exposure to the hunger season (year t)
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Fig. 3. 
The relationship between malarious conditions during each trimester of pregnancy and birth 

weight for all children in the sample
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Fig. 4. 
The relationship between exposure to days above 100°F during each trimester of pregnancy 

and birth weight
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Fig. 5. 
The relationship between exposure to average monthly precipitation averaged over each 

trimester of pregnancy and birth weight
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Fig. 6. 
The relationship between exposure to average temperature conditions during each trimester 

of pregnancy and birth weight
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Table 1

Criteria used to calculate months suitable for P falciparum malaria transmission in Africa

Simulated Effect Variable Threshold

Parasite Development and Vector Survival Three-month moving average temperature ≥(19.5°C + yearly SD of mean monthly temperature)

Frost Minimum yearly temperature ≥5°C

Availability of Vector Breeding Sites Three-month moving average rainfall ≥60 millimeters

Catalyst Month Three-month moving average rainfall At least one month ≥80 millimeters

Note: Modified from Tanser et al. (2003).
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Table 2

Primary mechanisms linking climate and infant health

Pathway Data/Measure Hypotheses and Associated Timings

Food 
Insecurity

Normalized 
Difference Vegetation 
Index

High vegetation during growing season produces better/more crops, which allows for greater food 
storage. A positive relationship during the following year’s hunger season is possible because 
more agricultural production implies improved household food availability. The results of improved 
storage/food availability would likely be experienced 9–12 months after the growing season, when 
higher birth weights may be observed.

Disease 
(Malaria)

Rainfall and 
Temperature

Increased risk of disease occurs during the key malarious months. Exposure to more months with 
malaria conditions will potentially have a negative impact on birth weight.

Heat Stress Count of Days of High 
Temperatures

High temperatures during hot part of year could indicate exposure to heat stress. Negative impacts 
on birth weight are possible if a pregnant woman is exposed to heat stress during early pregnancy 
(impacts on placenta and uterus) and during late pregnancy (associated with preterm birth).
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Table 3

Variables used in the analyses

Mean SD %

Dependent Variable

 Birth weight (grams) 3,217 864

 Low birth weight (<2,500 grams) 1,930 411

Key Independent Variables

 Seasonal maximum NDVI 0.56 0.17

 Count of malarious months 0.59 0.91

 Count of hot days 22.7 24.6

Control Variables

 Child’s birth order 3.7 2.4

 Child’s sex (%)

  Male 52

  Female 48

 Mother’s age (years) 28.4 6.9

 Mother’s educational attainment (%)

  Never attended 66

  Completed primary or beyond 34

 Birth weight source (%)

  Card 31

  Memory 69

 Floor material (%)

  Dirt 52

  Finished 48

 Livelihood zone (%)

  Agriculturalists 34

  Urban 33

  Agropastoralists 27

  Pastoralists   2

  Irrigated   4

 Survey year (%)

  2001 26

  2006 40

  2012 34

Notes: The sample used for each analysis varies based on exposure timing. We calculate descriptive information using the sample for the analysis 
of hot days.
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