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Artificial intelligence (AI) has demonstrated promise 
in facilitating triage in radiology departments owing 

to its ability to rapidly extract key features from imaging 
studies and perform high-throughput analysis, especially 
in institutions with high volumes of disease (1). Prior 
studies have evaluated the clinical value of AI in screening 
for or diagnosing coronavirus disease 2019 (COVID-19), 
predominantly at chest CT (2–4). In clinical practice, 
however, chest radiography is the primary, and often 
only, imaging modality used to evaluate patients with 
COVID-19, particularly in health systems with limited 
resources (5). Although the value of chest radiography in 
diagnosing COVID-19 might be limited by its reported 
low sensitivity, it may be useful in the prognostication 
of outcomes in patients with findings positive for CO-
VID-19 (6–8).

Deep learning (DL) is a type of AI in which data are 
processed iteratively through multilayered neural networks 
to automatically extract high-level features from raw data 
input. This recursive method allows programs to discern 
patterns without explicit human guidance (9). Recently, a 
DL algorithm was reported to have accurately predicted 
long-term outcomes from single chest radiographs in pa-
tients with prostate, lung, colorectal, and ovarian cancer 
(10). Another cohort from Italy showed data that support 
the role of chest radiography as a first-line triage tool in 
predicting mild disease course of COVID-19, as defined 
by no need for inpatient hospitalization or inpatient hos-
pitalization of less than 4 days duration without the need 
for assisted ventilation (11). A growing body of literature 
on the use of chest radiography shows increased severity 
to be associated with worse outcomes for all patients (12). 
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Purpose: To train a deep learning classification algorithm to predict chest radiograph severity scores and clinical outcomes in patients 
with coronavirus disease 2019 (COVID-19).

Materials and Methods: In this retrospective cohort study, patients aged 21–50 years who presented to the emergency department (ED) of 
a multicenter urban health system from March 10 to 26, 2020, with COVID-19 confirmation at real-time reverse-transcription poly-
merase chain reaction screening were identified. The initial chest radiographs, clinical variables, and outcomes, including admission, in-
tubation, and survival, were collected within 30 days (n = 338; median age, 39 years; 210 men). Two fellowship-trained cardiothoracic 
radiologists examined chest radiographs for opacities and assigned a clinically validated severity score. A deep learning algorithm was 
trained to predict outcomes on a holdout test set composed of patients with confirmed COVID-19 who presented between March 27 
and 29, 2020 (n = 161; median age, 60 years; 98 men) for both younger (age range, 21–50 years; n = 51) and older (age .50 years, n 
= 110) populations. Bootstrapping was used to compute CIs.

Results: The model trained on the chest radiograph severity score produced the following areas under the receiver operating character-
istic curves (AUCs): 0.80 (95% CI: 0.73, 0.88) for the chest radiograph severity score, 0.76 (95% CI: 0.68, 0.84) for admission, 0.66 
(95% CI: 0.56, 0.75) for intubation, and 0.59 (95% CI: 0.49, 0.69) for death. The model trained on clinical variables produced an 
AUC of 0.64 (95% CI: 0.55, 0.73) for intubation and an AUC of 0.59 (95% CI: 0.50, 0.68) for death. Combining chest radiogra-
phy and clinical variables increased the AUC of intubation and death to 0.88 (95% CI: 0.79, 0.96) and 0.82 (95% CI: 0.72, 0.91), 
respectively.

Conclusion: The combination of imaging and clinical information improves outcome predictions.

Supplemental material is available for this article.
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from the ED to prognosticate the outcomes of patients with 
COVID-19 (8). We compared the performance of the model 
trained on chest radiographs or clinical variables alone with 
that of the model trained on both chest radiographs and clini-
cal variables to evaluate the individual contribution of chest 
radiographs or clinical variables to the prognostication and to 
test for a potential synergistic effect of combining the two types 
of inputs. To do so, we used a DL classification algorithm pre-
viously used to predict 14 different diseases, including pneu-
monia, based on chest radiographs (22). We hypothesized that 
training the convolutional neural network with image input 
and the associated chest radiograph severity score, which was 
previously reported and validated in Toussie et al (8), is as effec-
tive as training with the image input and the associated clinical 
outcome of admission as labels. We then tested this model to 
generate a model severity score that was distinct from the ex-
pert radiologist–generated severity score, using only the image 
data input on an unseen test set of patients of all ages (includ-
ing patients older than 50 years) who presented at different 
time points to predict hospital admission, need for intubation, 
and risk of mortality. To improve the model performance, we 
also supplemented the model with standard laboratory tests 
available at the initial ED encounter.

Materials and Methods

Patient Selection
To collect the patient cohort for this institutional review 
board–approved retrospective cohort study in which writ-
ten consent was waived, we used the Montage Search and 
Analytics platform (Montage Healthcare Solutions) and ex-
tracted radiology information system data from all chest ra-
diographic examinations performed in the ED setting from 
March 10 to 29, 2020, in three hospitals in New York City 
with different radiography acquisition devices (Table 1). 
We removed any protected health information from the pa-
tient data for analysis and ensured the study was compliant 
with the Health Insurance Portability and Accountability 
Act. We used the obtained cohort to extract relevant clinical 
and laboratory data from the electronic medical record. The 
resulting radiology information system dataset contained 
4738 ED encounters. The exclusion criteria included age 
older than 50 years or younger than 21 years (n = 3163), 
duplicate chest radiograph in the same patient (n = 81), pa-
tients with an unconfirmed COVID-19 real-time reverse-
transcription polymerase chain reaction positive test result 
(n = 1101), presentations unrelated to COVID-19 (n = 2), 
unevaluable chest radiograph (n = 1), and inaccessible clini-
cal data (n = 1). All 338 patients from the original Toussie et 
al (8) clinical study were included in the training and vali-
dation dataset. We used the data to train a prognostication 
DL algorithm, a different purpose and outcome assessment 
from those of the original clinical study, in which expert 
radiologists scored the chest radiographs directly.

We randomly assigned the included chest radiographs ob-
tained between March 10 and March 26, 2020, (n = 338) to 

Some DL algorithms incorporating CT and chest radiography 
data have been used to aid in screening for and diagnosis of 
COVID-19, and one study used CT to predict poor prognostic 
outcomes in patients with COVID-19 (2,13–15). A model that 
predicts a pulmonary x-ray severity score based on chest radio-
graphs from patients with COVID-19 was published in 2020 
(16). Nonetheless, the potential for DL algorithms (especially 
those that have been trained using chest radiographs from pa-
tients with COVID-19 and clinically validated severity scores 
provided by expert radiologists) to directly predict clinical out-
comes and to aid in prognostication and risk stratification based 
on only the chest radiograph as input has gone largely unexplored 
(8). In fact, many recently published prognostication algorithms 
use only clinical variables and either do not use imaging data as 
input or use only CT images, the latter of which is problematic 
because CT is less widely available and less frequently performed 
than chest radiography (17–19).

The presence of comorbidities, such as lung and heart disease, 
can potentially confound interpretation of chest radiographs in 
patients with COVID-19 pneumonia, which may decrease the 
predictive ability of DL (20). Thus, in this context, the genera-
tion of predictive chest radiograph interpretations may be more 
valid in patients younger than 50 years, who have a lower preva-
lence of such comorbidities. While COVID-19 affects persons 
of all ages, the younger population comprises a considerable pro-
portion of affected patients (21). Thus, testing for generalizabil-
ity of prognostication algorithms in patients with COVID-19 
is important for deployment of DL to appropriate patient 
populations.

In this study, we propose a proof-of-concept model with 
intent to demonstrate that a DL algorithm can take only the 
initial chest radiograph—an imaging study that emergency 
department (ED) clinicians do not routinely use as the main 
determinant of hospitalization—and the clinical variables 

Abbreviations
AI = artificial intelligence, AUC = area under the receiver operating 
characteristic curve, COVID-19 = coronavirus disease 2019, DL = 
deep learning, ED = emergency department

Summary
Initial emergency department chest radiography and clinical variables 
of patients with coronavirus disease 2019 were used to train a deep 
learning classification algorithm to predict clinical outcomes.

Key Points
 n A deep learning algorithm trained on only routine chest radiog-

raphy (intubation area under the receiver operating characteristic 
curve [AUC], 0.66; death AUC, 0.59) or clinical laboratory values 
(intubation AUC, 0.64; death AUC, 0.59) prognosticated 30-day 
intubation and death better than a naive classifier.

 n Performance of prediction of intubation (AUC, 0.88) and death 
(AUC, 0.82) increased when the model was trained with initial 
chest radiographs and relevant clinical variables from electronic 
health records acquired exclusively from the emergency depart-
ment encounter.

 n The model, despite training with only young patients aged 21–50 
years, can be generalized to a pseudoprospective test set that also 
included patients older than 50 years.

http://radiology-ai.rsna.org
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were posteroanterior and lateral views (Table 2). We used only 
frontal radiographs for model inference.

Data Collection
Two fellowship-trained cardiothoracic radiologists (C.E., 26 
years of experience; Y.S.G., 1 year of experience) blinded to pa-
tient history other than COVID-19 positivity independently 
examined the initial chest radiographs for opacities to generate 
a total severity score. Each lung was divided into three zones 
(upper, middle, lower), and a binary score of 0 (no opacity) 
or 1 (opacity) was assigned to each lung zone (Fig E1 [supple-
ment]) (8). For model training, only the lung zones that both 
radiologists agreed contained opacity were given the final opac-
ity label (score of 1); otherwise, the lung zones were deemed 
normal (score of 0). Chest radiographs with a score of 2 or 
higher (out of 6) were categorized as severe for the purposes of 
the training algorithm. Any admission, intubation, or death 
during 30-day follow-up was categorized as a positive event.

Model Architecture and Training
We stripped the raw images of any metadata for de-identifi-
cation. We resized and center cropped the radiographs to a 

either the training set (n = 283 [84%]) or the validation set 
(n = 55 [16%]) for the DL model. All radiographs were ob-
tained with bedside imagers. In the training set, 73.5% (208 of 
283) were anteroposterior radiographs and 26.5% (75 of 283) 
were posteroanterior and lateral radiographs. In the validation 
set, 76.4% (42 of 55) were anteroposterior radiographs, and 
23.6% (13 of 55) were posteroanterior and lateral radiographs. 
We used only frontal radiographs for model training. The in-
cluded chest radiographs from March 27 to March 29, 2020, 
(n = 51) were assigned to compile a held-out test set from a 
different time (Fig 1). A total of 161 patients were included 
in the test set. Of these patients, 51 were between the ages of 
21 and 50 years, and 110 were older than 50 years. These 110 
patients were added to test for generalizability of the model in 
older patients at increased risk of mortality. Twenty-nine pa-
tients in the test set did not have sufficient information (miss-
ing either height and/or weight) to calculate body mass index. 
In the test set of patients aged 21 to 50 years (n = 51), 68.6% 
(35 of 51) of the radiographs were anteroposterior views and 
31.4% (16 of 51) were posteroanterior and lateral views. In 
the test set of patients older than 50 years (n = 110), 96 ra-
diographs (87.3%) were anteroposterior views and 14 (12.7%) 

Table 1: Patient Characteristics from the Training, Validation, and Test Datasets

Variable Overall Training Validation Test P Value

Total 499 283 55 161 NA
Men 308 (62) 174 (62) 36 (65) 98 (61) .83
Age (y) 42 (34–50) 38 (31–45) 41 (35–44) 60 (46–70) ,.001
Race .1
 White 99 (20) 59 (21) 12 (22) 28 (17) …
 Asian 43 (9) 28 (10) 2 (4) 13 (8) …
 Black 114 (23) 65 (23) 13 (24) 36 (22) …
 Hispanic 161 (32) 95 (34) 21 (38) 45 (28) …
 Other or unknown 82 (16) 36 (13)* 7 (13)* 39 (24)* …
BMI 29 (24–36) 29 (24–36) 32 (26–39) 28 (24–32) .01
BMI cutoffs .01
 Normal 135 (29) 81 (28) 11 (20) 43 (33) …
 Overweight 126 (27) 78 (27) 11 (20) 37 (28) …
 Mild or moderate obesity 138 (28) 74 (26) 20 (36) 44 (33) …
 Severe obesity 71 (14) 50 (18)* 13 (24) 8 (6) …
Smoker .15
 No 327 (66) 186 (66) 37 (67) 104 (65) …
 Former 58 (12) 25 (9) 5 (9) 28 (17) …
 Other or unknown 86 (17) 54 (19) 10 (18) 22 (14) …
 Yes 28 (6)* 18 (6) 3 (5)* 7 (4) …
Site .39
 Manhattan 201 (40) 118 (42) 25 (45) 58 (36) …
 Brooklyn 154 (31) 90 (32) 12 (22) 52 (32) …
 Queens 144 (29) 75 (27)* 18 (33) 51 (32) …

Note.—Continuous variables shown as mean, with interquartile range in parentheses. Categorical variables are 
shown as number of patients, with the percentage in parentheses. BMI = body mass index, NA = not applicable.
* Percentages do not equal 100 due to rounding.
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a control. The DenseNet-121 output was then compiled by 
a fully connected layer and a sigmoid function to generate a 
probability score for the label (ie, severe, not severe or admit-
ted, or not admitted). We used the binary cross-entropy loss 
function and the Adam optimizer (25) (Fig 2). We empirically 
tested for the best learning rate from 1 3 10−2 to 1 3 10−10 in 
logarithmic increments (1 3 10−2, 1 3 10−3, …, 1 3 10−10) and 
determined the best learning rate as one that resulted in the 
lowest validation loss after 10 epochs of training.

We also tested how the model performance would change 
with the addition of the following clinical variables initially ac-
quired in the ED from electronic health records: white blood 
cell count; C-reactive protein, d-dimer, lactate, lactate dehy-
drogenase, creatinine, troponin, aspartate aminotransferase, 

resolution of 1024 3 1024. The authors visually inspected all 
radiographs after cropping, which standardized input size and 
removed any texts that were embedded in the edges of some 
radiographs (eg, time of acquisition). The images were sub-
sequently converted to tensors and normalized with the Ima-
geNet (http://image-net.org) mean and standard deviation. They 
were stored as HDF5 (The HDF Group) datasets to prevent 
the need to preprocess the images for each iteration of train-
ing. For the prediction algorithm, we used the DenseNet-121 
architecture that was first pretrained on ImageNet, a model 
previously used in the CheXNet study (22–24). We used two 
different labeling schemes for the training: (a) radiographs with 
the associated expert-generated severity scores as labels or (b) 
radiographs with the associated admission status as labels as 

Figure 1: Patient inclusion and exclusion criteria. CXR = chest radiograph, COVID-19 = coronavirus disease 2019, ED = emergency department, MRN = medical 
records number, RT-PCR = reverse-transcription polymerase chain reaction.

Table 2: Distribution of Imaging Modality, Severe Chest Radiography, and Clinical Outcomes

Variable Total (n = 499) Training (n = 283) Validation (n = 55) Test (n = 161)

Modality
 Bedside 381 (76.4) 208 (73.5) 42 (76.4) 131 (81.4)
 PA and lateral 118 (23.6) 75 (26.5) 13 (23.6) 30 (18.6)
Chest radiograph sever-

ity score
248 (49.7) 111 (39.2) 27 (49.1) 110 (68.3)

30-day admission 271 (54.3) 121 (42.8) 27 (49.1) 123 (76.4)
30-day intubation 73* (14.8) 20 (7.1) 7 (12.7) 46* (29.5)
30-day mortality 51 (10.2) 8 (2.8) 2 (3.6) 41 (25.5)

Note.—Data are numbers of patients, with percentages in parentheses. Only frontal views from posteroanterior 
(PA) and lateral acquisitions were used for training. The test set includes 110 patients older than 50 years. 
* The 30-day intubation value in the test set excludes five patients older than 50 years who were indicated as “do 
not intubate.”

http://radiology-ai.rsna.org
http://image-net.org


Radiology: Artificial Intelligence Volume 3: Number 2—2021 n radiology-ai.rsna.org 5

Kwon et al

40% in our cohort as the majority class, while those with 
a prevalence less than 40% were designated the minority 
class. Severe chest radiographs and admissions were thereby 
majority classes, while intubation and death were minority 
classes. We then plotted the precision-recall curve to evalu-
ate the model performance for minority classes that were 
not used as part of the training. We used the discrimina-
tive localization methods previously described to generate 
heatmaps that describe which areas of the radiographs were 
contributing the most to the prediction algorithm (26,27). 
The source code used in this article is publicly available at 
https://github.com/aisinai/covid19_cxr.

Statistical Analysis
Bivariate analysis of continuous variables, such as body mass 
index and age, was performed using the Kruskal-Wallis H 
test. Bivariate analysis of categorical variables, such as race, 
sex, smoking history, hospital site, and comorbidities, was 
performed with the x2 test.

To calculate the AUC, accuracy, precision, recall, and F1 
score values, an operating point was selected for high sensitiv-
ity (recall), which was then used to calculate accuracy and F1 
score. To calculate 95% CIs for AUC, accuracy, precision, re-
call, and F1 score values, we used bootstrapping experiments, 
as previously described (28–30). We resampled the test set 
with replacement and repeated the inference 100 000 times. 
The resampled test set was the same size as the original test set 

and glucose levels; estimated glomerular filtration rate; and 
systolic and diastolic blood pressure. We used mean imputa-
tion for any unavailable laboratory values. For model training 
with clinical variables alone, we used fully connected layers. 
For model training with both the chest radiograph and the 
clinical variables, the clinical variables were concatenated and 
added as input before the fully connected layer in the classi-
fication layer of the DenseNet-121 model previously trained 
on the chest radiograph and its previously mentioned severity 
score (Fig 2).

Model Evaluation
We selected the model from the training with either the 
chest radiograph severity score or the admission status with 
the minimum validation set loss as the best model to test. 
The probability score output, a continuous floating point 
value from 0 to 1 and distinct from the ordinal integer grad-
ing score from expert radiologists, from the DL algorithm 
based on only the chest radiograph as input was used to 
calculate the area under the receiver operating character-
istic curve (AUC) for four different classes: chest radio-
graph severity scores, admissions, intubations, and deaths. 
For example, a DL algorithm–generated score greater than 
0.65 predicts admission, a score greater than 0.80 predicts 
intubation, and a score greater than 0.90 predicts death. 
To account for variable prevalence among classes, we des-
ignated classes with a prevalence greater than or equal to 

Figure 2: A, Preprocessing of radiographs and storage as HDF5 (The HDF Group) datasets. When images are stored as HDF5 datasets, they do not require preprocess-
ing (eg, resizing, cropping, conversion to tensors) each time they are loaded to memory. B, Model architecture and training scheme. The two training methods we conducted 
included computing binary cross-entropy (BCE) loss function with either severity score (1 for severe, 0 for not severe) or admission status (1 for admitted, 0 for not admitted 
within 30 days). For inference, the deep learning algorithm outputs a severity score (distinct from radiologist-generated severity score) based on the chest radiograph (CXR) 
alone that is used to predict admission. To better predict intubation and death, initial clinical variables from the emergency department (ED) were added and used to retrain a 
model previously trained on chest radiographs and severity score. Avg = average, conv = convolutions.

https://github.com/aisinai/covid19_cxr
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(n = 161) because we were approximating the variation of the 
statistic that depends on the sample size. We compared the 
computed statistics with those of a naive classifier that pre-
dicts the positive class every time (ie, the naive model always 
predicts severe chest radiograph, 30-day admission, intuba-
tion, and death).

Results

Patient Demographics
Overall, 499 patients and their chest radiographs were included 
between the training, validation, and test sets, with a diverse 
patient population. Of the 499 chest radiographs scored, 41 
(8.2%) had a severity score of 2 or higher given by one of the 
two reviewers, but not when the severity score was calculated 
with concordant scores. The remaining 458 chest radiographs 
(91.8%) had been correctly categorized as severe (score of 2) 
or not severe (score of 0 or 1) by both reviewers individually 
and by concordant scores. Of the 499 patients (median age, 
42 years [interquartile range, 34–50]; 308 men), 248 (49.7%) 
had severe chest radiographs, 271 (54.3%) were admitted, 73 
(14.8%) were intubated (five patients had “do not intubate” 
status), and 51 (10.2%) died. Additionally, there were 53 pa-
tients (10.6%) with asthma, three (0.6%) with chronic ob-
structive pulmonary disease, 105 (21.0%) with hypertension, 
73 (14.6%) with diabetes mellitus, seven (1.4%) with HIV, 18 
(3.6%) with cancer, 23 (4.6%) with chronic kidney disease, 25 
(5.0%) with coronary artery disease, and five (1%) with atrial 
fibrillation. The datasets differed significantly with regard to 
age (due to inclusion of patients younger than 50 years in the 
test set) and body mass index (P = .01) (Table 1). Otherwise, 
there were no significant differences in the distribution of de-
mographic information between the training, validation, and 
test sets. For patients who were intubated, the time from initial 
chest radiography to intubation averaged 3.7 days, with a me-
dian of 3 days (range, 0–12 days).

The training, validation, and test datasets consisted of 283, 55, 
and 161 patients, respectively. Severe chest radiograph, admission, 
intubation, and death data for these datasets are found in Table 
2. The subset of the test set of 51 patients aged 21–50 years had 
34 (66.7%) severe chest radiographs, 34 (66.7%) admissions, 10 
(19.6%) intubations, and seven (13.7%) deaths (Table 2). Of the 
499 chest radiographs that were scored, 41 (8.2%) had a severity 
score of 2 or higher given by one of the two reviewers, but not 
when the severity score was calculated with concordant scores. The 
remaining 458 chest radiographs (91.8%) were correctly catego-
rized as severe (score of 2) or not severe (score of 0 or 1) by both 
reviewers individually and by concordant scores.

Model Training
Empirical search and determination of the best learning hy-
perparameters showed that the validation loss was lowest with 
the learning rate of 1 3 10−5, b1 decay of 0.99, b2 decay of 
0.9999, and weight decay of 1 3 10−5 after 10 epochs of train-
ing. Training with the chest radiograph severity scores and the 
admission status converged to the best model, as evaluated by 
validation loss (Fig E2 [supplement]). Initially, iterations of 

training showed low AUC for predicting death in the valida-
tion set, but the AUC increased with additional iterations (Fig 
E2 [supplement]).

Prediction of Independent Clinical Outcome Variables
After selection of the best model based on the minimum 
validation loss (Fig E2 [supplement]), we used the held-out 
previously unseen test set to produce prediction outputs. 
The single prediction output from each of the two models, 
the model trained with chest radiograph severity scores or 
the model trained with admissions, was then used to gen-
erate AUC values for the chest radiograph severity scores 
and the three clinical variables: any admission, intubation, 
or death event in 30 days. Both models gave satisfactory 
AUCs. The model trained on the chest radiograph severity 
score produced the following AUCs: 0.80 (95% CI: 0.73, 
0.88) for chest radiograph severity score, 0.76 (95% CI: 
0.68, 0.84) for admission, 0.66 (95% CI: 0.56, 0.75) for 
intubation, and 0.59 (95% CI: 0.49, 0.69) for death (Fig 
3). Notably, the lower bound of the 95% CI for 30-day 
intubation prediction (0.56, 0.75) was greater than 0.5, the 
expected performance of a classifier without discriminative 
abilities. The model trained on admission status produced 
the following AUCs: 0.70 for chest radiograph severity 
score, 0.70 for admission, 0.58 for intubation, and 0.50 for 
death. These AUCs did not significantly differ when trained 
with radiographs and severity scores as labels or 30-day ad-
mission status as labels (Fig 3).

The precision versus recall (positive predictive value vs 
sensitivity) curves suggest that the performance was better on 
majority classes (chest radiograph severity score and admission 
status) than on minority classes (intubation status and death). 
The accuracy of predicting 30-day intubation status (47% 
[95% CI: 39, 54]) and death (42% [95% CI: 34, 50]) was 
nonetheless better than a naive classifier that always predicts 
the positive class (accuracy of 30% and 26% for 30-day in-
tubation and death, respectively) (Table 3) (Fig 4). Further, 
compared with a naive classifier, the performance of negative 
predictive value and specificity (ie, precision for the minority 
class) was better at predicting lack of intubation or survival (Fig 
E3 [supplement]).

The model performance on the prediction of intubation and 
death increased when trained with clinical variables from elec-
tronic health records and with intubation status as the target 
label (Fig 5). The AUC increased from 0.66 to 0.88 (95% CI: 
0.79, 0.96) for intubation and from 0.59 to 0.82 (95% CI: 0.72, 
0.91) for death for the aggregate test dataset with all adults older 
than 21 years. The combined model performed better than the 
model trained on clinical variables alone. As expected, the model 
performed better for the young adults aged 21–50 years, but it 
still demonstrated clinically useful results for the patients older 
than 50 years in the test set. At our selected operating point for 
intubation that prioritizes recall or sensitivity greater than 80%, 
the F1 score remained high (.65%).

The heatmap results indicate that the inferior left side of the 
patient’s chest (right side of the anteroposterior radiograph) that 
contains the heart and the gastric bubble contributes less to the 

http://radiology-ai.rsna.org
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radiograph compared with the rest of the radiograph. The abso-
lute value of the model output (given as a probability) increases 
with worse clinical outcomes (Fig 6).

Discussion
We hypothesized that a DL model could predict prognosis of 
adult patients with COVID-19 based solely on routinely avail-
able imaging (chest radiographs) and laboratory studies in the 
ED. We initially selected a younger patient cohort to reduce 
the potential presence of comorbidities that could decrease the 
predictive ability of our DL algorithm (20). We then included 
additional patients older than 50 years in the test set to as-
sess for generalizability of the model in older patients at higher 
risk. Using a previously successful DL classification algorithm, 
DenseNet-121, we trained the model successfully with the 
chest radiograph and the associated severity score or the 30-day 
admission status. This trained model could then take unseen 
chest radiographs from another time to predict 30-day admis-
sion status, intubation status, and survival, despite the differ-

ences in patient age and outcomes in the test set compared 
with those in the training and validation sets. We also trained 
a model with clinical variables alone and compared the models 
trained on either chest radiographs or clinical variables only to 
a model trained with both chest radiographs and clinical vari-
ables. The combined model had the best performance.

Fine et al (31) surveyed ED physicians as to what factors 
guide their decisions on whether to admit or discharge a patient 
with community-acquired pneumonia and found that chest ra-
diography is not a major factor in the decision-making process. 
Furthermore, CURB-65 (confusion, uremia, respiratory rate, 
blood pressure, age 65 years) and the Pneumonia Severity In-
dex—the most widely used scoring systems to guide decisions 
on admitting patients with community-acquired pneumonia—
exclude chest radiographs as major or minor criteria (32). How-
ever, Toussie et al (8) demonstrated that the severity of opaci-
ties on chest radiographs does predict outcomes in COVID-19 
pneumonia. The severity of opacity on the presentation chest ra-
diograph is an important objective assessment of disease severity 

Figure 3: Receiver operating characteristic (ROC) curves of the test set based on two training schemes. Areas under the ROC curves 
(AUCs) do not differ between training schemes in terms of severity score or admission status. The 95% CIs for the AUCs are in brackets. Op-
erating point was selected for high sensitivity (recall), which was then used for accuracy and F1 score calculations. CXR = chest radiography.
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that can be used to guide physicians in deciding if a patient needs 
to be admitted or can be discharged safely. We used chest radio-
graphs and the associated scores provided by expert radiologists 
to train a model that requires only the initial radiograph to pre-
dict clinical outcomes for test populations of patients with CO-
VID-19. Given that COVID-19 is still rapidly spreading across 
the United States and overwhelming hospitals, a quick tool that 
can provide accurate prognostication for COVID-19 and can 
help appropriately allocate resources (eg, inpatient hospital beds, 
ventilators) for subsequent management is vital.

The advantage of this study design lies in the ability for a DL 
model to predict clinical outcomes rather than to only screen 
for or confirm a diagnosis of COVID-19, as seen in other stud-
ies (5,7,33–36). The radiographs in the training and testing sets 
come from multiple hospitals across three boroughs of New 

York City, all with different acquisition devices. The diversity of 
the chest radiographs used in the model and the different time 
frame of the test cohort (ie, a pseudoprospective trial) suggest 
an increased likelihood of generalizability. While surveys of ED 
physicians do not typically report chest radiography findings as 
a major factor in the decision-making process to admit a pa-
tient with community-acquired pneumonia, this algorithm can 
reliably predict 30-day admission status in patients with CO-
VID-19 and may serve as a first-pass triaging process to alert 
radiologists and clinicians of patients at higher risk who will 
likely require hospitalization (31). This prioritization of care can 
be readily adopted within existing clinical workflows and can 
lead to validation in actual clinical practice, thereby addressing 
the common challenges and criticisms of existing AI research in 
medicine (37,38).

Table 3: Accuracy, Precision (Positive Predictive Value), Recall (Sensitivity), and the F1 Score for the Test Set as an Ag-
gregate and as Subgroups for Patients Aged 21–50 Years or Older than 50 Years

Variable

All Patients (n = 161) Patients Aged 21–50 Years (n = 51) Patients Older than 50 Years (n = 110)

Naive Clas-
sifier

Trained on 
Scores

Trained on 
Admissions

Naive Clas-
sifier

Trained on 
Scores

Trained on 
Admissions

Naive Clas-
sifier

Trained on 
Scores

Trained on 
Admissions

Accuracy
 Severity 

score
68 78 (70, 83) 73 (66, 80) 71 86 (81, 91) 78 (72, 84) 67 74 (66, 80) 71 (64, 78)

 Admission 
status

76 77 (70, 83) 74 (67, 81) 67 90 (86, 94) 78 (72, 84) 81 66 (59, 73) 72 (65, 79)

 Intuba-
tion status

30 47 (39, 54) 49 (41, 57) 20 47 (39, 55) 49 (41, 57) 34 47 (39, 54) 49 (41, 56)

 Death 26 42 (34, 50) 42 (34, 49) 14 45 (37, 53) 47 (40, 55) 31 40 (32, 48) 39 (32, 47)
Precision
 Severity 

score
68 80 (73, 87) 78 (70, 85) 71 91 (86, 96) 86 (79, 92) 67 76 (68, 83) 74 (64, 78)

 Admission 
status

76 85 (79, 91) 83 (77, 90) 67 91 (86, 96) 83 (75, 90) 81 82 (75, 88) 84 (77, 90)

 Intuba-
tion status

30 34 (26, 43) 34 (25, 43) 20 26 (18, 34) 25 (17, 34) 34 38 (29, 46) 38 (29, 47)

 Death 26 27 (19, 35) 25 (17, 34) 14 20 (13, 28) 19 (12, 27) 31 30 (22, 39) 28 (20, 37)
Recall
 Severity 

score
100 89 (83, 95) 85 (79, 92) 100 89 (83, 94) 83 (76, 90) 100 84 (77, 90) 86 (80, 93)

 Admission 
status

100 85 (78, 91) 82 (75, 89) 100 94 (89, 98) 85 (78, 92) 100 75 (68, 83) 81 (74, 87)

 Intuba-
tion status

100 87 (77, 96) 78 (66, 90) 100 90 (78, 100) 80 (65, 93) 100 86 (76, 94) 78 (66, 89)

 Death 100 78 (65, 90) 66 (51, 80) 100 100 (100, 
100)

86 (70, 100) 100 74 (61, 85) 62 (48, 75)

F1 score
 Severity 

score
81 84 (79, 89) 81 (76, 87) 83 90 (86, 94) 84 (79, 89) 80 79 (73, 85) 80 (74, 85)

 Admission 
status

86 85 (80, 89) 83 (77, 88) 80 93 (89, 96) 84 (78, 89) 90 78 (73, 84) 82 (77, 87)

 Intuba-
tion status

46 49 (39, 58) 47 (37, 57) 33 40 (29, 50) 38 (27, 49) 51 53 (43, 61) 51 (41, 60)

 Death 41 41 (31, 50) 36 (26, 46) 25 33 (23, 43) 31 (20, 41) 47 43 (33, 52) 39 (29, 48)

Note.—All values are percentages. Data in parentheses are 95% CIs.
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This study confirms that the chest radiograph severity score 
can be used to train a network that predicts clinical outcomes, 
including the need for hospitalization, intubation, and mortal-
ity. There are multiple benefits of using the initial chest radio-
graph severity score rather than the outcome of interest in the 
prediction model. The model after deployment requires only the 
initial chest radiograph to provide prognostic predictions, with-
out the need for any additional manual scoring inputs or clinical 
variables. From a developer’s perspective, training a model using 
30-day outcomes relies on the ability to follow all patients for 
30 days, and some patients may be lost to follow-up after the 
initial ED encounter. Since the severity score is assigned to all 
initial chest radiographs from the ED, there is no need for 30-
day follow-up. Additionally, the chest radiograph severity scores 
can be incorporated into the model without the need to wait 30 
days to confirm the absence of an admission event. It is possible 
that the patients are admitted for other nonrespiratory reasons, 
whereas the severity score that indicates opacity in lung zones at 

chest radiography more directly correlates to potential intuba-
tion. Therefore, the dataset can be expanded immediately with 
the widespread availability of chest radiographs and the initial 
laboratory values from the ED. Most importantly, the algo-
rithm outputs similar AUCs for the severity score and clinical 
outcomes (30-day admission, intubation, and death) in unseen 
test radiographs whether the algorithm is trained with either the 
severity scores or the clinical outcomes.

The precision and recall of the predictions, based on chest ra-
diographs alone, for intubation and death showed lower perfor-
mance than those for chest radiograph severity scores and admis-
sion because of the relative scarcity of these events. Nonetheless, 
this model still performed better than a naive classifier and had 
a better prediction performance for the negative class (ie, better 
negative predictive values and specificity). Our study confirms the 
results of Toussie et al (8) that the findings from the initial chest 
radiograph obtained in the ED contains information that enables 
physicians to better predict the need for hospitalization and help 

Figure 4: Precision versus recall curves for four prediction categories. Chest radiography (CXR) severity score and admission status 
were used for training and were well balanced. Intubation status and mortality were minority classes and were not seen during training, 
thus producing poor precision (positive predictive value [PPV]) and recall (sensitivity) performance. Nonetheless, both intubation and death 
predictions of this model performed better than a naive classifier that would predict a positive class each time.
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ensure that the appropriate patients are admitted or discharged. 
The model trained only on chest radiography had AUCs for 
intubation and death prediction similar to those of the model 
trained only with clinical variables first obtained in the ED. The 
model trained only with clinical variables had a low true-positive 
rate and a high false-positive rate at high cutoffs (left side of re-
ceiver operating characteristic curve [Fig 5]). That is, using clini-
cal variables alone that may be limited in availability within days 
of the initial ED encounter, the model cannot sufficiently sepa-
rate patients who require intubation at high cutoff thresholds. 
We improved the performance of prediction of intubation and 
death when both inputs and the same respective architectures 
to extract information were combined into one model. Our 
model, which uses only the information from the initial ED 
encounter from standard imaging and routinely ordered labora-
tory tests, may be used to help guide hospitalization decisions in 

patients with COVID-19 and inform ED physicians of the risks 
of their patients experiencing poor outcomes later in the disease 
course. The timeline to prognostication is clinically relevant, 
given that in this patient cohort that required intubation, the 
time from the first chest radiograph to intubation was a median 
of 3 days.

The difficulty in understanding logical reasoning of DL algo-
rithms, especially those that predict prognostics, is an inherent 
challenge known as the black box problem (37–39). We used 
heatmaps to ensure that appropriate regions of the radiographs 
were contributing to the final prediction output. The heatmaps 
suggested that the irrelevant areas of the radiograph were not 
contributing substantially to the final output. Of note, heatmaps 
do not indicate which anatomic regions and qualities are truly 
contributing to the prediction. Further, the regions generated by 
the heatmaps may be of different sizes than the actual subregion 

Figure 5: The area under the receiver operating characteristic curve (AUC) of intubation prediction from a model that incorporates clinical variables from 
electronic health records (EHR) to the model previously trained on chest radiographs (CXR) alone and their severity score. The AUC for predicting intubation 
increased from 0.66 to 0.88, and the AUC for predicting death increased from 0.59 to 0.82. At the authors’ selected operating point, the sensitivity remained 
high, while achieving a good F1 score. Intervals indicate 95% CIs. Five patients classified as “do not intubate” in the test set were excluded from intubation 
data analysis.
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containing the key clinical finding due to the convolution ar-
chitecture of the DL algorithm. Nonetheless, we have planned 
future studies with additional patients and clinical variables that 

can help demonstrate both repro-
ducibility and interpretability.

Many AI algorithms that show 
promising predictive performance 
do not become integrated into 
the clinical workflow (40,41). 
Two authors (Z.A.F., B.S.G.) are 
part of the COVID Informatics 
Center in our institution. One of 
the goals of the center is to deploy 
these tools in the hospital and 
integrate them with all available 
data sources, including electronic 
health records, such as Epic. Our 
informatics center works directly 
with both the clinical staff and 
the electronic health record staff 
in our hospital system, and from 
the beginning, our algorithm was 
developed with the intention 
of deployment. As a follow-up 
study, we are currently investigat-
ing the addition of time-course 
clinical data to the model and are 
collaborating with potential ex-
ternal contributors. Expansion of 
the model with longitudinal data 
and collaboration with external 
institutions will further generalize 
the model to a different cohort 
of admitted patients for whom 
more clinical laboratory values 
may have been collected over the 
course of their hospitalization, a 
different cohort from this study’s 
patients initially presenting in the 
ED. The current method pre-
sented in this study could form 
the foundation of incorporating 
widely available chest radiographs 
as inputs to more robust prognos-
tication algorithms for determin-
ing outcomes in patients with 
COVID-19.

There are potential challenges 
to the generalization of this algo-
rithm to the general population. 
This model did not include pa-
tients who did not have real-time 
reverse-transcription polymerase 
chain reaction–confirmed CO-
VID-19 in either the training or 
the test cohort. Thus, this model 
is inappropriate for predicting 

COVID-19 when diagnostic test results are not immediately 
available. This model was trained on only patients aged 21–
50 years with test results positive for COVID-19 who were 

Figure 6: Heatmaps generated from the last activation layer of the DenseNet-121 classifier algorithm. As expected, the 
patient’s lower left chest (lower right on the image file), where the heart and gastric bubble are located, does not contribute 
meaningfully to the prediction output (probability score). Yellow indicates greater contribution to final output, purple less 
contribution to final output.
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presumed to have lower occurrences of comorbidities than pa-
tients older than 50 years. Nonetheless, our test dataset was 
diverse, as it contained patients older than 21 years with CO-
VID-19, including older patients with higher risk. Further, our 
dataset contains data from three hospitals, each of which uses 
different acquisition devices, and a large proportion of bedside 
anteroposterior chest radiographs, which are typically inferior 
to posteroanterior and lateral, but nonetheless are sufficient. 
We also tested our algorithm on an unseen patient cohort 
from multiple hospitals that represent diversity of key patient 
demographics from New York City at a later time point. We 
recognize that the total number of chest radiographs included 
in this study (n = 499) is likely too few for general deploy-
ment of our algorithm; thus, we are currently acquiring data 
from similar patient cohorts at external institutions to further 
validate our algorithm. Nonetheless, the significant increase in 
performance of our DL model using both chest radiographs 
and clinical variable data can help inform future prognostica-
tion algorithm development.

In summary, we have created a proof-of-concept DL algo-
rithm that was able to predict key clinical outcomes of adult 
patients with COVID-19, with only the routinely obtained 
chest radiography and laboratory studies initially acquired in 
the ED. In doing so, this model validated a chest radiograph 
severity score that can be used to predict clinical outcomes 
without any additional clinical variables as inputs. Combin-
ing chest radiograph and clinical variables available exclusively 
from the ED provided the best model performance on pre-
dicting intubation and death, better than the models trained 
on either chest radiography or clinical variables alone. Future 
work that incorporates additional radiographs and clinical vari-
ables acquired at future time points into training the network 
should further improve the predictive performance. Combina-
tion of both imaging and clinical data can help predict clinical 
outcomes rather than merely the presence of COVID-19 itself 
and can help triage patients for optimal care.
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