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Abstract: Broussonetia kazinoki has been used as a traditional medicine for the treatment of burns
and acne, and its extracts have been found to show tyrosinase inhibitory and anticancer activities.
In this study, the tyrosinase inhibitory and cytotoxic activities of B. kazinoki were explored, leading
to the isolation of kazinol C (1), kazinol E (2), kazinol F (3), broussonol N (4), and kazinol X (5), of
which the compounds 4 and 5 have not been previously reported. Microbial transformation has been
recognized as an efficient tool to generate more active metabolites. Microbial transformation of the
major compounds 1 and 3 was conducted with Mucor hiemalis, where four glucosylated metabolites
(6–9) were produced from 1, while one hydroxylated (10) and one glucosylated (11) metabolites were
obtained from 3. Structures of the isolated metabolites were determined by extensive spectroscopic
analyses. All compounds were evaluated for their tyrosinase inhibitory and cytotoxic activities.
Compound 3 and its metabolites, kazinol Y (10) and kazinol F-4′′-O-β-D-glucopyranoside (11),
exhibited the most potent tyrosinase inhibitory activities with the IC50 values ranging from 0.71 to
3.36 µM. Meanwhile, none of the metabolites, except for kazinol C-2′,3′′-di-O-β-D-glucopyranoside
(7), showed moderate cytotoxic activities (IC50 17.80 to 24.22 µM) against A375P, B16F10 and B16F1
cell lines.

Keywords: Broussonetia kazinoki; microbial transformation; tyrosinase inhibition; cytotoxicity

1. Introduction

Broussonetia kazinoki, a deciduous shrub tree belonging to the family Moraceae, is
widely distributed throughout Korea, China, and Japan [1–3]. Since ancient times, its
leaves, branches, roots and fruits have been used for various therapeutic purposes includ-
ing the amelioration of vision, and suppression of edema [1–4]. In addition, it has been
traditionally used for dermatologic diseases such as burns and acne in Korea according to
the Principles and Practice of Eastern Medicine, an encyclopedia of medical knowledge [5,6].
Previous biological investigations have demonstrated that B. kazinoki exhibited a variety of
pharmacological effects, such as antioxidant, anti-inflammatory, anticancer, anti-allergic,
anti-diabetic, and anti-hyperglycemic activities [2–7]. Moreover, the extract of B. kazinoki
has been registered as a skin-whitening agent by the Korea Food and Drug Administration
(KFDA) due to its potent tyrosinase inhibitory and anti-melanogenic effects [5,8]. Addition-
ally, a series of prenylated polyphenols including kazinol F and broussonin C isolated from
B. kazinoki have been reported to exhibit significant tyrosinase inhibitory effects [8].

Tyrosinase (EC 1.14.18.1), also known as catecholase or diphenol oxidase, is a multi-
functional copper-containing enzyme and is widely distributed in plants, fungi, bacteria
and animals [9,10]. It catalyzes the hydroxylation of L-tyrosine to L-DOPA (3,4-dihydroxy-
L-phenylalanine) and the subsequent oxidation of L-DOPA to L-dopaquinone [10]. Then,
the dopaquinone forms melanin through polymerization with a series of enzymatic and
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nonenzymatic reactions [11,12]. Melanin is responsible for skin color and plays an im-
portant role in human skin, for example, the prevention of skin injury under normal
physiological conditions [12]; however, an overproduction and accumulation of melanin
can result in hyperpigmentary disorders of the skin, such as freckles, melasma, age spots,
and melanoma [9]. More seriously, tyrosinase catalyzes the formation of neuromelanin,
which is associated with neurodegenerative disorders like Parkinson’s disease [10,11,13].
Therefore, inhibiting tyrosinase activity applies to the treatment of pigmentation disorders
associated with melanin hyperpigmentation and some related diseases [9,14]. Though a
number of well-known tyrosinase inhibitors, like arbutin, kojic acid, and hydroquinone,
have been reported from natural or synthetic sources during the past few decades, their
applications have been limited due to serious side effects such as dermatitis, cytotoxic-
ity and hepatotoxicity [9,14]. Thus, it is desirable to find new tyrosinase inhibitors with
improved safety.

Microbial transformation is known as a useful method to generate more active deriva-
tives with minor structural modifications in bioactive substrates using the metabolic ac-
tivities of microorganisms [15,16]. The transformation is accomplished by a series of
enzymatic reactions including hydroxylation, oxidation, and glycosylation under mild
conditions [16–19]. Furthermore, microbial transformation is considered to be an environ-
mentally friendly tool and has been used successfully to produce pharmaceuticals from
natural products [15,16].

In the present study, we isolated and characterized the constituents of the root barks
of B. kazinoki with tyrosinase inhibitory properties based on the bioactivity-guided fraction-
ation process (Figure 1). Further transformation of kazinols C (1) and F (3) was performed
with Mucor hiemalis, which led to the isolation of five glucosylated and one oxidized metabo-
lite (6–11). All of the isolated metabolites were evaluated for their tyrosinase inhibitory and
cytotoxic activities, and it was revealed that kazinol F-4′′-O-β-D-glucopyranoside (11) had
the strongest anti-tyrosinase activity with no cytotoxic activity against melanoma cells.
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Figure 1. Chemical structures of compounds 1–5.

2. Results and Discussion
2.1. Structure Elucidation of Compounds from Broussonetia kazinoki

To isolate and identify the secondary metabolites of B. kazinoki for anti-tyrosinase activ-
ity, the EtOH extract of its root barks was investigated [8]. The CH2Cl2 fraction of the EtOH
extract showed promising tyrosinase inhibitory effects, and the subsequent activity-guided
fractionation led to the isolation of five prenylated polyphenols 1–5 (Figure 1). Structures of
the compounds were determined using the 1D- and 2D-NMR (nuclear magnetic resonance),
including COSY (correlation spectroscopy), HSQC (heteronuclear single quantum correla-
tion), and HMBC (heteronuclear multiple bond correlation), as well as mass spectroscopic
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data analyses. The three known compounds were identified and confirmed as kazinol C
(1), kazinol E (2), and kazinol F (3) by comparison of their spectroscopic data with those
reported in the literatures [8,20].

Compound 4 showed a molecular formula of C25H28O7 by the HRFDMS peak at m/z
440.1841 [M]+ (calcd. 440.1835). The UV spectrum of 4 exhibited two distinct peaks at 210
and 291 nm, characteristic of a flavanonol system. The 1H NMR spectrum of compound 4
displayed: three aromatic proton signals at δH 7.05 (1H, s), 5.95 (1H, s), and 5.89 (1H, s);
two sets of prenyl group proton signals at δH 5.12 (1H, t, J = 6.6 Hz), 5.08 (1H, t, J = 6.1 Hz),
3.46 (1H, dd, J = 6.1, 16.4 Hz), 3.40 (2H, d, J = 6.2 Hz), 3.33 (1H, dd, J = 6.1, 16.4 Hz), 1.75
(3H, s), 1.66 (3H, s), 1.62 (3H, s), and 1.61 (3H, s); and a set of AB-type proton signals at δH
5.31 (1H, d, J = 11.5 Hz), and 4.64 (1H, t, J = 11.5 Hz) due to H-2 and H-3. The positions of
the two prenyl groups were determined on the basis of its HMBC spectrum (Figure 2). The
long-range correlations from H-9 to C-4′/5′, H-14 to C-1′/6′, and H-2 to C-2′ indicated that
two prenyl groups were adjacent to each other and attached at the C-5′ and C-6′ positions
of ring B. The large coupling constant (11.5 Hz) between H-2 and H-3 indicated that ring C
had a 2,3-trans-configuration, not a cis-configuration which gave a small J value (~2 Hz) [3],
and the absolute configuration of compound 4 was considered to be 2R,3R based on its
positive specific rotation ([α]20

D +74.6◦) by comparison with the reported data of related
structures [3,21]. Based on the above analysis, the structure of compound 4 was assigned
(2R,3R)-3,5,7,3′,4′-pentahydroxy-5′,6′-diprenylflavanonol, and was named broussonol N.
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Compound 5 exhibited a molecular formula of C31H42O5 by its HRFDMS peak at
m/z 494.3034 [M]+ (calcd. 494.3032). The UV spectrum of 5 exhibited absorption maxima
at 228 and 285 nm, which was similar to the kazinol, indicating that it was also a 1,3-
diphenylpropane. The 1H NMR spectrum of compound 5 revealed: three aromatic proton
signals at δH 6.93 (1H, s), 6.61 (1H, s), and 6.32 (1H, s); a 1,1-dimethylallyl group proton
signal at δH 6.17 (1H, dd, J = 10.6, 17.7 Hz), 5.32 (1H, dd, J = 0.6, 17.7 Hz), 5.26 (1H,
dd, J = 0.6, 10.6 Hz), and 1.39 (6H, s); one prenyl group proton signal at δH 5.01 (1H,
t, J = 6.6 Hz), 3.16 (2H, d, J = 6.6 Hz), 1.70 (3H, s), and 1.67 (3H, s); and the signals of
a 1,3-disubstituted propane moiety at δH 2.59 (2H, m), 2.54 (2H, m), and 1.81 (2H, m).
In addition, the proton signals of a 2-(1-methoxy-1-methylethyl)-dihydrofuran moiety
at δH 4.73 (1H, t, J = 9.2 Hz), 3.31 (3H, s), 3.09 (2H, dd, J = 9.6, 15.8 Hz), 1.24 (3H, s),
and 1.20 (3H, s) were also observed in 5, which was quite similar to that of kazinol T [8],
except for the presence of a methoxy group instead of a hydroxyl group at the C-9′′

position. This was supported by the long-range correlation from 9′′-OCH3 to C-9′′ (δC
77.03) (Figure 2). The absolute configuration of compound 5 at C-9′′ was considered to be R
based on its negative specific rotation ([α]20

D −6.31◦) by comparison with the reported data
of related structures [18,22,23]. Based on the above analysis, the structure of compound
5 was assigned to be 5′-(2-methylbut-3-en-2-yl)-6′′-(3-methylbut-2-enyl)-4′′,5′′-[(R)-2-(1-
methoxy-1-methylethyl)]-dihydrofuranyl-2′,4′,3′′-trihydroxydiphenylpropane, and was
named kazinol X.

2.2. Microbial Transformation of Kazinols C and F by Mucor hiemalis

A total of 14 microbial cultures were screened to evaluate their ability to metabolize
the isolated compounds 1 and 3 under a standard two-stage fermentation procedure [18,19].
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Based on the analysis of TLC plates involving the substrates and culture controls, it was
observed that Gliocladium deliquescens and Mucor hiemalis showed the ability to metabolize
1, and Alternaria alternata, Absidia coerulea, G. deliquescens and M. hiemalis showed the
ability to metabolize 3 (Supplementary Table S1). Among the active strains, the fungus M.
hiemalis was selected for preparative-scale fermentation studies since it exhibited the highest
transformational capability towards 1 and 3. The subsequent transformation studies led to
the production of five glucosylated and one oxidized metabolite (6–11).

Compound 6 had a molecular formula of C36H50O9, as established by its HRFDMS
peak at m/z 626.3439 [M]+ (calcd. 626.3455), which was one glucose unit higher than
that of 1, indicating that 6 was a glucosylated derivative of 1. This was supported by the
occurrence of six new carbon signals in the 13C NMR spectrum of 6, including five methine
carbon resonances at δC 103.4, 77.1, 75.8, 73.4, 69.7, and one methylene carbon at δC 60.7.
The corresponding proton signals at δH 4.50 (1H) and 3.69–3.19 (6H) were observed in
the 1H NMR spectrum. All of these data were consistent with previous reports on the
D-glucose moiety [19,24,25], and the glucose was determined to be in a β-configuration
by the large coupling constant (7.1 Hz) of the anomeric proton signal at δH 4.50 (H-1′′′).
The significantly downfield-shifted aromatic proton signal at δH 6.81 (H-2′′) suggested the
glucose moiety was attached to C-3′′ through an ether linkage. This was confirmed by a
long-range correlation between the anomeric proton signal at δH 4.50 (H-1′′′) and carbon
signal at δC 143.1 (C-3′′) in the HMBC spectrum (Figure 3). Thus, compound 6 was assigned
to be kazinol C-3′′-O-β-D-glucopyranoside.
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(1H→13C) are indicated by arrows.

Compound 7 had a molecular formula of C42H60O14, as established by the peak at
m/z 788.3997 [M]+ (calcd. 788.3983) in its HRFDMS spectrum, which was one glucose
unit higher than that of 6, indicating that two glucose units had been introduced into the
molecule of 1. The additional proton signals at δH 4.64, 4.51 and 3.71–3.18 (12H), as well
as the carbon signals at δC 103.5, 101.5, 77.1, 76.9, 76.8, 75.8, 73.5, 73.4, 69.7, 69.6, 60.7, and
60.7 observed in the 1H and 13C NMR spectra of 7, indicated the presence of two D-glucose
residues [24,25]. The glucose units were identified as β-glucose by their large coupling
constants (6.5 Hz and 6.6 Hz) of the anomeric proton signals δH 4.64 and 4.51, respectively.
The significantly downfield-shifted aromatic proton signals at δH 6.60 (H-3′) and 6.82 (H-
2′′) suggested the two glucose moieties were linked to C-2′ and C-3′′, respectively. These
connections were confirmed by the long-range correlations between the anomeric proton
signal at δH 4.51 (H-1′′′) and the carbon signal at δC 142.9 (C-3′′), as well as between δH 4.64
(H-1′′′′) and δC 154.1 (C-2′) in the HMBC spectrum of 7 (Figure 3). Thus, compound 7 was
assigned to be kazinol C-2′,3′′-di-O-β-D-glucopyranoside.
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Compound 8 had a molecular formula of C36H50O9, as deduced from the peak at m/z
626.3469 [M]+ (calcd. 626.3455) in its HRFDMS spectrum, which was one glucose unit
higher than that of 1, indicating that 8 was also a monoglucosylated derivative of 1. The
additional proton signals at δH 4.42 and 3.64–3.15 (6H), as well as the carbon signals at
δC 105.9, 77.3, 76.2, 74.1, 69.5, and 60.8 in the 1H and 13C NMR spectra of 8, indicated the
presence of a D-glucose residue. The coupling constant (7.6 Hz) of anomeric proton (δH
4.42) in the 1H NMR spectrum of 8 indicated a β-configuration of this glucose moiety. The
significantly downfield-shifted aromatic carbon signals at δC 147.0 (C-3′′) and 133.9 (C-5′′)
suggested this glucose moiety was attached to C-4′′, and it was confirmed by the correlation
between H-1′′′ and C-4′′ in the HMBC spectrum of 8 (Figure 3). Thus, compound 8 was
assigned to be kazinol C-4′′-O-β-D-glucopyranoside.

Compound 9 had a molecular formula of C42H60O14, as established by the peak at
m/z 788.4016 [M]+ (calcd. 788.3983) in its HRFDMS spectrum, which was one glucose
unit higher than that of 8, indicating that two glucose units had been introduced into the
molecule of 1. The additional proton signals at δH 4.85, 4.65 and 3.69–3.02 (12H), as well as
the carbon signals at δC 103.5, 102.3, 77.1, 77.1, 76.5, 75.8, 74.3, 73.5, 70.0, 69.8, 61.1, and 60.7
in the 1H and 13C NMR spectra of 9, indicated the presence of two D-glucose residues. The
coupling constants (7.4 Hz and 7.6 Hz) of the anomeric protons (δH 4.85 and 4.64) in the
1H NMR spectrum of 9 indicated the β-configuration of these two glucose moieties. The
aromatic proton signals of ring A at δH 6.70 (s, H-6′) and 6.29 (s, H-3′) were quite similar
to those of compound 1, and together with the significantly downfield-shifted aromatic
proton signal at δH 6.93 (H-2′′) suggested that these two glucose moieties should be linked
to C-3′′ and C-4′′. These connections were confirmed by the cross-peaks of H-1′′′ and C-3′′

as well as H-1′′′′ and C-4′′ in the HMBC spectrum of 10 (Figure 3). Based on the above
analyses, compound 9 was assigned to be kazinol C-3′′,4′′-di-O-β-D-glucopyranoside.

Compound 10 showed a [M]+ peak at m/z 426.2414 (calcd. for C26H34O5, 426.2406) in
its HRFDMS spectrum, which established a molecular formula of C26H34O5. Significant
differences were observed in the 1H and 13C NMR spectra of 10 compared with those of 3.
The highly downfield-shifted oxymethine proton signal at δH 4.58 (1H, t, J = 9.1 Hz) together
with the corresponding carbon signal at δC 89.3 indicated that a dihydrobenzofuran group
was formed from the prenyl group substituted on ring B [26]. The spectroscopic data of 10
were quite similar to those of kazinol V [22], except for the signal of the methoxy group,
which was supposed to be located at the C-9′′ position. The location of the additional
methoxy group was confirmed by the cross-peak of the proton signal at δH 3.16 (3H, s)
and carbon signal at δC 77.5 in its HMBC spectrum (Figure 4). The absolute configuration
of compound 10 at C-8′′ was considered to be R based on its negative specific rotation
([α]20

D −12.38◦) by comparison with the reported data of related compounds which had a
dihydrofuran group in their structures [18,22,23]. Based on the above analyses, compound
10 was assigned to be 6′′-(3-methylbut-2-enyl)-4′′,5′′-[(R)-2-(1-methoxy-1-methylethyl)]-
dihydrofuranyl-2′,4′,3′′-trihydroxydiphenylpropane, and was named kazinol Y.
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Compound 11 had a molecular formula of C31H42O9, as deduced from the peak at
m/z 558.2839 [M]+ (calcd. 558.2829) in its HRFDMS spectrum, which was one glucose unit
higher than that of 3, indicating that 11 was also a monoglucosylated derivative of 3. The
additional proton signals at δH 4.43 and 3.65–3.16 (6H), as well as the carbon signals at δC
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105.9, 77.3, 76.2, 74.1, 69.6, and 60.8 in the 1H and 13C NMR spectra of 11, indicated the
presence of a D-glucose residue. The coupling constant (7.7 Hz) of the anomeric proton (δH
4.43) in the 1H NMR spectrum of 11 indicated a β-configuration of this glucose moiety. The
significantly downfield-shifted aromatic carbon signals at δC 147.1 (C-3′′) and 133.9 (C-5′′)
suggested this glucose moiety was attached to C-4′′, and it was confirmed by the correlation
between H-1′′′ and C-4′′ in the HMBC spectrum of 11 (Figure 3). Thus, compound 11 was
assigned to be kazinol C-4′′-O-β-D-glucopyranoside.

2.3. Tyrosinase Inhibitory Activity

All the compounds were investigated for their tyrosinase inhibitory effects using
L-tyrosine as the substrate. Kojic acid, a well-known tyrosinase inhibitor currently used in
cosmetics as a skin-whitening agent, was used as a positive control. Metabolite 11 exhibited
the most potent inhibitory effect against tyrosinase (IC50, 0.71 µM), followed by its parent
compound 3 and metabolite 10, with IC50 values of 2.12 and 3.36 µM, respectively (Table 1).
Compound 4, which also exhibited a stronger inhibitory effect than the kojic acid, showed
moderate activity with an IC50 value of 24.11 µM. All of the other compounds, which
have a 1,1-dimethylallyl group in their A-ring, were considered to be inactive, as their IC50
values were over 80 µM. Moreover, it has been reported that kazinol F and broussonin
C have exhibited much stronger tyrosinase inhibition than the ring A-prenylated 1,3-
diphenylpropanes [8], and similar results were observed in studies reporting the flavonoids
as tyrosinase inhibitors from Broussonetia papyrifera [27]. The above analyses indicated that
prenylation in the ring A of the compounds with a 1,3-diphenylpropane skeleton might
weaken their tyrosinase inhibition activities.

Table 1. Tyrosinase inhibitory and cytotoxic effects of compounds 1–12 (IC50, µM).

Compound Anti-Tyrosinase
Cell Line

A375P B16F10 B16F1

1 >80 12.13 ± 0.24 26.01 ± 0.33 17.57 ± 0.33
2 >80 11.46 ± 0.24 12.13 ± 0.87 13.35 ± 0.22
3 2.12 ± 0.21 18.16 ± 0.09 19.89 ± 0.73 13.77 ± 0.88
4 24.11 ± 0.30 13.77 ± 1.00 27.79 ± 0.63 24.38 ± 1.82
5 >80 45.87 ± 0.65 43.24 ± 0.71 17.32 ± 0.22
6 >80 >80 >80 >80
7 >80 23.63 ± 0.52 24.22 ± 1.26 17.80 ± 1.65
8 >80 >80 >80 >80
9 >80 >80 >80 >80

10 3.36 ± 0.21 >80 >80 >80
11 0.71 ± 0.01 >80 >80 >80

Kojic acid 42.67 ± 1.44 - - -
5-FU - 13.13 ± 1.55 4.61 ± 0.16 12.82 ± 0.16

Each value represents the mean ± SD.

2.4. Cytotoxic Activity

To evaluate the anticancer potential of compounds 1–11, an MTT assay was used to
determine the cell viability of human melanoma (A375P) and murine melanoma (B16F10
and B16F1) cell lines following a 24 h treatment with compounds 1–11. From the results
shown in Table 1, it was observed that compounds 1–4 and metabolite 7 displayed potent
cytotoxic effects against all cancer cell lines tested. Compounds 5 and 10 exhibited quite
weak cytotoxicity compared to compounds 1 and 3, suggesting that cyclization between
the prenyl moiety and the adjacent phenolic hydroxyl group might decrease the cytotoxic
activity. This was similar to the result that kazinol R, possessing a pyran ring in its structure,
exhibited weaker cytotoxic effects than kazinol Q [28]. In addition, metabolite 7, which had
a glucose moiety in the ring A of its structure, showed much stronger activities than the
other glucosylated metabolites, suggesting that O-glycosylation of 1,3-diphenylpropanes
in the ring A might enhance their cytotoxic activities.



Molecules 2022, 27, 1879 7 of 13

3. Materials and Methods
3.1. General Experimental Procedures

The NMR spectra were recorded in CDCl3, acetone-d6 or DMSO-d6 on Varian Unity
Inova 500 and 600 spectrometers (Varian, Palo Alto, CA, USA) and a Bruker Avance III HD
400 spectrometer (Bruker, Billerica, MA, USA), using TMS as the internal standard. The
chemical shift values (δ) are reported in ppm units, and the coupling constants (J) are in
Hertz (Hz). Optical rotations and IR spectra were measured with a Perkin Elmer 343 Plus
polarimeter and a Perkin Elmer Spectrum 400 FT-IR/FT-NIR spectrometer (Waltham, MA,
USA), respectively. HRFDMS was performed on a JEOL GC-MS: JMS-T200GC AccuTOF
GCx-plus High Performance Gas Chromatograph—Time-of-Flight Mass Spectrometer
(Seoul, Korea). TLC analyses were carried out on precoated silica gel 60 F254 glass plates
(Merck, Darmstadt, Germany). Visualization of the TLC plates was performed under
UV light (254 and 365 nm) and using an anisaldehyde-H2SO4 spray reagent followed by
heating (120 ◦C, 1 min). The adsorbents used for the open column chromatography were
Intertec silica gel 70–230 mesh (Intertechnologies Co., Ltd., Seoul, Korea) and Sephadex
LH-20 (Amersham Pharmacia Biotech AB, Uppsala, Sweden). The HPLC was performed on
a Waters 515 HPLC pump connected to a Waters 996 Photodiode Array detector (Waters
Corp., Milford, MA, USA) using a Phenomenex Luna C18 column (25 cm × 10 mm) with
HPLC grade methanol and water.

3.2. Materials and Microorganisms

The root barks of Broussonetia kazinoki were collected and identified by Eden farm in
Jeonju, Korea, in August 2020, and a voucher specimen has been deposited at the College
of Pharmacy, Chonnam National University. The microorganisms were obtained from the
Korean Culture Center of Microorganisms (KCCM) and Korean Collection for Type Cultures
(KCTC). Fourteen cultures were used for the preliminary screening procedure and are listed
below: Aspergillus oryzae KCCM 60345, Absidia coerulea KCTC 6936, Alternaria alternata
6005, Aspergillus fumigatus 6145, Cunninghamella elegans var. elegans 6992, Gliocladium
deliquescens 6173, Glomerella cingulata 6075, Hormoconis resinae 6966, Monascus rubber 6122,
Mortierella ramanniana var. angulispora 6137, Mucor hiemalis 26779, Fusarium merismoides
6153, Penicillium chrysogenum 6933, and Trichoderma koningii 6042. The cultures of the
microorganisms were stored at −60 ◦C with 20% glycerol.

Two types of media were used in the screening experiments and are listed below: A.
coerulea, A. alternata, A. fumigatus, M. hiemalis, P. chrysogenum, and T. koningii were incubated
on a malt medium (malt extract 20 g/L, dextrose 20 g/L, and peptone 1 g/L). Other
microbes were cultured on a potato dextrose medium (24 g/L).

3.3. Isolation of Active Compounds from Broussonetia kazinoki

The root barks (650 g) of B. kazinoki were extracted with 94% ethanol (3 × 6 L) under
sonication at room temperature. The combined ethanol extract was concentrated under
reduced pressure, which was suspended in water and successively partitioned using
hexane, dichloromethane (CH2Cl2), ethyl acetate (EtOAc), and butanol. The CH2Cl2 extract
was subjected to silica gel column chromatography, using hexane:EtOAc mixtures to give
sixteen fractions. Fraction 12 was then chromatographed using Sephadex LH-20 and eluted
with methanol to give three subfractions. Subfraction 12-2 was purified by a C18 HPLC
column with a methanol:water gradient elution system (75→80%) to afford compounds
1 (110 mg), 2 (8 mg), and 5 (4 mg). Fraction 14 was applied to Sephadex LH-20 column
chromatography and eluted with methanol to give four subfractions. Subfraction 14-3 was
further purified by semi-preparative HPLC with a methanol:water gradient elution system
(75→80%) to afford compounds 3 (24 mg) and 4 (3 mg).

Kazinol C (1)
Oily substance. UV (MeOH) λmax: 224, 284 nm. 1H-NMR (DMSO-d6, 500 MHz) δ 6.70

(1H, s, H-6′), 6.43 (1H, s, H-2′′), 6.28 (1H, s, H-3′), 6.19 (1H, dd, J = 10.8, 17.5 Hz, H-10′), 4.98
(1H, t, J = 6.6 Hz, H-8′′), 4.87 (1H, dd, J = 1.6, 17.4 Hz, H-11′), 4.86 (1H, dd, J = 1.6, 10.7 Hz,
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H-11′), 4.86 (1H, overlapped, H-13′′), 3.20 (2H, d, J = 6.5 Hz, H-7′′), 3.08 (2H, d, J = 5.6 Hz,
H-12′′), 2.40 (2H, t, J = 7.3 Hz, H-1), 2.35 (2H, t, J = 7.5 Hz, H-3), 1.69 (2H, m, H-2), 1.66 (3H,
s, H-15′′), 1.63 (3H, s, H-10′′), 1.61 (3H, s, H-11′′), 1.60 (3H, s, H-16′′), 1.35 (6H, s, H-8′/9′).
13C-NMR (DMSO-d6, 150 MHz) δ 154.4 (C-2′), 154.0 (C-4′), 148.9 (C-10′), 143.0 (C-3′′), 141.4
(C-4′′), 131.3 (C-9′′), 130.0 (C-1′′), 129.9 (C-14′′), 128.6 (C-5′′), 128.1 (C-6′), 127.3 (C-6′′), 125.1
(C-5′), 124.5 (C-13′′), 124.1 (C-8′′), 118.1 (C-1′), 114.1 (C-2′′), 109.6 (C-11′), 104.0 (C-3′), 39.8
(C-7′), 32.9 (C-3), 32.4 (C-2), 30.1 (C-1), 27.5 (C-7′′), 27.4 (C-8′/9′), 25.9 (C-12′′), 25.9 (C-11′′),
25.7 (C-16′′), 18.2 (C-10′′), 18.2 (C-15′′).

Kazinol E (2)
Oily substance. UV (MeOH) λmax: 224, 284 nm. 1H-NMR (CDCl3, 500 MHz) δ 6.94

(2H, s, H-5/2′), 6.39 (1H, s, H-8), 6.19 (1H, dd, J = 10.7, 17.7 Hz, H-22), 5.33 (1H, dd, J = 0.7,
17.7 Hz, H-23), 5.27 (2H, dd, J = 0.7, 10.7 Hz, H-23), 5.14 (1H, t, J = 6.6 Hz, H-10), 5.09 (1H,
dd, J = 1.6, 10.7 Hz, H-2), 5.00 (1H, t, J = 5.6 Hz, H-15), 3.39 (2H, d, J = 6.6 Hz, H-9), 3.36
(1H, dd, J = 5.6, 16.5 Hz, H-14), 3.25 (1H, dd, J = 5.6, 16.5 Hz, H-14), 2.91 (1H, m, H-4), 2.75
(1H, m, H-4), 2.09 (1H, m, H-3), 1.97 (1H, m, H-3), 1.80 (3H, s, H-12), 1.73 (3H, s, H-13), 1.69
(3H, s, H-17), 1.67 (3H, s, H-18), 1.43 (6H, s, H-20/21).

Kazinol F (3)
Yellow powder. UV (MeOH) λmax: 224, 284 nm. 1H-NMR (DMSO-d6, 500 MHz)

1H-NMR (DMSO-d6, 500 MHz) δ 6.76 (1H, d, J = 8.1 Hz, H-6′), 6.42 (1H, s, H-2′′), 6.25 (1H,
d, J = 2.4 Hz, H-3′), 6.14 (1H, dd, J = 8.1, 2.4 Hz, H-5′), 4.99 (1H, t, J = 6.6 Hz, H-8′′), 4.86
(1H, t, J = 6.2 Hz, H-13′′), 3.21 (2H, d, J = 6.6 Hz, H-7′′′), 3.08 (2H, d, J = 6.2 Hz, H-12′′′), 2.42
(2H, t, J= 7.5 Hz, H-1), 2.35 (2H, t, J = 7.9 Hz, H-3), 1.66 (3H, s, H-10′′), 1.64 (3H, s, H-15′′),
1.63 (2H, overlapped, H-2), 1.61(6H, s, H-11′′/16′′). 13C-NMR (DMSO-d6, 150 MHz) δ 155.8
(C-4′), 155.6 (C-2′), 142.3 (C-3′′), 140.9 (C-4′′), 132.0 (C-1′′), 130.0 (C-6′), 129.8 (C-14′′), 129.7
(C-9′′), 129.4 (C-5′′), 127.1 (C-6′′), 124.8 (C-13′′), 123.9 (C-8′′), 119.9 (C-1′), 113.4 (C-2′′), 105.9
(C-5′), 102.1 (C-3′), 32.6 (C-3), 32.1 (C-2), 29.4 (C-1), 27.0 (C-7′′), 25.1 (C-12′′), 24.5 (C-16′′),
24.5 (C-11′′), 16.7 (C-15′′), 16.6 (C-10′′).

Broussonol N (4)
Yellow powder. [α]20

D : +74.6◦ (c 0.50, MeOH). UV (MeOH) λmax: 210, 291 nm. IR
νmax: 3400, 2924, 1634, 1454, 1288, 1085, 837 cm−1. 1H-NMR (Acetone-d6, 600 MHz) δ 7.05
(1H, s, H-2′), 5.95 (1H, s, H-6), 5.89 (1H, s, H-8), 5.31 (1H, d, J = 11.5 Hz, H-2), 5.12 (1H,
t, J = 6.6 Hz, H-10), 5.08 (1H, t, J = 6.1 Hz, H-15), 4.64 (1H, d, J = 11.5 Hz, H-3), 3.46 (1H,
dd, J = 6.1, 16.4 Hz, H-14), 3.40 (2H, d, J = 6.2 Hz, H-9), 3.33 (1H, dd, J = 6.1, 16.4 Hz,
H-14), 1.75 (3H, s, H-17), 1.66 (3H, s, H-13), 1.62 (3H, s, H-12), 1.61 (3H, s, H-18). 13C-NMR
(Acetone-d6, 150 MHz) δ 198.0 (C-4), 169.7 (C-7), 165.0 (C-5), 164.4 (C-8a), 144.9 (C-4′), 143.4
(C-3′), 132.8 (C-6′), 131.1 (C-11), 130.9 (C-16), 127.8 (C-5′), 127.0 (C-1′), 125.5 (C-15), 124.7
(C-10), 113.1 (C-2′), 101.0 (C-4a), 97.5 (C-6), 96.5 (C-8), 80.9 (C-2), 73.0 (C-3), 27.9 (C-14), 26.2
(C-9), 25.9 (C-13), 25.8 (C-18), 18.2 (C-12), 18.2 (C-17). HRFDMS m/z 440.1841 [M]+ (calcd.
for C25H28O7, 440.1835).

Kazinol X (5)
Oily substance. [α]20

D : −6.31◦ (c 0.19, MeOH). UV (MeOH) λmax: 228, 285 nm. IR νmax:
3320, 2941, 2832, 1449, 1022, 650 cm−1. 1H-NMR (CDCl3, 400 MHz) δ 6.93 (1H, s, H-6′), 6.61
(1H, s, H-2′′), 6.32 (1H, s, H-3′), 6.17 (1H, dd, J = 10.6, 17.7 Hz, H-10′), 5.32 (1H, dd, J = 0.6,
17.7 Hz, H-11′), 5.26 (1H, dd, J = 0.6, 10.6 Hz, H-11′), 5.01 (1H, t, J = 6.6 Hz, H-13′′), 4.73
(1H, t, J = 9.2 Hz, H-8′′), 3.31 (3H, s, -OMe), 3.16 (2H, d, J = 6.6 Hz, H-12′′), 3.09 (1H, dd,
J = 9.6, 15.8 Hz, H-7′′), 3.02 (1H, dd, J = 8.8, 15.8 Hz, H-7′′), 2.59 (2H, m, H-1), 2.54 (2H, m,
H-3), 1.81 (2H, m, H-2), 1.70 (3H, s, H-15′′), 1.67 (3H, s, H-16′′), 1.39 (6H, s, H-8′/9′), 1.24
(3H, s, H-11′′), 1.20 (3H, s, H-10′′). 13C-NMR (CDCl3, 100 MHz) δ 153.5 (C-2′), 153.2 (C-4′),
148.4 (C-10′), 144.2 (C-4′′), 137.7 (C-3′′), 133.3 (C-14′′), 131.2 (C-5′′), 127.6 (C-1′′), 127.5 (C-6′),
126.9 (C-6′′), 124.2 (C-5′), 122.9 (C-13′′), 120.1 (C-1′), 116.0 (C-2′′), 113.1 (C-11′), 104.7 (C-3′),
88.6 (C-8′′), 76.4 (C-9′′), 49.8 (-OMe), 39.8 (C-7′), 32.1 (C-3), 31.8 (C-2), 31.1 (C-7′′), 29.6 (C-1),
28.8 (C-12′′), 27.2 (C-8′,9′), 25.7 (C-16′′), 20.8 (C-11′′), 19.8 (C-10′′), 17.9 (C-15′′). HRFDMS
m/z 494.3034 [M]+ (calcd. for C31H42O5, 494.3032).
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3.4. Microbial Screening Procedures

The culture fermentation was carried out according to the usual two-stage proce-
dure [24–26]. In the screening studies, the actively growing microbial cultures were inocu-
lated in 250 mL flasks containing 50 mL of media and incubated in a temperature-controlled
shaking incubator with gentle agitation (200 rpm) at 25 ◦C for one day. Then 100 µL of the
prepared ethanol solution (10 mg/mL) of each substrate was added to the flask and further
incubated for another seven days under the same condition. Sampling and TLC monitoring
were performed at an interval of 24 h. Culture controls consisted of fermentation cultures
in which the microorganisms were grown without the addition of substrates.

3.5. Scale-Up Fermentation of 1 and 3 with Mucor hiemalis

Scale-up fermentation was carried out with M. hiemalis using 500 mL flasks each
containing 150 mL of malt media and 5 mg of compound 1 (total of 110 mg) under the
same temperature-controlled shaking conditions for five days. After fermentation, the
microbial cultures were extracted with the same volume of EtOAc three times and then the
combined organic layers were concentrated in vacuo. The EtOAc extract of kazinol C (1)
was separated by semi-preparative HPLC using isocratic 83% MeOH to afford metabolites
6 (4.6 mg), 7 (7.8 mg), 8 (3.5 mg), and 9 (4.5 mg). A similar fermentation process was
performed for compound 3 (65 mg in total), which was incubated for three days. The
yielded EtOAc extract was subjected to a C18 HPLC column using isocratic 77% MeOH
under a flow rate of 2 mL/min to afford metabolites 10 (2.5 mg) and 11 (3.91 mg).

Kazinol C-3′′-O-β-D-glucopyranoside (6)
Oily substance. UV (MeOH) λmax: 228, 285 nm. IR νmax: 3353, 2925, 1606, 1375, 1299,

1071, 598 cm−1. 1H-NMR (DMSO-d6, 600 MHz) δ 6.81 (1H, s, H-2′′), 6.69 (1H, s, H-6′),
6.29 (1H, s, H-3′), 6.19(1H, dd, J = 10.8, 17.8 Hz, H-10′), 4.99 (1H, t, J = 6.5 Hz, H-8′′), 4.87
(1H, d, J = 17.8 Hz, H-11′), 4.85 (1H, d, J = 10.8 Hz, H-11′), 4.84 (1H, overlapped, H-13′′),
4.50 (1H, d, J = 7.1 Hz, H-1′′′), 3.69 (1H, d, J = 11.5 Hz, H-6′′′), 3.51(1H, m, H-6′′′), 3.26
(1H, m, H-2′′′/3′′′), 3.25 (1H, m, H-5′′′), 3.24 (2H, m, H-7′′), 3.19 (1H, m, H-4′′′), 3.12 (2H,
d, J = 5.0 Hz, H-12′′), 2.41 (2H, m, H-1), 2.40 (2H, m, H-3), 1.68 (3H, s, H-10′′), 1.64 (2H,
m, H-2), 1.63 (3H, s, H-15′′), 1.62 (3H, s, H-11′′), 1.60 (3H, s, H-16′′), 1.34 (6H, s, H-8′/9′).
13C-NMR (DMSO-d6, 150 MHz) δ 154.0 (C-2′), 153.6 (C-4′), 148.4 (C-10′), 143.1 (C-3′′), 142.9
(C-4′′), 132.4 (C-6′′), 131.0 (C-1′′), 130.1 (C-14′′), 130.0 (C-9′′), 127.6 (C-6′), 126.7 (C-5′′), 123.9
(C-13′′), 123.6 (C-5′), 123.5 (C-8′′), 117.5 (C-1′), 116.0 (C-2′′), 109.2 (C-11′), 103.5 (C-3′), 103.4
(C-1′′′), 77.1 (C-5′′′), 75.8 (C-3′′′), 73.4 (C-2′′′), 69.7 (C-4′′′), 60.7 (C-6′′′), 39.4 (C-7′), 32.5 (C-3),
31.6 (C-2), 29.5 (C-1), 27.2 (C-12′′), 26.9 (C-8′/9′), 25.5 (C-11′′), 25.4 (C-16′′), 25.2 (C-7′′), 17.8
(C-10′′), 17.8 (C-15′′). HRFDMS m/z 626.3439 [M]+ (calcd. for C36H50O9, 626.3455).

Kazinol C-2′, 3′′-di-O-β-D-glucopyranoside (7)
Oily substance. UV (MeOH) λmax: 228, 285 nm. IR νmax: 3349, 2926, 1598, 1413, 1071,

607 cm−1. 1H-NMR (DMSO-d6, 600 MHz) δ 6.82 (1H, s, H-2′′), 6.77 (1H, s, H-6′), 6.60 (1H,
s, H-3′), 6.21 (1H, dd, J = 10.8, 17.1 Hz, H-10′), 5.00 (1H, t, J = 6.4 Hz, H-8′′), 4.89 (1H, d,
J = 17.1 Hz, H-11′), 4.88 (1H, d, J = 10.8 Hz, H-11′), 4.84 (1H, t, J = 6.0 Hz, H-13′′), 4.64 (1H,
d, J = 6.5 Hz, H-1′′′′), 4.51 (1H, d, J = 6.6 Hz, H-1′′′), 3.71 (1H, d, J = 11.3 Hz, H-6′′′), 3.69
(1H, d, J = 11.2 Hz, H-6′′′′), 3.53 (2H, m, H-6′′′/6′′′′), 3.27 (3H, m, H-2′′′/3′′′/5′′′), 3.25 (2H,
m, H-2′′′′/3′′′′), 3.24 (4H, m, H-7′′), 3.21 (1H, m, H-4′′′′/5′′′′), 3.18 (1H, m, H-4′′′), 3.14 (2H,
d, J = 4.8 Hz, H-12′′), 2.54 (2H, m, H-1), 2.44 (2H, t, J = 7.4 Hz, H-3), 1.68 (3H, s, H-10′′), 1.66
(2H, m, H-2), 1.64 (3H, s, H-15′′), 1.62(3H, s, H-11′′), 1.60 (3H, s, H-16′′), 1.37 (6H, s, H-8′/9′).
13C-NMR (DMSO-d6, 150 MHz) δ 154.2 (C-4′), 154.1 (C-2′), 148.0 (C-10′), 143.1 (C-4′′), 142.9
(C-3′′), 132.5 (C-1′′), 131.1 (C-6′′), 130.1 (C-14′′), 129.9 (C-9′′), 127.3 (C-6′), 126.7 (C-5′′), 126.5
(C-5′), 124.0 (C-13′′), 123.5 (C-8′′), 120.3 (C-1′), 116.1 (C-2′′), 109.5 (C-11′), 104.0 (C-3′), 103.5
(C-1′′′), 101.5 (C-1′′′′), 77.1 (C-5′′′), 76.9 (C-5′′′′), 76.8 (C-3′′′′), 75.8 (C-3′′′), 73.5 (C-2′′′), 73.4
(C-2′′′′), 69.7 (C-4′′′), 69.6 (C-4′′′′), 60.7 (C-6′′′/6′′′′), 39.5 (C-7′), 32.4 (C-3), 31.7 (C-2), 29.2
(C-1), 27.3 (C-12′′), 26.7 (C-8′/9′), 25.5 (C-11′′), 25.5 (C-16′′), 25.2 (C-7′′), 17.9 (C-15′′), 17.8
(C-10′′). HRFDMS m/z 788.3997 [M]+ (calcd. for C42H60O14, 788.3983).

Kazinol C-4′′-O-β-D-glucopyranoside (8)
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Oily substance. UV (MeOH) λmax: 228, 285 nm. IR νmax: 3363, 2925, 1596, 1378, 1069,
609 cm−1. 1H-NMR (DMSO-d6, 600 MHz δ 6.70 (1H, s, H-6′), 6.51 (1H, s, H-2′′), 6.30 (1H,
s, H-3′), 6.19 (1H, dd, J = 10.5, 17.5 Hz, H-10′), 4.98 (1H, t, J = 5.8 Hz, H-8′′), 4.88 (1H, d,
J = 17.0 Hz, H-11′), 4.86 (1H, d, J = 9.6 Hz, H-11′), 4.86 (1H, overlapped, H-13′′), 4.42 (1H, d,
J = 7.6 Hz, H-1′′′), 3.64 (1H, d, J = 11.9 Hz, H-6′′′), 3.16 (1H, m, H-7′′), 3.49(1H, dd, J = 4.4,
11.9 Hz, H-6′′′), 3.27 (1H, m, H-2′′′), 3.25 (1H, m, H-7′′), 3.24 (1H, m, H-3′′′), 3.17 (1H, m,
H-4′′′), 3.15 (1H, m, H-5′′′), 3.09 (2H, m, H-12′′), 2.42 (2H, m, H-1), 2.39 (2H, m, H-3), 1.65
(3H, s, H-10′′), 1.63 (5H, s, H-15′′/2), 1.61(6H, s, H-11′′/16′′), 1.35 (6H, s, H-8′/9′). 13C-NMR
(DMSO-d6, 150 MHz) δ 154.0 (C-2′), 153.6 (C-4′), 148.4 (C-10′), 147.0 (C-3′′), 141.9 (C-4′′),
137.9 (C-1′′), 133.9 (C-5′′), 130.0 (C-14′′), 129.4 (C-9′′), 128.5 (C-6′′), 127.6 (C-6′), 124.3 (C-8′′),
124.1 (C-13′′), 123.6 (C-5′), 117.4 (C-1′), 114.9 (C-2′′), 109.2 (C-11′), 105.9 (C-1′′′), 103.6 (C-3′),
77.3 (C-5′′′), 76.2 (C-3′′′), 74.1 (C-2′′′), 69.5 (C-4′′′), 60.8 (C-6′′′), 39.2 (C-7′), 32.4 (C-3), 31.5
(C-2), 29.6 (C-1), 27.1 (C-12′′), 26.9 (C-8′/9′), 25.7 (C-7′′), 25.4 (C-16′′/11′′), 17.8 (C-10′′), 17.7
(C-15′′). HRFDMS m/z 626.3469 [M]+ (calcd. for C36H50O9, 626.3455).

Kazinol C-3′′, 4′′-di-O-β-D-glucopyranoside (9)
Oily substance. UV (MeOH) λmax: 228, 285 nm. IR νmax: 3342, 2926, 1597, 1397, 1071,

611 cm−1. 1H-NMR (DMSO-d6, 600 MHz) δ 6.93 (1H, s, H-2′′), 6.70 (1H, s, H-6′), 6.29 (1H,
s, H-3′), 6.19 (1H, dd, J = 10.7, 17.6 Hz, H-10′), 5.07 (1H, t, J = 6.8 Hz, H-8′′), 4.87 (1H, d,
J = 17.4 Hz, H-11′), 4.85 (1H, d, J = 10.4 Hz, H-11′), 4.85 (1H, d, J = 7.4 Hz, H-1′′′′), 4.84 (1H,
overlapped, H-13′′), 4.65 (1H, d, J = 7.6 Hz, H-1′′′), 3.69 (1H, d, J = 10.4 Hz, H-6′′′), 3.63 (1H,
d, J = 11.4 Hz, H-6′′′′), 3.59 (1H, m, H-7′′), 3.51 (1H, m, H-6′′′), 3.41 (1H, overlapped, H-6′′′′),
3.31 (1H, m, H-2′′′′), 3.28 (1H, m, H-5′′′′), 3.26 (1H, m, H-3′′′), 3.23 (2H, m, H-2′′′/3′′′′),
3.19 (1H, m, H-4′′′′), 3.17 (1H, m, H-7′′), 3.11 (2H, m, H-12′′), 3.09 (1H, m, H-4′′′), 3.02
(1H, m, H-5′′′), 2.42 (4H, m, H-1/3), 1.67 (2H, m, H-2), 1.66 (3H, s, H-10′′), 1.60 (9H, s,
H-11′′/15′′/16′′), 1.34 (6H, s, H-8′/9′). 13C-NMR (DMSO-d6, 150 MHz) δ 154.0 (C-4′), 153.6
(C-2′), 148.4 (C-10′), 147.7 (C-3′′), 142.2 (C-4′′), 137.1 (C-1′′), 134.5 (C-5′′), 131.9 (C-6′′), 130.3
(C-14′′), 129.4 (C-9′′), 127.7 (C-6′), 124.0 (C-8′′), 123.7 (C-13′′), 123.7 (C-5′), 117.4 (C-1′), 115.4
(C-2′′), 109.2 (C-11′), 103.6 (C-3′), 103.5 (C-1′′′′), 102.3 (C-1′′′), 77.1 (C-5′′′), 77.1 (C-5′′′′), 76.5
(C-3′′′′), 75.8 (C-3′′′), 74.3 (C-2′′′), 73.5 (C-2′′′′), 70.0 (C-4′′′), 69.8 (C-4′′′′), 61.1 (C-6′′′′), 60.7
(C-6′′′), 39.1 (C-7′), 32.5 (C-3), 31.2 (C-2), 29.5 (C-1), 27.2 (C-12′′), 26.9 (C-8′/9′), 26.0 (C-7′′),
25.4 (C-11′′), 25.4 (C-16′′), 17.9 (C-10′′), 17.8 (C-15′′). HRFDMS m/z 788.4016 [M]+ (calcd.
for C42H60O14, 788.3983).

Kazinol Y (10)
Yellow powder. [α]20

D : −12.38 (c 0.42, MeOH). UV (MeOH) λmax: 228, 285 nm. IR νmax:
3354, 2921, 1591, 1457, 1378, 1269, 1096, 577 cm−1. 1H-NMR (DMSO-d6, 600 MHz) δ 6.76
(1H, d, J = 8.2 Hz, H-6′), 6.38 (1H, s, H-2′′), 6.26 (1H, d, J = 2.3 Hz, H-3′), 6.10 (1H, dd,
J = 2.4, 8.1 Hz, H-5′), 4.94 (1H, t, J = 6.7 Hz, H-13′′), 4.58 (1H, t, J = 9.1 Hz, H-8′′), 3.16 (3H,
s, -OMe), 3.07 (2H, d, J = 6.8 Hz, H-12′′), 2.97 (2H, dd, J = 4.3, 9.3 Hz, H-7′′), 2.42 (2H, t,
J = 7.4 Hz, H-1), 2.36 (2H, m, H-3), 1.66 (3H, s, H-15′′), 1.62 (3H, s, H-16′′), 1.61 (2H, m, H-2),
1.14(3H, s, H-11′′), 1.10 (3H, s, H-10′′). 13C-NMR (DMSO-d6, 150 MHz) δ 158.2 (C-4′), 157.8
(C-2′), 146.5 (C-4′′), 140.7 (C-3′′), 134.1 (C-14′′), 132.0 (C-6′′), 131.8 (C-6′), 129.3 (C-5′′), 127.5
(C-1′′), 125.2 (C-13′′), 120.5 (C-1′), 118.1 (C-2′′), 107.7 (C-5′), 104.4 (C-3′), 89.3 (C-8′′), 77.5
(C-9′′), 51.2 (-OMe), 34.0 (C-2), 33.7 (C-3), 32.1 (C-7′′), 31.2 (C-1), 30.2 (C-12′′), 27.4 (C-16′′),
23.3 (C-11′′), 21.7 (C-10′′), 19.7 (C-15′′). HRFDMS m/z 426.2414 [M]+ (calcd. for C26H34O5,
426.2406).

Kazinol F-4′′-O-β-D-glucopyranoside (11)
Oily substance. UV (MeOH) λmax: 228, 285 nm. IR νmax: 3337, 2925, 1597, 1461, 1069,

608 cm−1. 1H-NMR (DMSO-d6, 600 MHz) δ 6.77 (1H, d, J = 8.2 Hz, H-6′), 6.50 (1H, s, H-2′′),
6.25 (1H, d, J = 2.3Hz, H-3′), 6.11–6.10 (1H, dd, J = 2.3, 8.2 Hz, H-5′), 4.98 (1H, t, J = 6.5 Hz,
H-8′′), 4.87 (1H, t, J = 6.0 Hz, H-13′′), 4.43 (1H, d, J = 7.7 Hz, H-1′′′), 3.67 (1H, dd, J = 6.7,
14.6 Hz, H-7′′), 3.65 (1H, d, J = 11.6 Hz, H-6′′′), 3.49 (1H, d, J = 11.6 Hz, H-6′′′), 3.28 (1H,
m, H-2′′′), 3.26 (1H, m, H-7′′), 3.24 (1H, m, H-3′′′), 3.17 (1H, m, H-4′′), 3.16 (1H, m, H-5′′′),
3.09 (2H, m, H-12′′), 2.43 (2H, t, J = 7.1 Hz, H-1), 2.39 (2H, m, H-3), 1.65 (2H, s, H-10′′),
1.64 (2H, overlapped, H-2), 1.63 (4H, s, H-15′′), 1.61 (3H, s, H-11′′), 1.60 (3H, s, H-16′′).
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13C-NMR (DMSO-d6, 150 MHz) δ 156.2 (C-4′), 155.7 (C-2′), 147.1 (C-3′′), 141.9 (C-4′′), 137.8
(C-1′′), 133.9 (C-5′′), 130.1 (C-14′′), 129.8 (C-6′), 129.4 (C-9′′), 128.5 (C-6′′), 124.3 (C-8′′), 124.1
(C-13′′), 118.4 (C-1′), 114.8 (C-2′′), 105.9 (C-1′′′), 105.8 (C-5′), 102.4 (C-3′), 77.3 (C-5′′′), 76.2
(C-3′′′), 74.1 (C-2′′′), 69.6 (C-4′′′), 60.8 (C-6′′′), 32.3 (C-3), 31.3 (C-2), 29.3 (C-1), 27.0 (C-12′′),
25.7 (C-7′′), 25.4 (C-11′′), 25.4 (C-16′′), 17.8 (C-10′′), 17.7 (C-15′′). HRFDMS m/z 558.2839
[M]+ (calcd. for C31H42O9, 558.2829).

3.6. Mushroom Tyrosinase Activity

The mushroom tyrosinase (Sigma, T3824) inhibition by compounds 1–11 was per-
formed using the previously described method [10] with some modifications. All the
compounds were first dissolved in dimethyl sulfoxide (DMSO) and then diluted into differ-
ent concentrations (1, 2, 4, 10, 40, 80, and 160 µM). An amount of 100 µL of each sample
solution and 50 µL of the 2 mM L-tyrosine solution in 0.1 M phosphate buffer (pH 6.5)
were added to 96-well microplates. After incubation at room temperature for 5 min, 50 µL
of mushroom tyrosinase (300 U/mL in phosphate buffer) was added to each well. After
further incubation for 30 min under 37 ◦C, the absorbance of dopachrome produced in the
mixture was determined at 490 nm with a microplate reader (SpectraMax 190; Molecular
Devices, Sunnyvale, CA, USA). The percent of inhibition of tyrosinase activity was calcu-
lated using the formula: % inhibition = (A − B)/A × 100, in which A is the absorbance at
490 nm without the test sample, and B is the absorbance at 490 nm with the test sample.
IC50 values were calculated from the mean values of data from four determinations.

3.7. Cytotoxic Activity

The cytotoxic activities of all the compounds (1–11) were evaluated using the MTT
assay [24,28]. Briefly, the A375P (human melanoma), B16F10 and B16F1 (mouse melanoma)
cell lines obtained from the Korean Cell Line Bank (Seoul, Korea) were cultured in Dul-
becco’s Modified Eagle’s Medium (DMEM) (Gibco, CA, USA) containing penicillin
(100 units/mL)-streptomycin (100 µg/mL) (Gibco, CA, USA) and 5% heat-inactivated
fetal bovine serum (FBS) (Welgene, Korea) in a humidified chamber with 5% CO2 at 37 ◦C.
The cells were seeded in 96-well plates at a density of 6 × 103 cells/well and incubated
for 24 h. The medium was then aspirated and replaced with 100 µL of fresh medium
containing various concentrations of the test compound. After incubation for a further
24 h, the compound containing the medium was replaced with 100 µL of a MTT solution
(0.5 mg/mL) and incubated for 4 h. Then the insoluble formazan crystals were dissolved in
100 µL of DMSO and measured at 490 nm on a microplate reader.

4. Conclusions

The activity-guided fractionation of the root barks of B. kazinoki led to the isolation
of five compounds, including two previously unreported prenylated polyphenols 4 and 5.
The subsequent microbial transformation studies on the two major compounds, kazinol
C (1) and kazinol F (3), resulted in the production of five glucosylated and one oxidized
metabolite (6–11). All the obtained compounds were evaluated for their tyrosinase in-
hibitory and cytotoxic activities. Compounds 3, 4, 10 and 11, which lack a prenyl group
in the ring A of their structures, exhibited potent tyrosinase inhibitory activities, with
glucosylated metabolite 11 being the most active. Although all the metabolites showed
weaker cytotoxic activities than their parent compounds, the compound 8, which had a
glucose moiety in its structure, exhibited a moderate activity against the cancer cell lines
tested. All of these indicated that glycosylation plays a role in the biological activities of
the prenylated polyphenols from B. kazinoki.

Supplementary Materials: The following are available online https://www.mdpi.com/article/10.3
390/molecules27061879/s1. Table S1. Screening for the microorganisms that metabolize kazinols C
(1) and F (3).; Figures S1–S53: NMR and HRFDMS spectra of compounds 1–11.
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