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Metastatic osteosarcoma has a bleak prognosis in both humans and dogs, and there

have been minimal therapeutic advances in recent decades to improve outcomes.

Naturally occurring osteosarcoma in dogs is shown to be a highly suitable model

for human osteosarcoma, and limited data suggest the similarities between species

extend into immune responses to cancer. Studies show that immune infiltrates in canine

osteosarcoma resemble those of human osteosarcoma, and the analysis of tumor

immune constituents as predictors of therapeutic response is a promising direction

for future research. Additionally, clinical studies in dogs have piloted the use of NK

transfer to treat osteosarcoma and can serve as valuable precursors to clinical trials in

humans. Cytotoxic lymphocytes in dogs and humans with osteosarcoma have increased

activation and exhaustion markers within tumors compared with blood. Accordingly, NK

and T cells have complex interactions among cancer cells and other immune cells,

which can lead to changes in pathways that work both for and against the tumor.

Studies focused on NK and T cell interactions within the tumor microenvironment

can open the door to targeted therapies, such as checkpoint inhibitors. Specifically,

PD-1/PD-L1 checkpoint expression is conserved across tumors in both species, but

further characterization of PD-L1 in canine osteosarcoma is needed to assess its

prognostic significance compared with humans. Ultimately, a comparative understanding

of T and NK cells in the osteosarcoma tumor microenvironment in both dogs and humans

can be a platform for translational studies that improve outcomes in both dogs and

humans with this frequently aggressive disease.
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INTRODUCTION

Osteosarcoma (OSA) is an aggressive cancer of the skeleton in both dogs and humans with high
rates of metastasis. Untreated, 90% of dogs with OSA develop metastasis within 1 year, and 85–90%
of humans do so within 2 years (1). When gross metastatic disease develops, survival is dismal, and
fewer than 20% of human patients survive 5 years and fewer than 5% of dogs survive 2 years with
disseminated disease (2, 3). In the past few decades, there has been limited advancement of OSA
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therapies, and outcomes for patients with metastatic disease
have remained stagnant (4, 5). Canine OSA (cOSA) occurs
spontaneously and shares notable genomic profiles, clinical
presentations, and progression patterns with human OSA
(hOSA) (1, 6–8). The intact immune system of dogs with
naturally occurring cancer along with the relatively high
incidence of cOSA and extensive similarities between cOSA
and hOSA make companion dogs an ideal platform for
translational oncology, especially in the investigation of novel
immunotherapies (9, 10).

NK cells are innate immune cells with cytokine-producing
and cytotoxic effector capabilities that have been identified in
the OSA tumor microenvironment (TME) along with cytotoxic
and helper T cells (11, 12). Both NK and CD8+ T cells
have the capability to kill cancer cells using their cytotoxic
functions, but their potential cooperation is complex. The
downregulation of MHC-I by certain cancer cells effectively
circumvents recognition by CD8+ T cells but simultaneously
increases activation of NK cells by removing a major inhibitory
signal (13). Additionally, IFN-γ secreted by NK cells stimulates
CD4+ T cell activation and is required for proliferation of CD8+
T cell precursors (13). In many cancers, such as melanoma,
gastric cancer, and myeloma, among others, secretion of IFN-γ
is also shown to induce PD-L1 expression in tumor cells (14).
IFN-γ-induced upregulation of PD-L1 expression on immune
and tumor target cells is recognized as a conserved mechanism
of adaptive immune resistance and tolerance as a response to
chronic antigen stimulation, which is observed in both cancers
and chronic pathogen exposure (15–17). These cooperative
antitumor properties of NK and both CD4+ and CD8+ T cells
are contrasted by studies showing that NK cells kill activated
T cells to protect against virus-induced immunopathology (18,
19). Even among tumor-infiltrating T cells, tumor and immune
cells expressing PD-L1 can inhibit neighboring PD-1+ T cells
through the PD-1/PD-L1 axis, an immune checkpoint that cancer
cells can exploit to inhibit antitumor immune responses (20).
In humans, NK and T cells also show increased exhaustion
markers in the solid TME, making reversal of the resulting
immunosuppression a key aim of emerging immunotherapies
(21). Veterinary studies also identify features of immune
exhaustion in dogs with cancer (22, 23), but focused studies
are needed to answer lingering questions of the consistency of
these markers and how to target them. Analyses establishing the
extent to which cOSA infiltrating NK and T cells are comparable
to hOSA support a deeper understanding of the OSA TME
and advance bench-to-bedside studies to speed the translation
of novel immunotherapies. This review focuses on the recent
literature characterizing NK and T cell infiltrates in OSA tumors
and their prognostic significance in humans and dogs.

BLOOD VS. TUMOR

The TME is made up of tumor cells, healthy stromal
and nonimmune cells, and immune cells, all of which are
communicating in dynamic interactions that work both for and
against the tumor (24). These interactions occur in the context

of a systemic immune response, including immune cell activity
within the peripheral circulation, which, interestingly, does not
inherently parallel activity in the TME (25–29).

In healthy dogs, CD4+ and CD8+ T cells comprise
approximately 49 and 22% of lymphocytes, respectively, in
peripheral blood, and T regulatory cells (Tregs) account for 4.5%
of CD4+ T cells (25). Walter et al. (12) looked at peripheral
immune responses in dogs prior to and following chemotherapy
and found that dogs with osteosarcoma have fewer pretreatment
CD4+ and CD8+ T cells in the blood than healthy dogs. Canine
Tregs have also been identified and found to be higher in blood
from dogs with OSA compared with healthy dogs (25, 30, 31).
Later, the same working group established the clinical relevance
of circulating lymphocytes in cOSA. For example, Sottnik et
al. (32) observed that dogs with lower monocyte counts and
lymphopenia prior to treatment with amputation and adjuvant
chemotherapy had an increased disease-free interval (DFI). The
authors call attention to the fact that this contrasts with human
studies in which lymphopenia is associated with worse outcomes
in sarcomas and other cancers (33). However, recent hOSA
studies largely focus on lymphocytes in the context of other
blood parameters, such as high neutrophil-to-lymphocyte ratios
(NLRs) or low lymphocyte-to-monocyte ratios (LMRs), which
are both associated with poor prognosis (34, 35). The necessity
of lymphocyte ratios could be explained by the importance of
other immune cell populations and the conflicting functions of
different lymphocyte subsets, such as Tregs. For example, Biller
et al. (25) analyzed CD4+ T, CD8+ T, and Treg (defined as
CD4+FOXP3+) cells by flow cytometry in cOSA and found
that low circulating CD8/Treg ratios were associated with shorter
survival time. Investigation of NLR and LMR within cOSA are
needed for an accurate comparison of the prognostic significance
of circulating lymphocytes in dogs.

Although circulating CD8/Treg ratios were associated with a
significantly worse prognosis, this was not seen in cOSA tumor-
infiltrating lymphocytes (TIL), an indication of the differing
immune populations between blood and tumors (25). This
discordance is further substantiated with evidence from the
same study that Tregs are highest in cOSA tumors, making up
21% of lymphocytes in the TME, compared with Tregs in the
lymph nodes and circulation (25). The pattern stays consistent
in mouse and human OSA, where, compared with blood, tumors
have a higher concentration of Tregs as well as more activated
Tregs based on cellular proliferation and increased expression of
activation markers (26). The similarities extend to other immune
cell subsets. A recent comparative study by Judge et al. (27)
observed that proportions of T and NK cells (using CD3, CD8,
and NKG2D by PCR as readouts) were significantly higher in
peripheral blood compared with the TME in both cOSA and
human sarcomas. The authors also found that, though tumors
have low infiltration of lymphocytes, activation and exhaustion
markers of infiltrating CD8+ T and NK cells are higher than
those found in circulation (28). In another study, CD3+ T cells in
hOSA similarly had significantly higher expression of exhaustion
markers than those in peripheral blood (29).

Based on the current literature, both human and dog OSA
tumors contain CD3+ T, CD8+ T, and NK cells, and the
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activation and exhaustion of these immune cell subsets varies
significantly between the tumor and circulation. The immune
landscape of both the TME and peripheral circulation is
important in identifying novel immunotherapies and patients
most likely to respond to them (36). However, immunotherapies
targeting immune cells in the TME, such as PD-1/PD-L1
inhibitors, have the added benefit of eliciting targeted antitumor
responses, sometimes with minimal side effects (37). As a critical
window into the mechanism of immune cell and solid tumor
interaction, summarized in Figure 1, the remainder of this review
focuses on the OSA TME specifically and characteristics of
infiltrating T and NK cells.

T CELLS

Recent evaluation of cOSA tumors from our group using
immunohistochemistry (IHC) confirmed minimal CD3
infiltration compared with normal lymph nodes (27). There was
varied cOSA intra-tumoral CD3 and CD8 gene expression after
radiotherapy (RT) plus NK transfer, which did not correlate
significantly with survival, acknowledging that sample size was
a limiting factor (27). However, these results suggest that an
immune “cold” cOSA tumor could be transformed into a “hot”
tumor with immunotherapy (27). This hypothesis stems from
increasing studies of lymphocyte infiltration, or immune score,
in human cancers with higher levels indicating hot tumors and
those with low infiltration being cold tumors, whichmay bemore
accurate in predicting survival than the tumor-node-metastasis
staging system (38). The ability to increase immune scores
therapeutically is demonstrated by Modiano et al. (39), who
found that the percentage of CD3+ T cells in cOSA jumps
from 8 to 17% after fas-ligand gene therapy. The increase in
TILs also correlates with survival because dogs with greater
lymphocyte infiltration after treatment had longer survival
times than dogs with lower infiltration (39). Similarly, in hOSA,
CD8+ cells were observed in the majority of tumors but only
made up 1% of intra-tumor cells (40). Even with low CD8+
staining within hOSA tumors, CD8+ cells were still significantly
associated with improved prognosis and also favorably predicted
survival posttreatment with zoledronic acid (40). These results
together provide evidence of OSA being an immunologically
cold tumor that can be treated to increase immune cell activity
and improve survival.

On the other hand, some studies show cOSA to have varying
patterns of TILs. Biller et al. (25) were among the first to evaluate
tumor infiltrates of cOSA, finding that tumors were relatively
highly infiltrated, made up of 19.2% CD4+ and 8.6% CD8+ T
cells, but TILs were not associated with survival. The discrepancy
may be due to varying techniques as this study determined
percentage of cells by flow cytometric analysis of strained tumor
samples rather than IHC evaluation. But Withers et al. (41) later
also showed evidence of varying degrees of infiltration using
IHC with CD3+ cells ranging from 4.6 to 607.6 cells/mm2

in cOSA tumors. Although CD3+ infiltrates alone were not
prognostic, increased infiltration of CD204+ macrophages was
associated with increased DFI, leading the authors to suggest

that cOSA is an immunogenic tumor (41). In a second study,
Withers et al. (42) further examined heterogeneity of infiltrates
by comparing infiltrates within matched primary and metastatic
cOSA tumors. They reported that overall immune infiltrates of
the primary tumor correlated with a patient’s metastatic lesions,
but importantly, they also found that CD3+ and CD204+
macrophages were significantly higher in metastatic lung lesions
compared with their primary tumor (42). The range of TILs in
cOSA and inconsistent associations with survival, rather than
conflicting each other, may point to intra-tumoral heterogeneity
within cOSA and complicate the idea of cOSA being uniformly
cold. Cascio et al. (43) found cOSA to have virtually no
infiltration of CD3+ and CD8+ T cells within the tumors but
found both subsets in much higher concentrations in the peri-
tumor areas. This aligns well with the definition of “altered”
or “excluded” tumors, an intermediate between hot and cold,
that have T cells present in tumor margins that are excluded
from entering the tumor (38). The presence of distinct immune
subtypes with low, intermediate, and high immune infiltrate
has already been described in hOSA and is shown to affect
response to immunotherapy treatments (44). Each tumor type—
cold, altered, or hot—has distinct features that make them
more or less likely to respond to a specific treatment, such as
checkpoint inhibitors or adoptive cell therapy (38, 44, 45). Based
on the available literature, cOSA recapitulates the heterogeneity
of immune infiltrates and distinct immune score subtypes seen
in hOSA. Still, choosing therapeutics based on levels of immune
infiltrates has not yet been explored expressly in cOSA, and
further studies are needed to corroborate the use of immune
score to predict response to treatment and survival as seen
in humans.

CHECKPOINT INHIBITORS: PD-1/PD-L1

Although beyond the scope of this review and reviewed in
detail elsewhere (46, 47), an understanding of the PD-1/PD-
L1 pathway is critical to understanding the interactions of T
cells with tumor cells as well as other immune cells. PD-L1 is
frequently upregulated on tumor cells, and its interaction with
PD-1 on immune cells induces tumor tolerance and allows for
immune evasion (46). PD-L1 is also found to be expressed on T
cells in mouse models with PD-1+ T cells exhibiting multiform
interactions that lead to protumor effects (20). Both anticanine
PD-1 and PD-L1 therapeutic antibodies have been developed and
proven to possess antitumor activity in dogs with cancer (48, 49).

The first study to look at PD-L1 in cOSA did not find
expression in samples using IHC, although the study only had
three cOSA samples (50). Subsequent studies have found that
the majority or all cOSA samples evaluated by IHC express PD-
L1 (51, 52). PD-L1 expression in cOSA tumors was likewise
consistently found by Cascio et al. (43), whose results show
that expression of PD-L1 is associated with resistance to T
cell infiltration from the peri-tumor environment to within the
tumor, but the study did not evaluate prognostic significance.
Although the expression of PD-L1 varies in hOSA, it is
consistently associated with TILs. Studies found that PD-L1
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FIGURE 1 | Interactions between cancer and immune cells within the TME as well as relevant receptors and soluble factors. Created with BioRender.com.

is expressed in up to 25% of hOSA tumors and correlates
with increased infiltration of PD-1+, CD3+, and CD56+ cells;
however, there is no significant correlation to survival (53). A
later study found that more than 43% of hOSA harbor PD-
L1+ tumor cells with positive correlations to TILs (54). Similar
to overall levels of immune infiltration in OSA, the impact
of PD-L1 expression in hOSA is conflicting because PD-L1
expression is associated with a negative prognosis secondary
to immune dysfunction and also better event-free survival and
overall survival because of greater density of TILs and other
immune cells (54). Additionally, an increase in PD-L1-expressing
tumor-infiltrating immune cells is significantly associated with
response to humanized anti-PD-L1 antibody (55), though the
specific indications of these biomarkers for response to treatment
varies within different cancer types (56). Consequently, further
characterization of PD-L1 expressing cells in cOSA is needed
for accurate comparison to human studies and investigation of
cOSA’s sensitivity to PD-1/PD-L1 blockade.

NK CELLS

Even in scenarios in which T cells are present in the TME,
cancer cells can suppress MHC-I expression, which is necessary
for CD8+ T cells to recognize a target and enact their cytotoxic
functions. NK cells, on the other hand, recognize “missing-
self ” or the lack of MHC-I molecules and can exert their
cytotoxic functions in situations in which CD8+ T cells cannot,
forming a basis of reasoning for their use in immunotherapies

(13). This is seen specifically in hOSA, in which the majority
of tumors showed diminished expression of MHC-I, and its
downregulation is associated with a worse prognosis (57). NK
cells are proven to be capable of lysing hOSA cells (58), and
adoptive transfer of NK cells serves as a mechanism to increase
the numbers of cytotoxic cells capable of targeting OSA cells
in vivo. Canine and human NKp46+ NK cells show impressive
similarities in expression of natural cytotoxicity receptors and
secretion of factors, such as IFN-γ and TNF-α (59). In addition,
NKp46+ is not expressed uniformly across NK cells, and its
absence correlates with decreased cytotoxicity across species (59).
The similarities in both NK cells and OSA in general make dogs
an ideal candidate for comparative studies of NK cell infiltrates
in OSA.

Mouse models of osteomyelitis with concurrent OSA were
early implications of the role of innate immune cells, including
NK cells, in the OSA antitumor response (60). Through NK
cell depletion, NK cells were found to be critical in OSA
tumor growth inhibition (60). One mechanism by which tumors
continue to grow in the presence of NK cells may be through
overexpression of TGF-β, a potent inhibitor of NK cells.
Canine OSA tumors consistently stain positive for TGFβRI
and TGFβRII (61), providing a rational for the expansion
and transfer of expanded and TGF-β-imprinted NK cells
in cOSA therapy (62, 63). Imprinting of NK cells involves
prolonged coculture with IL-2 and TGF-β to produce NK cells
that are desensitized to the inhibitory effects of TGF-β and
thereby capable of prolonged hyperfunctionality with increased
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cytotoxicity, cytokine production, and longevity. This approach
has the potential for novel use in NK immunotherapies (63).
In their phase I trial using hypofractionated RT and autologous
intratumoral NK cell transfer in dogs with naturally occurring
OSA, Canter et al. (64) demonstrate increased progression-free
survival in dogs with OSA compared with historical controls.
The same group collected tumor specimens from patients in this
first-in-dog clinical trial and found that pre- to post-treatment
immune-related gene transcript changes varied considerably
between dogs (27). NK gene transcripts have significantly
less expression of both CD3+ and CD8+ cells in untreated
cOSA tumor samples, but there were no patterns of expression
that significantly correlated with survival at six months post-
treatment in paired samples (27). Intra-tumoral changes in
expression of IL-6, a gene linked to cytotoxic lymphocytes,
was higher in dogs with prolonged survival though statistical
significancemay have been limited by the sample size (27). Future
clinical trials with increased sample sizes are needed to better
evaluate the prognostic value of cOSA tumor-infiltrating NK cells
and the therapeutic benefit of NK cell immunotherapy. It should
be noted that the full characterization of canine NK cells and
their surface markers is still in progress compared with human
NK cells and could provide critical information in their use for
NK immunotherapies (65). The use of NK cell transfer has not
been explored extensively in hOSA, likely due to limiting factors
in the sourcing and expansion of NK cells (66, 67), but early
successes seen in cOSA can potentially drive translation of NK
immunotherapy to clinical trials in humans.

CONCLUSION

Osteosarcoma is an aggressive disease for which novel
therapeutics are needed, and dogs with spontaneously occurring
cancer are a useful model for hOSA studies. Both cOSA and
hOSA share extensive similarities, including the frequency and

phenotype of immune cells within the TME and peripheral
circulation. The OSA TME constitutes a complex web of
interactions, especially among NK and T cells, that can be
targeted with immunotherapies. OSA tumors in both humans
and dogs fall on a spectrum of immune infiltrate levels that
correlate with prognosis, express PD-L1 with association to
increased TILs, and show sensitivity to NK cell cytotoxicity.
The parallels between cOSA and hOSA can be best put to
used after filling the gaps in current knowledge regarding the
characterization of the cOSA TME and immunotherapies to
target it. Future studies in cOSA are needed to characterize
NK cells and the expression of PD-1/PD-L1 in TILs as
well as to validate the use of immune infiltrates to predict
immune response to therapeutics. Increased understanding
of intra-tumoral NK and T cells will influence clinical
applications of TIL-targeting treatments in both dogs and
humans, ultimately leading to better outcomes for patients
with OSA.
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