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The NAD(P)-dependent alcohol dehydrogenase (ADH) gene was cloned from
Gluconobacter frateurii NBRC 3264 and expressed in Escherichia coli BL21 star (DE3).
The expressed enzyme was purified and the characteristics were investigated. The
results showed that this ADH can convert allitol into D-allulose (D-psicose), which is
the first reported enzyme with this catalytic ability. The optimum temperature and pH of
this enzyme were 50◦C and pH 7.0, respectively, and the enzyme showed a maximal
activity in the presence of Co2+. At 1 mM Co2+ and allitol concentrations of 50, 150,
and 250 mM, the D-allulose yields of 97, 56, and 38%, respectively, were obtained after
reaction for 4 h under optimal conditions, which were much higher than that obtained
by using the epimerase method of about 30%.

Keywords: D-allulose, allitol, NAD(P)-dependent alcohol dehydrogenase, Gluconobacter frateurii NBRC 3264,
biotransformation

INTRODUCTION

D-Allulose (D-psicose), an epimer of D-fructose at the C3 position, is a kind of rare sugar according
to the definition by the International Society of Rare Sugars (ISRS). D-Allulose is a low-energy sweet
and is regarded as a potential substitute for sucrose as it has 70% of the relative sweetness but only
0.3% of the energy of sucrose (Zhang et al., 2015). More importantly, D-allulose has many important
physiological functions, for example, blood glucose suppressive effect (EdyLiani et al., 2020), body
fat accumulation inhibitive effect (Kim et al., 2017), reactive oxygen species scavenging effect (Li
et al., 2018), and neuroprotective effect (Zhao et al., 2021). In addition, it has good properties
for food industry applications, such as improving the gelling behavior and producing good flavor
(Zhang et al., 2013). Importantly, it has been approved as “generally regarded as safe” (GRAS) by
the Food and Drug Administration (FDA) of the United States, and has been allowed to be used as
an ingredient in dietary supplements in the United States and some other countries.

In nature, D-allulose is found in very small amounts in the wheat and Itea plants. So, it is
impractical to extract it from natural resources for mass production of D-allulose. The chemical
synthetic method is one choice, but it may produce toxic by-products and is not suitable for
food production. Biotransformation is an ideal method and is widely accepted in D-allulose mass
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production due to the advantages of easy operation, mild
reaction conditions, no toxic by-products, and environmental
friendliness. At present, D-allulose was namely biotransformed
from D-fructose by using D-psicose 3-epimerase or D-tagatose
3-epimerase (Zhu et al., 2012, 2019c; Li et al., 2018; Figure 1).
However, the reaction catalyzed by epimerase is limited
by thermodynamic equilibrium unfavorable to the D-allulose
direction, and the conversion yield of D-allulose is about 30%,
which greatly decreases the production efficiency and increases
the difficulty in product separation. To overcome the limitation
of thermodynamic equilibrium, Kim et al. added boronic acid
to the reaction system to form a complex with sugar to increase
the D-allulose conversion yield (Kim et al., 2008). As the binding
affinity of boric acid to D-allulose is much higher than that of D-
fructose, the reaction equilibrium is shifted toward the formation
of D-allulose, and that increases the conversion yield of D-allulose
(Kim et al., 2008). However, boric acid is toxic and used in large
quantities, and the removal of boric acid is difficult. For the above
reasons, this method is difficult to be applied in real applications.
Alternatively, the thermodynamic equilibrium limitation can also
be overcome by combining the D-allulose biocatalytic process
with continuous D-allulose separation (Wagner et al., 2015; Li
et al., 2021). However, this method is complex and cumbersome
and is also difficult to be applied in real applications.

Fortunately, D-allulose can also be biotransformed from allitol
by using dehydrogenation reaction using dehydrogenase as the
catalyst according to the Izumoring strategy (Izumori, 2006),
which can overcome the above limitation of the thermodynamic
equilibrium and improve the conversion rate of D-allulose.
Moreover, allitol can be prepared easily from low-cost substrates
of D-glucose or D-fructose by the biotransformation method
(Zhu et al., 2015; Hassanin et al., 2016; Wen et al., 2020a,b).
Poonperm et al. (2007) biotransformed allitol into D-allulose by
using the resting cells of Bacillus pallidus Y25 for the first time.
Gullapalli et al. (2007). biotransformed allitol into D-allulose by
using Enterobacter aerogenes IK7. However, the exact enzyme
that catalyzed allitol into D-allulose was unknown.

In this study, the gene encoding NAD(P)-dependent alcohol
dehydrogenase (ADH) with protein ID WP_099183078.1
from Gluconobacter frateurii NBRC 3264 was cloned and
overexpressed in E. coli. The ADH was confirmed to convert
allitol into D-allulose (D-psicose), which is the first reported
enzyme with this catalytic ability. The enzymatic properties,
such as optimal pH, temperature, and metal ion, of this
ADH were investigated. The activation effect of Co2+ on the
ADH to increase the enzyme activity and the D-allulose yield
was determined, and the kinetics of this enzyme were also
investigated. The highest D-allulose conversion yield of 97%
was obtained, which was more than twofold higher than the
epimerase method. The method developed in this study is
expected to be applied to the industrial production of D-allulose.

MATERIALS AND METHODS

Materials and Reagents
The restriction enzymes were obtained from TaKaRa (Beijing,
China). The DNA polymerase was obtained from Vazyme

(Nanjing, China). T4 DNA ligase was purchased from Thermo
Fisher (United States). Ampicillin and isopropyl-β-D-1-
thiogalactopyranoside (IPTG) were purchased from Sangon
Biotech (Shanghai, China). Allitol was prepared in our lab as
described previously (Wen et al., 2020a,b, 2022).

Construction of Recombinant E. coli
Expressing Alcohol Dehydrogenase
According to NCBI, the whole genome of Gluconobacter
frateurii NBRC 3264 was sequenced by Hosoyama et al.
and was released into the GenBank National Center for
Biotechnology Information (NCBI)1. The adh gene locus_tag
was GFR01_RS14945 and the ADH protein ID number was
WP_099183078.1. The optimization and synthesis of the gene
encoding NAD(P)-dependent alcohol dehydrogenase (ADH)
were made by a company named Boshang (Jinan, China). The
adh region was initially amplified from the plasmid pETDuet−1-
adh (no 6 × His-tag) using primers adh-pET22b-Nde I-U and
adh-pET22b-Xho I-D (Table 1). A 6 × His-tag sequence was
present in the vector to aid protein purification. Then, the adh
region was inserted into the plasmid pET22b at the Nde I and
Xho I restriction sites to create the recombinant plasmid pET22b-
adh. The recombinant plasmid pET22b-adh was transformed
into E. coli DH5α and verified correctly by electrophoresis and
sequencing. And then, the recombinant plasmid pET22b-adhwas
transformed into E. coli BL21 star (DE3) for the expression of
ADH. The strains, plasmids, and primers used in this study are
listed in Table 1.

Media and Cultivation Conditions
The seed culture used in this study was the LB medium
containing 10 g/L tryptone, 5 g/L yeast extract, and 10 g/L
NaCl. The LB medium supplied with 5 g/L glucose (named LBG
medium) was used for the expression of ADH. The cultivation
broth of recombinant E. coli expressing ADH was inoculated with
1% dose into the LBG medium containing 100 µg/ml ampicillin,
and cultivated at 37◦C and 200 rpm. After 3 h of cultivation,
IPTG was added to the final concentration of 0.2 mM and
the cultivation was continued for a further 12 h at 20◦C and
100 rpm. The cells of the recombinant E. coli expressing ADH
were harvested by centrifugation at 4◦C and 10,000× g for 5 min.

Crude Alcohol Dehydrogenase
Preparation, Alcohol Dehydrogenase
Purification, and Enzyme Assay
The harvested cells were washed three times by using 20 mM
Na2HPO4-NaH2PO4 buffer (pH 7.0). The washed cells were
collected by centrifugation, resuspended in 20 mM Na2HPO4-
NaH2PO4 buffer (pH 7.0), and disrupted by sonication at 4◦C
until the mixture solution became transparent. The supernatant
was obtained by centrifugation at 4◦C and 10,000 × g for
15 min and was used for crude ADH. The crude ADH
was checked by Sodium Dodecyl Sulfate PolyAcrylamide Gel
Electrophoresis (SDS–PAGE).

1https://www.ncbi.nlm.nih.gov/nuccore/1271388588
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FIGURE 1 | D-Allulose biotransformation from allitol or D-fructose (ADH, NAD(P)-dependent alcohol dehydrogenase; DPE, D-psicose 3-epimerase; DTE, D-tagatose
3-epimerase).

The preparation of crude ADH used for ADH purification is
the same as the above except the washing buffer and resuspending
buffer were changed to the binding buffer (20 mM NaH2PO4,
500 mM NaCl, 30 mM imidazole, pH 7.4). HisTrapTM HP
(5 mL) column was used for the purification of the recombinant
ADH. The column was washed using double-distilled water
and equilibrated with a binding buffer. And then, the collected
supernatant was loaded onto the column, and the unbound
proteins were washed with the binding buffer, and the ADH
was then washed with the elution buffer (20 mM NaH2PO4,
500 mM NaCl, 200 mM imidazole, pH 7.4). Finally, the purified
ADH was checked by SDS–PAGE and was concentrated by the
ultrafiltration tube with the membrane of the cutoff molecular
weight of 10 kDa at 4◦C and 3,700 × g. All purification steps of
ADH were handled at 4◦C.

The 1 ml reaction mixture for ADH assay consisted of each
of the following reagents unless otherwise specified: 20 mM
Na2HPO4-NaH2PO4 buffer (pH 7.0), 2 mM NAD+, enzyme
solution, and 50 mM allitol, and then incubated at 50◦C and
200 rpm shaker for 30 min. One unit of enzyme activity was
defined as the amount of D-allulose produced from allitol per
minute. The amount of allitol and D-allulose were measured by
HPLC using a Carbomix Pb-NP column (7.8 mm × 300 mm,
10 µm, Sepax Technologies) at 78◦C and eluted with double-
distilled water at a flow rate of 0.5 ml/min.

Effects of pH, Temperature, and Metal
Ions on Recombinant Alcohol
Dehydrogenase and Kinetic Modeling
Four buffer systems of sodium acetate–acetic acid (20 mM,
pH 5.0–6.0), disodium hydrogen phosphate–sodium dihydrogen
phosphate (20 mM, pH 6.0–8.0), tris–HCl (20 mM, pH 8.0–9.0),
and glycine–NaOH (20 mM, pH 9.0–11.0) were, respectively,
used in determining the optimum pH of the recombinant ADH
expressed by E. coli.

The optimum temperature for the enzyme activity was
measured by assaying the enzyme solution over the temperature
range of 30–60◦C. The thermal stability of the recombinant ADH
was investigated by maintaining the enzyme solution in disodium
hydrogen phosphate–sodium dihydrogen phosphate (20 mM, pH
7.0) at various temperatures for 3 h and measuring the residual
enzyme activities at 0.5-h intervals.

The residual activity of the enzyme was determined as
described in the above method in the “Crude ADH preparation,
ADH purification, and enzyme assay.” The enzyme solution was
incubated with the metal ions Co2+, Zn2+, Ni2+, Ca2+, Mg2+,

Ba2+, Fe3+, Mn2+, Fe2+, and Cu2+ at a final concentration of
1 mM. The measured activities were compared with the activity
of the enzyme without the metal ion addition (control) under the
same conditions.

Kinetic modeling can help to understand the reaction
characteristics of this enzyme and predict the reaction results.
The reaction rate is normally affected by the substrate
concentration, while it is also strongly affected by Co2+ for
the ADH under investigation. Here, the D-allulose production
kinetics under various substrate concentrations of 50, 150, and
250 mM allitol, respectively, with or without the activator of
Co2+ addition, were investigated.

D-Allulose Identification
The product was identified by using the HPLC analysis, specific
optical rotations, and mass spectrometry. The high performance
liquid chromatography (HPLC) analysis method was referred
to in “Crude ADH preparation, ADH purification, and enzyme
assay.” Specific optical rotations were determined by using the
polarimeter (INESA WZZ-3, China). Mass spectrum (BRUKER
impactHD, Germany) was performed in the negative ion
detection mode with the ESI ion source.

TABLE 1 | Plasmids, strains and primers used in this study.

Plasmids, strains
and primers

Relevant characteristics, sources and sequences

Plasmids and
strains

Relevant characteristics Sources

pETDuet−1-
MCSIIadh

adh (no His·Tag), Ampr Boshang (Jinan, China)

E. coli DH5α For gene cloning Weidi (Shanghai, China)

E. coli BL21 star
(DE3)

For gene expression Weidi (Shanghai, China)

pET22b-adh adh (His·Tag), Ampr This study

E. coli
DH5α-pET22b-adh

For plasmid cloning This study

E. coli BL21 star
(DE3)-pET22b

Empty plasmid pET22b This study

E. coli BL21 star
(DE3)-pET22b-adh

ADH protein This study

Primers Sequences (5′–3′)

adh-pET22b-Nde
I-U

GGGAATTCCATATG*GCCCAGGCCCTGGTGCTGGAAAAG

adh-pET22b-Xho
I-D

CCGCTCGAGCAGAACAATCTGCAGTTTAACATC

*Underlines refer to enzyme restriction sites.
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FIGURE 2 | The amino acid sequence and optimized gene sequence of ADH.

RESULTS AND DISCUSSION

Cloning, Expression, Purification, and
Application of Recombinant
Gluconobacter frateurii NBRC 3264
Alcohol Dehydrogenase
The adh gene was optimized and synthesized and cloned into
pET22b to obtain the recombinant plasmid pET22b-adh, which

was transformed into E. coli BL21 star (DE3). The amino acid
sequence (345aa) and the optimized gene sequence of ADH
are shown in Figure 2. The recombinant ADH expression was
induced by IPTG. The SDS–PAGE analysis showed a strong extra
protein band with a molecular mass of∼36.5 kDa compared with
that of the control E. coli BL21 star (DE3)-pET22b and confirmed
the soluble property of ADH (Figure 3A). The purification of
recombinant ADH was carried out by using the HisTrapTM

HP (5 mL) column. The result of the ADH purification was
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FIGURE 3 | Sodium Dodecyl Sulfate PolyAcrylamide Gel Electrophoresis
(SDS-PAGE) analysis of the expressed ADH (A) and the purified ADH (B).
Lane M, protein marker; lane 1, the total proteins of E. coli BL21 star
(DE3)-pET22b; lane 2, the total proteins of E. coli BL21 star
(DE3)-pET22b-adh; lane 3, the soluble supernatant of E. coli BL21 star
(DE3)-pET22b-adh; lane 4, the inclusion body of E. coli BL21 star
(DE3)-pET22b-adh; lane 5, ADH crude enzyme solution; lane 6, ADH purified
enzyme solution.

analyzed by the SDS–PAGE (Figure 3B), and the purified ADH
was concentrated ten times by ultrafiltration.

The ADHs catalyze interconversions between alcohols and
aldehydes or ketones (Maria-Solano et al., 2017; Zheng et al.,
2017; Bartsch et al., 2020). For example, alcohol dehydrogenase
from Pyrococcus furiosus can catalyze 2, 5-hexanedione to 2,
5-hexanediol (Machielsen et al., 2008). In addition, a sorbitol
dehydrogenase (340aa), a homologous enzyme to the alcohol
dehydrogenase, which had the same amino acid sequence of ADH
from 4 to 343aa, catalyzed the conversion of D-sorbitol to D-
fructose in the presence of NAD+ (El-Kabbani et al., 2004). The
purified and concentrated ADH was inoculated into the reaction
solution containing 20 mM Na2HPO4-NaH2PO4 buffer (pH 7.0),
2 mM NAD+, and 50 mM allitol, and reacted at 50◦C shaken
at 200 rpm. As shown in Figure 4, the ADH was preliminary
confirmed to catalyze allitol into allulose. Next, specific optical
rotations of authentic L-allulose, authentic D-allulose, and
the purified product were measured. The specific rotation of
authentic L-allulose was negative, while the specific rotation
of authentic D-allulose and the purified product was positive
which agreed with the reports (Gullapalli et al., 2007; Poonperm
et al., 2007). Further, the purified product was analyzed by
mass spectrometry with a measured mass of 180.1, which was
identical to the molar mass of D-allulose. In conclusion, ADH
from G. frateurii NBRC 3264 can convert allitol into D-allulose,
which is the first reported enzyme with this catalytic ability.

Effect of pH on D-Allulose
Biotransformation by Recombinant
Alcohol Dehydrogenase
Figure 5A shows that the optimum pH is 7.0, and the
relative enzyme activities are above 80% between pH 7.0 and
pH 10.0, which indicates that the ADH has a broad pH

range. The optimum pH for D-allulose biotransformation from
allitol by Bacillus pallidus Y25 resting cells was also pH 7.0
(Poonperm et al., 2007). However, the optimum pH for D-allulose
biotransformation from allitol by Enterobacter aerogenes IK7 was
pH 11.0 which was much higher than that of the recombinant
ADH (Gullapalli et al., 2007). But, the optimum pH of the enzyme
could be different from that of the resting cells in catalyzing the
same reaction.

Effect of Temperature on D-Allulose
Biotransformation and Enzyme Stability
of the Recombinant Alcohol
Dehydrogenase
Figure 5B shows that the optimum temperature is 50◦C,
and the relative enzyme activities are 63.8, 79.3, 83, and
52% at 40, 45, 55, and 60◦C, respectively, compared with
that at the optimum temperature. The optimum temperature
of Enterobacter aerogenes IK7 resting cells for D-allulose
biotransformation from allitol was 37◦C (Gullapalli et al.,
2007), which was lower than that of the recombinant ADH.
Nevertheless, the optimum temperature of Bacillus pallidus Y25
resting cells for D-allulose biotransformation from allitol was
55◦C (Poonperm et al., 2007), which was higher than that of the
recombinant ADH.

As seen in Figure 5C, the enzyme has similar thermal stability
at 20, 30, and 40◦C, and retains 74.7, 74.4, and 73.2% of its
initial activity, respectively, after incubation for 3 h at the above
temperatures while the enzyme retained 71.5, 42.4, and 25.6% of
its initial activity after incubation at 50◦C (Figure 5C) for 1, 2,
and 3 h, respectively. The results indicated that the ADH had
lower thermal stability at a temperature higher than 40◦C. Protein
engineering is a way to increase the thermal stability of ADH
(Magnusson et al., 2019; Zhu et al., 2019b).

Effect of Metal Ions on D-Allulose
Biotransformation by the Recombinant
Alcohol Dehydrogenase
As shown in Figure 6, the addition of Co2+, Zn2+, or
Ni2+ increases the enzyme activity by 225, 54.1, and 19.1 %,
respectively. It was speculated that Co2+ or Ni2+ was an activator
that can bind to the enzyme and change the enzyme configuration
to increase the enzyme activity. It was reported that Zn2+ plays
an important role in the structure and function of alcohol
dehydrogenase and sorbitol dehydrogenase (El-Kabbani et al.,
2004). The enzyme activity was slightly decreased by 2.6 and
3.3% when the enzyme was incubated with Ca2+ and Mg2+,
respectively, while the enzyme activity was decreased to 83.1,
69.4, 52.4, 50.3, and 30.3% when the enzyme was incubated
with Ba2+, Fe3+, Mn2+, Fe2+, and Cu2+, respectively. About
the activity of NAD-dependent sorbitol dehydrogenase from
cold-adapted Pseudomonas mandelii, the metal ions of Zn2+,
Mn2+, and Ca2+ had slight activation effects while Ni2+ had an
inhibition effect (DangThu et al., 2021). Ni2+, Mn2+, Mg2+, and
Ca2+ can increase the ADH activity which was from Bartonella
apis, while Zn2+, Li+, and Mo2+ decrease the ADH activity
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FIGURE 4 | Authentic allitol (A), authentic D-allulose (B), and a sample of reaction solution for the biotransformation of allitol into D-allulose catalyzed by purified
ADH (C).
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FIGURE 5 | Effects of pH (A) and temperature (B) on the ADH activities, and
the thermal stability of the ADH (C). The conditions for obtaining the highest
enzyme activity were set to 100%.

(Zhu et al., 2019a). It indicated that the metal-ion-dependence
of ADHs derived from different microorganisms was different.

Effects of Co2+ on D-Allulose
Biotransformation by the Recombinant
Alcohol Dehydrogenase and Kinetic
Modeling
The time courses of D-allulose and allitol concentrations in the
presence or absence of Co2+ at different allitol concentrations are

FIGURE 6 | Effects of metal ions on the ADH activity. The conditions for
obtaining the highest enzyme activity were set to 100%.

shown by the dots in Figure 7. The D-allulose conversion yields
of 97, 56, and 38%, from the initial allitol concentrations of 50,
150, and 250 mM, respectively, were obtained at 4 h of reaction
with 1 mM Co2+ added, which was about 1. 6-, 1. 7-, and 1.7-fold
higher, respectively, than that without the Co2+ addition.

Then, kinetic modeling was made for D-allulose
biotransformation catalyzed by ADH with or without the
Co2+ addition. Without the Co2+ addition, the kinetic equation
is shown by Equation (1) and the mass balances are shown by
Equations (2) and (3):

V =
Vmax S(

ks + S
)

(1+ (P/ki)α)
(1)

dS
dt
= −V (2)

dP
dt
= V (3)

Where, Vmax, the maximum reaction rate without Co2+,
mmol/L/h; ks, the substrate affinity constant without Co2+, mM;
ki, the product inhibition constant, mM; α, constant, (-); S, allitol
concentration, mM; P, D-allulose concentration, mM. With Co2+

addition, the kinetic and mass balance equations are as follows:

V
′

=
Vmax S(

k′s + S
)

(1+ (P/ki)α)
(4)

dS
dt
= −V

′

(5)

dP
dt
= V

′

(6)

Where, k
′

s is the substrate affinity constant with Co2+,
mM. The differential equations were solved by using the
Runge–Kutta method. The model parameters were obtained by
optimization using a genetic algorithm (GA) in minimizing
the errors between the model predictions and the measured
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FIGURE 7 | The time courses of allitol and D-allulose concentrations during the biotransformation in the presence or absence of Co2+ under various initial allitol
concentrations. (A) 50 mM allitol, no Co2+; (B) 50 mM allitol, Co2+; (C) 150 mM allitol, no Co2+; (D) 150 mM allitol, Co2+; (E) 250 mM allitol, no Co2+; and (F)
250 mM allitol, Co2+.

data, and the optimization diagram is shown in Figure 8.
GA is the optimization algorithm that imitates the biological
evolutionary processes, which is efficient in solving sophisticated
and nonlinear problems. In optimization of the parameter
values using GA, one chromosome codes for five genes,
and one gene codes for one parameter value as shown in
Figure 8. After repeated rounds of biological operations of
selection, hybridization (crossover), and mutation until reaching

the default termination criteria, the most-fitted chromosome
coding for the parameters was obtained to get the optimized
parameter values (Figure 8). MatLab 2020b (MathWorks,
Inc., United States) running on Windows-compatible personal
computer was used in the simulation and model parameter
optimization. The optimized model parameter values are shown
in Table 2. By using Equations (1)–(6) and the parameter
values listed in Table 2 as well as the initial values of allitol
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FIGURE 8 | Diagram of the genetic algorithm in parameter value optimization.

TABLE 2 | Model parameter values.

Parameter Value

Vmax 3.602 mmol/L/h

ks 321.809 mM

ki 10.740 mM

α 1.326 (−)

k
′

s 21.782 mM

concentrations of 50, 150, and 250 mM, respectively, and the
initial value of the D-allulose concentration of 0 mM, computer
simulation of the biotransformation processes was made and
the results are shown by the lines in Figure 7. It showed
that the model predictions fitted the experimental data well. It
also indicated that the substrate affinity coefficient was much
decreased after Co2+ addition. Bulut et al. (2020) studied the
effect of metal ions on the activity of 10 NAD-dependent formate
dehydrogenases and found that there was a clear trend that
many metal ions decreased the Km values of some FDHs using
formate as the substrate, and they estimated that the metal ions
could change the protein structure, and the interaction between
the substrate or NAD(H) cofactor and the enzyme active site.
Therefore, we speculated that the decrease of substrate affinity
coefficient after Co2+ addition could be the result of the changes
of the ADH enzyme structure or the interaction between the
substrate of allitol and the active sites of the ADH enzyme. The
modeling and simulation results showed that there was product
inhibition so that the substrate was hardly completely consumed
except in the case at the lowest substrate concentration of 50 mM
and at a high enzyme activity with Co2+ addition, in which
case, the allitol was nearly completely consumed (Figure 7). The
modeling and simulation work provided numerical results for
the reaction process, which are useful in process analyses and
optimizations.

In the conventional method of kinetic modeling, the
parameter values of the kinetic equation, like the Michaelis–
Menten equation, are first obtained by using double-reciprocal
linear plotting. And then, the differential equations are solved
for the prediction of the reaction progress. In many cases,
the predictions are quite different from the experimental
measurements, which indicate that the parameter values obtained
this way were not accurate. Therefore, a different method by

optimization utilized GA was used in this work, which ensures
the accurate prediction of the reaction process. The method using
GA was ever successfully applied by us (Lin et al., 2004) and other
researchers (Dutta et al., 2005; Yarsky, 2021) in the parameter
optimization of the biological models.

CONCLUSION

In this study, the gene of NAD(P)-dependent ADH from
G. frateurii NBRC 3264 was cloned and expressed in E. coli BL21
star. The expressed enzyme was purified and was identified for
the first time to transform D-allulose from allitol. The effects of
pH, temperature, and metal ions on the enzyme activity were
determined, and Co2+ was found to have a high activation effect
on the ADH. A high conversion yield of D-allulose of 97% was
obtained at 50 mM allitol with Co2+ addition. The kinetics
were investigated by modeling and simulation, and product
inhibition was found. The enzyme showed enormous potential
for application in the high-yield bioconversion of D-allulose
and was expected to be applied to the industrial production of
D-allulose.
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