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Abstract

Background: It is hypothesized that common, complex diseases may be due to complex interactions between
genetic and environmental factors, which are difficult to detect in high-dimensional data using traditional statistical
approaches. Multifactor Dimensionality Reduction (MDR) is the most commonly used data-mining method to
detect epistatic interactions. In all data-mining methods, it is important to consider internal validation procedures
to obtain prediction estimates to prevent model over-fitting and reduce potential false positive findings. Currently,
MDR utilizes cross-validation for internal validation. In this study, we incorporate the use of a three-way split (3WS)
of the data in combination with a post-hoc pruning procedure as an alternative to cross-validation for internal
model validation to reduce computation time without impairing performance. We compare the power to detect
true disease causing loci using MDR with both 5- and 10-fold cross-validation to MDR with 3WS for a range of
single-locus and epistatic disease models. Additionally, we analyze a dataset in HIV immunogenetics to
demonstrate the results of the two strategies on real data.

Results: MDR with 3WS is computationally approximately five times faster than 5-fold cross-validation. The power
to find the exact true disease loci without detecting false positive loci is higher with 5-fold cross-validation than
with 3WS before pruning. However, the power to find the true disease causing loci in addition to false positive loci
is equivalent to the 3WS. With the incorporation of a pruning procedure after the 3WS, the power of the 3WS
approach to detect only the exact disease loci is equivalent to that of MDR with cross-validation. In the real data
application, the cross-validation and 3WS analyses indicate the same two-locus model.

Conclusions: Our results reveal that the performance of the two internal validation methods is equivalent with the
use of pruning procedures. The specific pruning procedure should be chosen understanding the trade-off between
identifying all relevant genetic effects but including false positives and missing important genetic factors. This
implies 3WS may be a powerful and computationally efficient approach to screen for epistatic effects, and could
be used to identify candidate interactions in large-scale genetic studies.

Background
The identification of genetic factors underlying com-
mon, complex diseases such as heart disease or Type II
diabetes is a central goal of human genetics. Unlike rare
diseases, which often follow simple Mendelian patterns
with few genetic variants, these multifaceted diseases are
thought to exhibit much more complex genetic etiology,
such as interactions between a number of genetic as
well as environmental factors [1,2]. Therefore, to fully
characterize the genetic architecture of these common
complex diseases, we need to consider epistasis, or

gene-gene interaction. However, epistasis has proven to
be a difficult genetic mechanism to identify with tradi-
tional statistical methods, especially as genotyping tech-
nology improves and the dimensionality of the data
increases [3,4]. Due to the large-scale nature of genetic
data (in terms of the number of markers evaluated), we
need methods to simultaneously build disease models,
perform variable selection, and control for possible false
positive findings, which all become inherently more
difficult when high-order genetic interactions are con-
sidered [2,5,6].
In order to tackle this problem, a variety of novel

data-mining methods have been developed. Multifactor
Dimensionality Reduction (MDR) [7] is one such
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method that evaluates potential interactions by perform-
ing an exhaustive search of all variables and variable
combinations through attribute construction to collapse
multi-locus genotype combinations into high-risk and
low-risk categories. Much work has been done on MDR
and many extensions have been developed [8-15]. It is
arguably one of the most commonly used data-mining
methods in genetic epidemiology [7,16], and has been
highly successful in a wide range of simulations
[6,17-20] and real data applications, including investiga-
tions of multiple sclerosis [21,22], schizophrenia [23],
and endophenotypes in breast cancer [24].
However, there are still a number of limitations of the

method, one of which is computation time due to its
combinatorial, exhaustive search nature. An important
issue in general data-mining is model over-fitting, where
models are trained too closely on limited available data
and do not generalize well to new unseen data [25].
Since the overall goal of association mapping is to detect
genetic associations that generalize to whole popula-
tions, traditionally the “gold standard” in evaluating a
true association is through replication [26]. But because
study replication is an ideal standard and not always a
reality, we need to reduce false positive results within a
single study. In order to lessen the potential for false
positives, an identified model needs to not only fit the
sample data well, but also needs to be a good predictor
of disease status in the population. Thus estimates of
prediction error from the sample data are paramount,
and are achieved through methods of internal validation.
MDR currently relies on cross-validation for internal
validation. Cross-validation has been proven successful
in detection of interactions in a variety of studies, but it
is computationally expensive, particularly for an exhaus-
tive search technique like MDR [7,22]. It is possible that
by considering alternatives to cross-validation, we could
improve the speed and performance of the method.
A commonly used internal model validation method in

data-mining is a three-way split of the sample data, as an
alternative to cross-validation [25]. We will refer to this
as simply three-way split (3WS), but it should not be
confused with the three-way split for decision trees [25].
For this type of internal model validation, the original
data is split into a training set for model building, a test-
ing set for refining, and a validation set to assess predic-
tive capability, resulting in lower total number of
repetitions of the algorithm and much lower computa-
tion time as compared to cross-validation. Another
advantage of the method is the two-stage model-building
procedure prior to validation; only models from the
training set which replicated in the testing set are consid-
ered for validation, which provides evidence of replica-
tion without collecting a new sample. Based on these
potential advantages, we have incorporated the 3WS

internal validation scheme into the MDR method; as well
as post-hoc pruning procedures to potentially further
reduce false positives. While the 3WS can dramatically
reduce computation time, it is unknown how it will affect
the power of MDR to detect true disease causing loci,
particularly for candidate gene studies in case/control
data. In order to investigate this, we designed a Monte
Carlo simulation study to compare the power of the tra-
ditional MDR method with cross-validation to MDR
using 3WS with and without post-hoc pruning. The goal
of this study is to determine whether what is gained in
computation time for the 3WS is lost in terms of power
to identify genetic variants of common, complex disease.
We evaluate the relative performance of MDR using the
3WS (both with and without pruning) to both 5-fold and
10-fold cross-validation. We compare the power of the
method to detect disease causing models, the bias and
variance of prediction error estimates, and computation
time using both internal validation techniques. Addition-
ally, we evaluate a range of parameter settings related to
the 3WS, including different proportions of the data for
each split and the number of models passed through the
splits, to optimize the approach. We also investigate a
range of options for the post-hoc pruning procedure and
demonstrate the relative advantages and disadvantages of
each. Finally, we illustrate the effectiveness of 3WS with
a real data example involving CD4 immune recovery in
response to therapy for Human Immunodeficiency
Virus-1 (HIV-1) patients, identifying a two-locus interac-
tion that predicts immune response.

Methods
Statistical Methods
Multifactor Dimensionality Reduction
Multifactor Dimensionality Reduction is a data-mining
method utilizing combinatorial data reduction techni-
ques to accommodate gene-gene and gene-environment
interactions [7]. MDR is nonparametric in both the sta-
tistical and genetic sense, as no assumptions are made
concerning statistical distributions or genetic models [8].
To illustrate the method, suppose we have a total sam-
ple size n with n1 cases and n0 controls. Additionally,
suppose we have K total loci and we are considering k
loci for interaction. With k loci considered for interac-
tion and 3 genotypes per locus, the data can be classi-
fied into 3k possible genotypic combinations. MDR
reduces these combinations by calculating the ratio of
cases to controls within each of the 3k multi-factorial
classes, and then labeling the class (i.e. genotypic combi-
nation) as either “high-risk” or “low-risk” based on this
ratio exceeding a given threshold, such as n1/n0 (1.0 in
the case of balanced data). Therefore, MDR reduces the
k-dimensional space to one-dimension with two levels
(“high-risk” and “low-risk”), and this high-risk/low-risk
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parameterization of genotype combinations comprises
the MDR model for the particular loci involved.
Let model i represent an arbitrary combination of

k loci. Each possible model i would classify an individual
as a case if that individual’s genotype combination at the
k loci were characterized as high-risk. Intuitively, in
order to select a final model we would like to minimize
misclassification or equivalently maximize a measure of
classification accuracy. Let n11,i be the number of true
cases who were correctly classified as cases and let n00,i
be the number of true controls correctly classified as
controls by model i. Now we can define balanced accu-
racy for model i as BAi, the arithmetic mean of sensitiv-
ity and specificity, where
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For balanced studies with an equal number of cases
and controls, balanced accuracy is equivalent to classifi-
cation accuracy, the proportion of correctly classified
individuals [20]. MDR will select the combination i of k
loci which will maximize the balanced accuracy, BAi, (or
equivalently minimize the balanced error BEi = 1-BAi)
based on the high-risk/low-risk parameterization. This
combination of loci will be the best model for a k-factor
interaction. A final best model over all possible sizes of
interaction is chosen with an internal validation proce-
dure, such as cross-validation or a three-way split. The
statistical significance of the estimate of balanced accu-
racy/error from the final model can be evaluated
through permutation testing. An overview of the general
procedure for models of size k can be seen in Figure 1.
MDR with m-fold Cross Validation
After a best model is determined for every possible
model size k of interest, an overall best model is selected
based on predictive capability, which is traditionally
assessed using m-fold cross-validation. Prior to any data
reduction, the complete data is separated into m equal
intervals. The training set is made up of m-1 intervals
and the testing set is the remaining interval (Figure 2a).
The best MDR model for k loci is determined from the
training set and an estimate of the model’s prediction
accuracy PAi is calculated, where prediction accuracy is
classification accuracy calculated from the testing set
rather than the training set. This procedure is repeated
for all m possible splits of the data (Figure 2b). Cross-
validation consistency is then determined for each of
the “best models”, where cross-validation consistency is
defined as the number of times a particular model is
identified across all m cross-validation subsets [27]. The
final model will then be chosen as that which maximizes
both prediction accuracy (or minimizes prediction error)

and cross-validation consistency over the set of “best
models”; if the model which maximizes prediction accu-
racy differs from the model which maximizes cross-vali-
dation consistency, the more parsimonious model is
chosen [8]. The average prediction accuracy/error of
this final model is the measure of predictive capability.
MDR with cross-validation is outlined in more detail in
[28]. We utilize both 5-fold and 10-fold cross-validation
in this study.
MDR with Three-Way Split
Prior to data reduction, the full data set is randomly split
into three pieces: a training set for model building, a test-
ing set for refining, and a validation set to assess predic-
tive capability (Figure 3a). The three splits of the data can
be thought of as independent replication sets, where the
first set is used to identify plausible models, the second
set is used to determine whether these models replicate,
and the third set is used to validate the results by obtain-
ing prediction estimates. MDR is performed in each of
the three sets, with the largest number of models being
considered in the training set, a reduced number of mod-
els considered in the testing set, and a small number of
models considered in the validation set. For each combi-
nation of loci considered in each of the three stages, the
high-risk/low-risk MDR parameterization and the result-
ing balanced accuracy is determined.
MDR will be implemented first in the training set for

all possible combinations of loci for each model size k
of interest. For each model size k, the models considered
will be ranked in terms of balanced accuracy and the x
models with the highest balanced accuracy for each k
will be preserved for evaluation in the testing set.
These top x models for each size of interaction will

then be considered in the testing set. In the testing set,
MDR will be performed on all x models preserved from
the training set. The models will be ranked in terms of
balanced accuracy and the best model will be retained
for evaluation of predictive capability in the validation
set. This process is repeated for each k.
The single top model for each size k from the testing

set will be considered in the validation set. MDR will be
performed on all of the top models for the data in the
validation set, and the balanced accuracies from the vali-
dation set will be retained. A final model will be chosen
as the model that maximizes the balanced accuracy in
the validation set among all top models for the interac-
tion sizes considered. This maximum balanced accuracy
(or minimum balanced error) will be the measure of
predictive ability of the final model. The main steps of
the three-way split method for an interaction of size k
are outlined in Figure 3b.
In this initial implementation, we utilize three equal

splits of the data and a value x equal to the total
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number of loci, but in realizing that these parameter set-
tings are arbitrary, we perform parameter sweep experi-
ments to find more optimal values. We investigate
different options for the proportion of data in each sub-
set as well as different values for the threshold x in
order to optimize the performance of 3WS with MDR
with respect to power and provide users with guidance
for setting these parameters.
Post-hoc pruning
Because BA will increase for larger orders of interaction,
MDR will tend to select larger models. This problem is
alleviated in cross-validation through the use of CVC
and the parsimony rule, but there is no analogous
mechanism for 3WS. To address this, after implementa-
tion of MDR with 3WS, we also assess a number of pos-
sible post-hoc pruning procedures based on logistic
regression (on the entire dataset) to further reduce
potential false positives and to provide a mechanism to
obtain more parsimonious models. Many other options
for post-hoc pruning are possible, and logistic regression
is simply one possibility that is widely recognized and
available in most software packages. After a final model
has been determined with MDR using 3WS, we evaluate

the impact of pruning back the total number of identi-
fied loci using backward model selection with logistic
regression. To keep with the nonparametric nature of
the MDR method, the logistic regression model utilizes
genotype indicator variables to avoid making any
assumptions about the genetic mode of inheritance, and
all possible interactions between identified loci are con-
sidered for the full model. Backward selection can then
be performed using either a pre-specified p-value
threshold or by minimizing an information criterion,
such as AIC or BIC, to sequentially remove variables
from the model. The post-pruning model is defined as
the loci involved in the remaining variables after back-
ward selection. We evaluate a range of analysis choices
for this pruning procedure, and the relative performance
of each for maximizing power.
Simulation Design
In order to compare the internal validation techniques
of cross-validation and the three-way split within the
MDR method, we performed a Monte Carlo simulation
study. Factors of interest were chosen as number of loci
involved in the true disease model, minor allele fre-
quency (MAF), and effect size characterized in terms of

Figure 1 Overview of the MDR method for k = 2 loci. First all possible combinations of k = 2 loci are enumerated. For a given combination
of loci, the number of cases and controls are tabulated for each genotype combination, and then the ratio of cases to controls is calculated
within each cell. If the ratio exceeds a threshold (1.0 here) then the combination is labeled as high risk, otherwise it is labeled as low risk. This
high-risk/low-risk characterization is the MDR model for that combination of loci, and the accuracy of the model is determined. The model that
maximizes accuracy is chosen as the best model of size k. Repeat the process for a new k.
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Figure 2 Cross Validation Approach. A) 5-fold cross-validation split of the full sample data. B) Explanation of how 5-fold cross-validation is
incorporated into the MDR method. First the sample data is randomly split into 5 intervals with representative numbers of cases and controls in
each interval. MDR is performed on each of the 5 possible splits. Cross-validation consistency (CVC) is calculated for each of the best models and
a final model is chosen which maximizes CVC and minimizes prediction error (PE).

Figure 3 Three Way Split Approach. A) Three-way split of the full sample data. B) - Explanation of how the three-way split is incorporated into
the MDR method. First the sample data is randomly split into 3 intervals with representative numbers of cases and controls in each interval.
MDR is performed on each of the three splits with all possible models considered in the training set, the top x models considered in the testing
set, and the final model considered in the validation set for each k.
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heritability (h2) and odds ratio (OR). We considered true
disease models of size one, two, three, and four loci.
Models of size one are main effects models with domi-
nant, recessive, and additive genetic effects. In contrast,
all models of size two and greater are models with epi-
static interactions; these epistatic models exhibit mar-
ginal to no main effects. Minor allele frequencies
considered for each model were 0.25 and 0.5 to repre-
sent relatively common variants. Heritabilities consid-
ered were 0.01, 0.05 and 0.10 to represent disease
models with relatively low genetic signals. Odds ratios
considered ranged from 1.25 to 5.1, where the lower
odds ratios correspond to h2 = 0.01 and the higher odds
ratios correspond to h2 = 0.10. For disease models with
binary outcomes, heritability and the odds ratio are both
calculated based on the probability of developing disease
given an individual’s genotypic information, therefore,
there is an algebraic relationship between them; lower
values of heritability must be considered for lower odds
ratios. Heritabilities were calculated as previously
described [29].
The effect sizes exhibited here were chosen to have

low genetic signals. For instance, Alzheimer’s disease is
estimated to have heritability between 0.40 and 0.70
[30]. By considering models with low genetic signals, we
are able to better compare the two internal validation
techniques at the lower limits of power. Implicitly, we
assume if a method is able to detect a small effect, it
should have high power to detect large effects. For the
single locus models, all combinations of the three
genetic models (additive, dominant, and recessive
effects), the two minor allele frequencies, and two values
of heritability (0.01, 0.05) with ORs of 1.5 and 2.5
respectively were simulated, resulting in a total of 12
single locus models. For the two-locus epistatic models,
all combinations of the two minor allele frequencies and
three values of heritability (0.01, 0.05, and 0.10) with a
range of ORs for each value of heritability were gener-
ated, resulting in 22 total two-locus models. For the
three-locus epistatic models, all combinations of the two
minor allele frequencies and three values of heritability
(0.01, 0.05, and 0.10) with a range of ORs for each herit-
ability value were generated, resulting in 20 total three-
locus models. For the four-locus epistatic models, all
combinations of the two minor allele frequencies and
three values of heritability (0.05, 0.10, and 0.15) with
two ORs for each heritability value were generated,
resulting in 12 total four-locus models. These parameter
choices result in a total of 66 combinations that
are listed in detail in Additional File 1: Supplemental
Table S1.
Data Generation
For each of the 66 combinations of factors, we gener-
ated 100 Monte Carlo datasets under a balanced case-

control setting, designed to reflect an epidemiological
candidate gene study. A total sample size of 1000 (500
cases and 500 controls) was utilized and 25 independent
loci were generated for each individual assuming Hardy-
Weinberg Equilibrium. To reduce the computational
burden of this large-scale simulation, only 25 loci were
generated, which is much smaller than what we could
expect to see in a typical candidate gene study. It has
been previously shown that additional nuisance loci do
not affect the power of the MDR method and therefore
our results should appropriately scale up to larger stu-
dies [17]; however, to validate this claim, we also com-
pared the results for selected models generated with
100 total loci.
Case-control data were generated using penetrance

functions, where penetrance is defined as the probability
of disease given the genotype at the disease locus. For
epistatic models, the penetrance is the probability of dis-
ease given the combination of genotypes at the disease
loci. In addition to the epistatic models previously
described, we also included two commonly studied epi-
static models for two-locus interactions, XOR [31] and
ZZ [32], which are well-described theoretical examples
of epistasis with no main effects at either locus. The
penetrance functions for these models are depicted in
Table 1. For example, under the XOR model, an indivi-
dual with genotype AABB at the two disease loci incurs
no disease risk, while an individual with genotype AABb
has a 10% risk of disease. For the special cases of the
XOR, ZZ, dominant, additive, and recessive models,
penetrance functions were explicitly determined. For all
other epistatic models, penetrance functions were gener-
ated with an evolutionary computation algorithm, Sim-
Pen [33], to achieve the desired minor allele frequency,
heritability, and odds ratio as well as to minimize the
marginal effects at each individual disease locus, and are
available upon request. These penetrance functions were
then utilized to generate 100 datasets for each model
using the software genomeSIM [34].
HIV Immunogenetics Data
In the present study, HIV immunogenomics data is used
not to discover new genetic associations, but to evaluate
potential differences in the results of MDR with cross-
validation and the 3WS plus pruning strategies.

Table 1 Penetrance function for the XOR and ZZ models

Model XOR ZZ

Genotype AA Aa aa AA Aa aa

BB 0.0 0.1 0.0 0.0 0.0 0.1

Bb 0.1 0.0 0.1 0.0 0.05 0.0

bb 0.0 0.1 0.0 0.1 0.0 0.0

Penetrance is the probability of developing disease given an individual’s
genotype combination at Locus A and Locus B.
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Additionally, we use the real data application to demon-
strate the parameter settings indicated for optimizing
power in the simulation studies. Details of the study and
dataset have previously been described in detail [35].
The phenotype of interest in this study was CD4 cell
increase in n = 873 HIV patients initiating potent anti-
retroviral therapy, measured as the CD4 cells/mm3

increase from pre-treatment baseline to 48 weeks of vir-
ologic control on treatment for each patient. The out-
come was dichotomized at ≥200 CD4 cells/mm3 and
< 200 CD4 cells/mm3, representing “immune response”
and “non-response” categories, respectively. A total of
35 SNPs in genes that encode proteins that play an
important role in interleukin-2/interleukin-15 signaling
were genotyped and MDR (with 5-fold cross-validation)
was used to evaluate potential gene-gene interactions.
Results indicated a two-locus interaction between poly-
morphisms in genes encoding IL-2Rb (16491C > G) and
IL-2Rg (4735T > C) (also known as CD132) that pre-
dicted response with 57% accuracy [35].
Analysis of Simulated Data
All 100 datasets for all 66 considered models were ana-
lyzed with MDR using both 5-fold and 10-fold cross-
validation (CV-5 and CV-10) and MDR with 3WS
before pruning, using three equal splits of the data. For
the analysis using 3WS, x = 25 (the number of total
loci) top models in the training set were preserved for
evaluation in the testing set. For both methods, MDR
considered model sizes of k = 1,...,3 loci for true one-
and two-locus models and model sizes of k = 1,...,4 loci
for true three- and four-locus models.
For each of the 66 models, power to detect the true

simulated disease loci was calculated across all 100 data-
sets as the proportion of times a correct model was
identified. Two definitions of power were considered:
conservative and liberal. Under the conservative defini-
tion, a model was correct if and only if all of the true
disease loci were identified exactly, with no false positive
loci present. Under the liberal definition, a correct
model was only required to contain the true disease
loci, allowing for possible false positives but not false
negatives. We consider false positive rather than false
negative loci because we implicitly assume that failing to
discover important functional loci is a more critical
error than including non-functional loci. To illustrate
the difference between these two definitions, consider a
true simulated disease model involving locus 1 and
locus 2; an MDR result which identified loci 1, 2, and 3
would be correct under the liberal definition but not
under the conservative definition. Conservative power
measures the ability of a method to discard false positive
loci while still retaining true associated loci, while liberal
power measures a method’s utility as a screening tool
which will not miss important genetic factors. Methods

with high conservative power have both high sensitivity
and specificity, while methods with high liberal power
exhibit high sensitivity only. Because only models of up
to k = 4 loci were considered, for true models of size
four, only the conservative power definition was rele-
vant; since MDR could identify no more than four loci,
it would be impossible for it to identify all four simu-
lated loci plus false positives and therefore, liberal and
conservative power are equivalent.
It has been previously shown that the use of 5-fold

and 10-fold cross-validation lead to similar results for
MDR [18], but we compare the performance of CV-5
and CV-10 for all 66 models to validate this assumption
for our study. It has also been previously shown that
increasing the number of nuisance loci does not affect
the power of MDR to detect the true disease causing
loci [17], but we also compare the results of CV-5,
CV-10, and 3WS for both the XOR and ZZ models
using data generated with 100 total loci in addition to
25 loci. We also consider the use of a two-way split
(2WS) of the sample data, with equal size training and
testing sets and no validation set, for comparison to
3WS for the XOR and ZZ models.
Although the focus of this study is on power to detect

a true disease model, the prediction accuracy of each
internal validation method was also evaluated in terms
of prediction error. Bias and variance of the estimates of
prediction error for both CV-5 and 3WS internal valida-
tion methods were calculated for each model as the
Monte Carlo average across the 100 datasets.
All simulation results were statistically evaluated

under a general linear mixed model framework, treating
each combination of factors as a single observation and
the final results for power, bias, and variance as
response variables. Four separate linear mixed effects
models were fit to the response variables of conservative
power, liberal power, bias, and variance, respectively.
Minor allele frequency, heritability, odds ratio, size of
true, simulated interaction, and internal validation
method were treated as fixed explanatory variables. For
a given simulated model (i.e. combination of simulation
factors), both internal validation methods were per-
formed on the same 100 datasets, and therefore the CV
and 3WS estimates can be viewed as repeated measure-
ments on a particular simulated model. Because the
same datasets for a given simulated model are utilized,
the estimates produced from both CV and 3WS will be
correlated. A random effect for each simulated model
was included to account for this dependence. This type
of mixed-effects analysis approach is common for
repeated measures data, and for more information see
[36,37]. The results from this analysis allow us to deter-
mine which factors greatly influence power, and predic-
tion bias and variance, and allow us to statistically
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determine whether or not the two internal validation
methods of MDR lead to differing results.
Initial comparisons were performed using 3WS with

three equal splits of the data (1:1:1) and a threshold
value of x = 25, but we realize that these may not be
the optimal parameter settings in terms of power. For a
subset of the original 66 models involving both two-
and three-locus interactions, we investigate MDR with
3WS using seven different proportions of data in each
of the training, testing, and validation subsets (1:1:1,
1:1:2, 1:2:1, 2:1:1, 2:2:1, 2:1:2, and 1:2:2) and four possi-
ble values of x (15, 25, 50, and 100) using a two-stage
analysis approach. In the first stage, five of the 22 two-
locus models were selected for a range of effect sizes at
minor allele frequency of 0.5. All 100 datasets for each
model were re-analyzed for each of the 28 combinations
of x and data proportion. Conservative and liberal
power were calculated for 3WS under each of these
parameter combinations and we determined a set of
potential optimal values for these parameters by maxi-
mizing liberal power; we utilize liberal power to maxi-
mize the number of true positives identified without
concern for false positives, since we will ultimately
incorporate a post-hoc procedure to prune back the
false positives. In the second stage, we identify a single
optimal value for both x and the data proportions from
the set of potential optimal values identified in the first
stage by incorporating four of the 20 three-locus models
(also selected for a range of effect sizes at minor allele
frequency of 0.5) into the comparison. Conservative and
liberal powers were compared for the nine two-locus
and three-locus models considered and a final optimal
value of x and the data proportions were chosen. We
analyze the results using a mixed effects model with a
random effect for each of the considered simulated
models, and compare potential parameter combinations
using pair-wise contrasts.
After optimization of the parameters for 3WS, pruning

was incorporated using logistic regression with various
selection criteria, including AIC, BIC, and p = 0.1, 0.05,
0.01, 0.001, 1E-4, 1E-5, 1E-6, and 1E-7. The optimal
data proportions and threshold x were used to compare
both liberal and conservative power for each of the
selection criteria, 3WS without pruning, and CV-5. To
determine if pruning could improve conservative power
without adversely affecting liberal power, since our goal
is to reduce the number of false positives identified
without reducing true positives, these results were also
analyzed with a mixed effects model.
All data analysis was performed in R software [38] on

the High Performance Computing cluster resource
(http://hpc.ncsu.edu), or using SASv9.1.3 (http://www.
sas.com). Code to implement both MDR with cross-vali-
dation and MDR with a three-way split (both with and

without pruning) are available from the authors upon
request.

Results
Simulation Results
For all 66 models, results for both conservative and lib-
eral power are similar for MDR with 5-fold and 10-fold
cross-validation, confirming our assumptions (p = 0.10;
see Additional File 2: Supplemental Table S2). Addition-
ally, for both the XOR and ZZ models, results for CV-
10, CV-5, and 3WS are similar when the number of
total loci was increased from 25 to 100, which is consis-
tent with the assumption that the addition of nuisance
loci does not affect the power of MDR (see Additional
File 3: Supplemental Table S3). Because both of these
assumptions have been validated, the effect of the num-
ber of cross-validation intervals and nuisance loci will
no longer be discussed in the current manuscript.
Power results for MDR with 3WS and 2WS for a small
subset of models are also similar, indicating that per-
haps 2WS might be sufficient, although this needs
further investigation (see Additional File 4: Supplemen-
tal Table S4).
For the dominant, recessive, and additive disease mod-

els for a single locus, 5-fold cross-validation outperforms
the 3WS in terms of both conservative and liberal power
(Table 2). However, for the epistatic models of size 2
and 3, the 3WS generally gives similar liberal power,
and slightly higher liberal power for models of higher
effect size (OR and h2) and minor allele frequency of
0.25. Generally, 5-fold cross-validation yielded higher
conservative power estimates, particularly for higher
effect sizes (Figures 4 and 5).
For four-locus epistatic models (where the search of

the model space was restricted to four loci), conservative
power was highest for CV-5 (Figure 6). Both conserva-
tive and liberal power results across effect size can be
seen in Figures 4, 5, 6 for models of size 2, 3, and 4,
where effect size refers to the ordering of effect in terms
of heritability and odds ratio. Many of the differences
seen between the two internal validation methods are
greater than 0.05, the maximum standard error of all
power estimates, indicating that these differences are
not simply due to chance variation; numerical results
for each observation as well as standard errors can be
found in Additional File 2: Supplemental Table S2.
Results for the two-locus interaction XOR and ZZ mod-
els are similar to those described above, with higher
conservative power for cross-validation but similar lib-
eral power for both methods (Table 3).
Additionally, 3WS tends to choose final models that

are as large as allowed by the user before pruning (in
this study, either three or four loci), while 5-fold cross-
validation trends towards more parsimonious models.
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For instance, for true models of size three, average
model size (number of loci included) was 3.99 (SE =
0.10) for 3WS and 1.71 (SE = 0.96) for CV-5. This trend
in average model size is similar for all true sizes, indicat-
ing that 3WS before pruning favors false positives, pos-
sibly representing a tendency towards over-fitting, while
CV-5 favors false negatives (Table 4).

As expected, for both methods and both power defini-
tions, power generally increases with effect size (herit-
ability and odds ratio) and with minor allele frequency.
The results of the mixed effects model analysis yielded
that after accounting for model size, heritability, odds
ratio, and minor allele frequency, conservative power is
significantly higher for CV-5 than for 3WS (p < 0.0001),

Figure 4 Conservative (A) and liberal power (B) for epistatic models with two loci. Conservative and liberal power is plotted for increasing
effect size for both MDR with a three-way split (3WS) and cross-validation (CV). Effect size is ordered first in terms of heritability and within a single
level of heritability then in terms of odds ratio. Maximum standard errors for power estimates are 0.050 for both conservative and liberal power.

Table 2 Conservative and liberal power results for all single locus models

Conservative Power Liberal Power

MAF h2 OR Model Name CV-5 SE 3WS SE CV-5 SE 3WS SE

0.5 0.01 1.5 Dominant 0.52 0.05 0.00 0.00 0.67 0.05 0.59 0.05

0.5 0.01 1.5 Recessive 0.67 0.05 0.00 0.00 0.75 0.04 0.68 0.05

0.5 0.01 1.5 Additive 0.45 0.05 0.00 0.00 0.68 0.05 0.58 0.05

0.5 0.05 2.5 Dominant 0.94 0.02 0.00 0.00 1.00 0.00 1.00 0.00

0.5 0.05 2.5 Recessive 0.93 0.03 0.00 0.00 1.00 0.00 1.00 0.00

0.5 0.05 2.5 Additive 0.91 0.03 0.00 0.00 1.00 0.00 0.93 0.03

0.25 0.01 1.5 Dominant 0.77 0.04 0.01 0.01 0.83 0.04 0.54 0.05

0.25 0.01 1.5 Recessive 0.11 0.03 0.00 0.00 0.24 0.04 0.14 0.03

0.25 0.01 1.5 Additive 0.68 0.05 0.00 0.00 0.80 0.04 0.36 0.05

0.25 0.05 2.5 Dominant 0.88 0.03 0.00 0.00 1.00 0.00 1.00 0.00

0.25 0.05 2.5 Recessive 0.85 0.04 0.00 0.00 0.96 0.02 0.78 0.04

0.25 0.05 2.5 Additive 0.91 0.03 0.00 0.00 1.00 0.00 1.00 0.00

Power results are shown for both the three-way split and 5-fold cross-validation by mode of inheritance, odds ratio (OR), heritability (h2), and minor allele
frequency (MAF). Maximum standard errors of all power estimates are also included.

Winham et al. BMC Bioinformatics 2010, 11:394
http://www.biomedcentral.com/1471-2105/11/394

Page 9 of 16



but in terms of liberal power, there is no difference
between the two methods (p = 0.2784). These results
can be seen in full in Table 5. Upon further investiga-
tion, possible interactions between the simulation design
factors were considered, exposing a potential interaction
between model size and type of internal validation
method (p < 0.0001 for both conservative and liberal
power); while increased model size leads to decreased
power for both internal validation methods, the decrease
in conservative power is less substantial for the 3WS
compared to CV-5 and the decrease in liberal power is
more substantial. Additionally, bias of the prediction
estimate did not differ between the methods (p =
0.5406) but variance was greater for the three-way split
(p < 0.0001; data not shown). This is not surprising,
since cross-validation involves an average across all
cross-validation intervals to achieve the prediction error
of the final model, therefore resulting in a less variable
estimator.
In terms of the possible values of the threshold para-

meter x for 3WS, the mixed effects model analysis indi-
cated the differing choices of x did not lead to
significantly different conservative or liberal power in
the first stage analysis (p = 0.5547 and p = 0.4333,
respectively; see Additional File 5: Supplemental Table

S5 and Additional File 6: Supplemental Table S6). Both
power measures were maximized for 3WS using x = 25,
so x was fixed at 25 for the second stage analysis. Both
conservative and liberal powers were significantly differ-
ent for the choices of data sub-setting in the first stage
(p = 0.0260 and p < 0.0001, respectively; Additional File
6: Supplemental Table S6). Liberal power was maxi-
mized for the data proportions 2:2:1, although the sub-
set 2:1:1 was not significantly different (p = 0.0907). The
results for the first stage analysis can be seen explicitly
in Additional File 5: Supplemental Table S5 and Addi-
tional File 6: Supplemental Table S6. In the second
stage, the top three proportions (2:2:1, 2:1:1, and 1:2:1)
were further tested and the combined results can be
seen in Additional File 7: Supplemental Table S7. After
accounting for model size and effect size, there was a
difference in liberal power between the three propor-
tions (p = 0.0022; see Additional File 8: Supplemental
Table S8) with the same 2:2:1 proportion yielding the
highest liberal power. Contrasts of power estimates
against the other two proportions indicated only the
1:2:1 proportion was different (p = 0.0006; see Addi-
tional File 8: Supplemental Table S8).
When the post-hoc pruning procedures were incorpo-

rated into 3WS with the optimal parameter choices

Figure 5 Conservative (A) and liberal power (B) for epistatic models with three loci. Conservative and liberal power is plotted for increasing
effect size for MDR with 3WS and CV. Maximum standard errors for power estimates are 0.050 for both conservative and liberal power.
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(x = 25 and subset = 2:2:1), both conservative and liberal
power differed significantly among the pruning methods
after controlling for the effects of model size and effect
size (p < 0.0001; see Additional File 9: Supplemental
Table S9 and Additional File 10: Supplemental Table
S10). For conservative power, CV-5 yielded the highest
response and contrasts against the power estimates of
the pruning approaches showed several to be statistically
similar (Additional File 10: Supplemental Table S10). In
fact, among the 3WS approaches, conservative power
was maximized for selection utilizing BIC and was
not significantly different from CV-5 (p = 0.6114), with
a significant improvement over the use of 3WS alone
(p < 0.0001). Liberal power was maximized for 3WS
with no pruning, as expected, with several of the

pruning approaches being statistically similar and the
smallest loss for the loose p-value threshold of 0.1
(p = 0.8804). In order to increase conservative power
without drastically reducing liberal power, pruning with
a threshold of p = 0.001 is a nice compromise. Both
conservative and liberal power results are compared for
the optimized 3WS without pruning, 3WS with BIC,
3WS with p = 0.001, and CV-5 in Figure 7. All pruning
results and contrasts can be seen in Supplemental
Tables S9 and S10 (Additional Files 9 and 10).
In terms of computation time, theoretically the three-
way split is approximately five times faster than 5-fold
cross-validation. The bulk of computing time is spent in
exhaustively constructing the MDR classifier and evalu-
ating BA for all possible combinations of loci in the
training set, which is performed only a single time for
3WS and 5 times for CV-5; the additional computing
time due to the small number of combinations of loci
considered in the testing set and validation set of 3WS
followed by pruning and the additional computing time
due to the testing set in CV is negligible. This approxi-
mate 5-fold reduction is theoretical, and the exact
reduction in computing time for 3WS from CV-5 will
depend on a number of parameters such as the overall
sample size, the number of total loci, and the sizes of
interaction considered; additionally, the size of the split
proportions and the value of the threshold x will also
effect computation time for 3WS. Specifically, when we
consider one to four-way interactions for a single data-
set with sample size of 1000 and 25 loci, 3WS before
pruning (with split proportions 1:1:1 and x = 25) had
CPU time of 81.2 seconds (82.1 elapsed time) and CV-5
had CPU time of 434.6 seconds (438.0 elapsed time).
For this setting, 3WS is 5.4 times faster than CV-5.
When considering 100 datasets, 3WS had CPU time of
8067.0 seconds (average of 80.7 per dataset) and CV-5
had CPU time of 43219.4 seconds (average of 431.2 per
dataset). This represents a substantial gain in computa-
tional efficiency.

Figure 6 Conservative power for epistatic models with four loci.
Conservative power is plotted for increasing effect size for MDR with
3WS and CV. Maximum standard errors for power estimates are 0.050.

Table 3 Conservative and liberal power for special
epistatic models of size two loci

Conservative Power Liberal Power

MAF h2 Model
Name

CV SE 3WS SE CV SE 3WS SE

0.5 0.05 XOR 0.92 0.03 0.39 0.05 1.00 0.00 1.00 0.00

0.5 0.05 ZZ 0.92 0.03 0.70 0.05 0.99 0.01 1.00 0.00

Power results are shown for both the three-way split and 5-fold cross-
validation for the XOR and ZZ epistatic models by heritability and minor allele
frequency. Maximum standard errors of all power estimates are also included.

Table 4 Average size of selected model by true model
size

3WS CV-5

True Size Average Size SE Average Size SE

1 2.94 0.008 1.30 0.019

2 2.90 0.006 1.91 0.012

3 3.99 0.002 2.38 0.020

4 3.99 0.003 3.17 0.033

Comparison of average model size for both the three-way split and 5-fold
cross-validation. For true sizes of one and two, MDR was performed for one to
three loci. For true sizes of three and four, MDR was performed for one to
four loci.
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Real Data Analysis
The results of the real data analysis are shown in Tables
6 and 7. The final model from the MDR analysis, based
on maximum cross-validation consistency and maximal
testing/prediction accuracy is highlighted in bold. The
immunogenetics data was re-evaluated with MDR using
3WS, with x = 35, data split 2:2:1, and BIC for post-hoc
pruning, and the results are shown in Table 7. The table
lists the top models for each level of interaction from
the testing test, and the validation accuracy estimated in
the validation set for each level of interaction. The over-
all best model, determined by the pruning was the same

two-locus model identified using 5-fold cross-validation,
involving SNPs in the IL-2Rb (16491C > G) and IL-2Rg
(CD132) (4735T > C).

Discussion
In the current study, we evaluate the computation time
and performance of an alternative internal model valida-
tion strategy in the MDR method. We demonstrate that
for higher order interactions, the three-way split internal
model validation method has similar liberal power to 5-
fold cross-validation and clear computational advan-
tages. Additionally, with the application of a post-hoc
pruning procedure for final model selection after 3WS,
the conservative power of this approach is similar to
that of cross-validation. These conclusions from the
simulation experiments were validated in a real data
application in HIV-1 immunogenetics.
The results of the simulation study confirm some gen-

eral trends that are common to all association analyses; as
both effect size and minor allele frequency increase, power
increases, but as size of interaction increases, power
decreases. For disease models with a single causative
locus, 5-fold cross-validation outperforms the three-way
split; but MDR is primarily designed to detect interactions,
and many well-established analytical options (both tradi-
tional and data-mining methods) are available for single

Table 5 Significance of simulation factors on conservative
and liberal power

Effect P-value (conservative power) P-value (liberal power)

Size 0.0043 < 0.0001

MAF 0.1533 0.0850

h2 0.0005 0.0003

OR 0.7620 0.0507

Method <0.0001 0.2784

P-values for model size, minor allele frequency, heritability, odds ratio, and
type of internal validation method in terms of conservative and liberal power
from the repeated measures analysis of the simulation results comparing CV-5
and 3WS without pruning. P-values less than 0.05 are considered statistically
significant.

Figure 7 Conservative (A) and liberal power (B) for epistatic models for two and three loci with MAF = 0.5. Both conservative and liberal
power is plotted for optimized 3WS without pruning, 3WS with BIC, 3WS with p = 0.001, and CV-5 for increasing effect size. Effect size is ordered
first in terms of heritability and within a single level of heritability then in terms of odds ratio.
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locus models with high power to detect main effects [39].
It should also be noted that in this situation, MDR could
not undershoot a single locus model, since that would
imply not selecting any loci.
The results of this study have some additional implica-

tions for the detection of epistatic effects in genetic
association studies. Most notably, 3WS dramatically
reduces the computation time of MDR by approximately
one fifth from that of CV-5, which has implications for
the computationally expensive nature of both the
method itself and the permutation testing procedure
that is currently utilized to evaluate model significance
[7]. The reduction in computing time using the three-
way split will make analysis and permutation testing
more feasible, facilitating larger genome scans by per-
mitting more loci to be evaluated with MDR. Addition-
ally, by using a three-way split for internal validation,
we are able to retain high liberal power as compared to
CV-5 and CV-10, or the power to detect interacting
causative loci while allowing for false positives. Retaining
high liberal power has important implications for studies
seeking to identify candidate genes for further investiga-
tion by geneticists, as overlooking important genetic fac-
tors could be a more critical error than mistakenly
including nuisance loci in this situation. By integrating a
pruning procedure after the primary 3WS analysis, we
are able to reduce the potential problem of false positive
findings. In fact, when logistic regression with backward
selection is performed using BIC, conservative power
equal to that seen with CV-5 is attained. Therefore, by
incorporating 3WS with MDR followed by pruning, we
are able to achieve performance equivalent to that of
cross-validation in a fraction of the time.
Additionally, the cut-off of x of the top models sent

from the training set to the testing set as well as the
relative magnitude of the three data subsets utilized in
our simulation study were initially arbitrary, so we
investigated the effect of varying these parameters to
provide some guidelines for how to select these in prac-
tice. We saw that x = 25 and the 2:2:1 split maximized
performance. Because our datasets consisted of a total
of 25 loci, we suggest choosing x = total number of loci.
A smaller value of x could be chosen to reduce compu-
tation time. We can generalize from the two proportions
yielding the highest liberal power (2:2:1 and 2:1:1) that

the three-way split method will yield optimal perfor-
mance when the validation subset of data is smallest
and the magnitude of the training set relative to the
testing set is greater than or equal to 1. Computation
time is reduced by minimizing the size of the training
set, so the 2:2:1 split should minimize computation time
while optimizing performance.
In regards to specifics of the pruning procedure, we

evaluated several approaches to pruning, including dif-
ferent p-value thresholds and the use of two popular
information criteria metrics in conjunction with back-
ward selection for logistic regression. While ultimately
these parameter choices are arbitrary, and should be
selected based on the specific goals of a particular study
(especially in weighting the consequences of false posi-
tive versus false negative findings), our simulation study
results provide guidance in selecting these parameters.
While no pruning will maximize liberal power, our
results suggest the use of BIC to maximize conservative
power. For application of MDR as a screening tool to
prioritize variants to be evaluated in follow-up studies,
to minimize false negatives at the expense of an
increased false-positive rate, 3WS with no pruning is
computationally optimal. For a study involving a strict
test of hypotheses, to minimize false positives at the
expense of a higher false-negative rate, MDR with 3WS
pruned by backward selection using BIC is equivalent to
MDR with CV-5, but computationally superior. And
MDR with 3WS pruned back by backward selection
using a p-value threshold between 0.01 and 0.001 will
optimize the balance between the two error rates. Addi-
tionally, it should be noted that we considered pruning
only under the framework of logistic regression, and
that other pruning strategies are possible, and poten-
tially preferable. For instance, the final model identified
through logistic regression with backward selection may
not be consistent with the high-risk/low-risk MDR
model. Some of the advantages of logistic regression are
that it is widely available, easy to implement, and well
recognized in many fields, but these advantages do not
imply or guarantee that logistic regression provides the
optimal pruning strategy.
The guidelines for the use of 3WS are demonstrated

in the real data analysis of HIV-1 data using a 2:2:1
split, x = 35 (the total number of SNPs in the dataset),

Table 6 Results of the 5-fold cross-validation MDR analysis of the HIV pharmacogenomics data

Number of Loci Evaluated Polymorphism in Model Cross Validation Consistency Prediction Accuracy

1 IL2RB_6844 5 55.52

2 CD132_9823, IL2RB_6844 5 57.22

3 IL2_9511, CD132_9823, IL2RB_6844 2 54.27

4 IL2_4663, CD132_9823, IL2RB_6844, IL15_87709 1 52.57

The final model is highlighted in bold.
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and BIC for pruning. The results of the 3WS analysis
indicate a two-locus epistatic model that predicts
immune recovery. This model is the same as the best
model identified with 5-fold cross-validation.
While this study is informative in illustrating the

powerful potential the three-way split may have in
genetic screening for epistasis, it represents a first step
in characterizing the utility of the internal validation
technique. Because the 3WS before pruning tends to
select a model as large as possible, there is a loss in con-
servative power due to the increased number of false
positives. The three-way split could be incorporated into
a procedure similar to cross-validation, where the three-
way split is performed multiple times and a final model
is selected across the multiple three-way splits to
achieve more precise prediction estimates. Additionally,
the pruning procedure we provide based on logistic
regression is just one possibility and other procedures to
refine the final model by pruning back false positives
could also be considered. Future studies should evaluate
additional implementations of internal model validation
measures into the MDR algorithm, for instance nested
cross-validation, and continue to optimize parameters
involved in this process. In particular, preliminary
results suggest that the use of a 2WS may have similar
performance to 3WS, and could marginally reduce com-
putation time further. While these results are specific
for the MDR method, many data-mining approaches
rely on cross-validation for internal model validation.
Based on the results of this study, the 3WS approach
should be evaluated for its potential application to other
data-mining methods.

Conclusions
In the current study we show through simulation that
for epistatic models of disease risk, the three-way split
internal model validation method has similar power to
5-fold cross-validation to detect the true causative loci
while allowing for false positive loci for the MDR
approach, and similar power to detect the true causative
loci without false positives when pruning is incorpo-
rated. Additionally, we show that the computation time
required for this procedure is five times less than 5-fold
cross-validation. This sizable computational efficiency
gain with the maintenance of performance demonstrates

the utility of MDR with a three-way split as a screening
tool for candidate gene studies.
The incorporation of the three-way split into the

MDR method rather than cross-validation in genetic
association studies may be fruitful, however, we must
consider the trade-off between conservative and liberal
power. Researchers will need to decide which type of
error is more detrimental based on their research goals,
and adjust the pruning procedure to match these goals,
balancing false positive and false negative findings.
Nevertheless, replication in a separate independent data-
set will remain the ideal in assessing the validity of the
reported model.

Additional material

Additional file 1: Supplemental Table S1. This file contains all models
considered by combinations of size, minor allele frequency, heritability,
and odds ratio.

Additional file 2: Supplemental Table S2. This file contains all
conservative and liberal power results for the comparisons of CV-5, CV-
10, and 3WS.

Additional file 3: Supplemental Table S3. This file contains
conservative and liberal power results for comparisons of 3WS, CV-5, and
CV-10 for data simulated with 25 or 100 total loci.

Additional file 4: Supplemental Table S4. This file contains
conservative and liberal power results for comparisons between 3WS and
2WS.

Additional file 5: Supplemental Table S5. This file contains 3WS
conservative and liberal power results for various x and data proportion
parameters in two-locus models.

Additional file 6: Supplemental Table S6. This file contains additional
results for the comparison of 3WS x and data proportion parameters in
two-locus models, including (a) p-values, (b) power estimates by x, (c)
power estimates by data proportion, and (d) pair wise contrasts.

Additional file 7: Supplemental Table S7. This file contains
conservative and liberal power for comparison of 3WS data proportion
parameters in two- and three-locus models.

Additional file 8: Supplemental Table S8. This file contains additional
results for the comparison of 3WS data proportion parameters in two-
and three-locus models, including (a) p-values, (b) power estimates by
data proportion, and (c) pair wise contrasts.

Additional file 9: Supplemental Table S9. This file contains
conservative and liberal power results for comparison of pruning
methods for 3WS in two- and three-locus models.

Additional file 10: Supplemental Table S10. This file contains
additional results for the comparison of pruning methods for 3WS in
two- and three-locus models, including (a) p-values, (b) power estimates
by selection criteria, and (c) pair wise contrasts.

Table 7 Results of the 3WS MDR analysis of the HIV pharmacogenomics data

Number of Loci Evaluated Polymorphism in the Best Model in the Testing Set Validation Accuracy

1 IL2RB_6844 56.45

2 CD132_9823, IL2RB_6844 57.01

3 CD132_9823, IL2RB_6844, IL15RA_2990 58.65

4 CD132_9823, IL2RB_6844, IL15RA_2990, IL15_87710 62.60

* Best Model after pruning: CD132_9823, IL2RB_6844
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