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Abstract

Transcriptional bursts render substantial biological noise in cellular transcriptomes. Here,

we investigated the theoretical extent of allelic expression resulting from transcriptional

bursting and how it compared to the amount biallelic, monoallelic and allele-biased expres-

sion observed in single-cell RNA-sequencing (scRNA-seq) data. We found that transcrip-

tional bursting can explain the allelic expression patterns observed in single cells, including

the frequent observations of autosomal monoallelic gene expression. Importantly, we identi-

fied that the burst frequency largely determined the fraction of cells with monoallelic expres-

sion, whereas the burst size had little effect on monoallelic observations. The high

consistency between the bursting model predictions and scRNA-seq observations made it

possible to assess the heterogeneity of a group of cells as their deviation in allelic observa-

tions from the expected. Finally, both burst frequency and size contributed to allelic imbal-

ance observations and reinforced that studies of allelic imbalance can be confounded from

the inherent noise in transcriptional bursting. Altogether, we demonstrate that allele-level

transcriptional bursting renders widespread, although predictable, amounts of monoallelic

and biallelic expression in single cells and cell populations.

Author summary

Genes are transcribed into RNA and further translated into proteins. The maternal and

paternal copy of each gene are typically transcribed independently, and transcription itself

occur in discrete stochastic bursts (transcriptional bursts). Pioneering single-cell analysis

of RNA across cells revealed abundant fluctuations in the amounts of maternal and pater-

nal RNA in cells, with frequent observations of RNA from only the maternal or paternal

gene copy (monoallelic expression). In this study, we investigated to which extent the

observed monoallelic expression across single cells can be explained by transcriptional

bursting. We demonstrate that the process of transcriptional bursting is sufficient to
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explain the amount of monoallelic expression, and we further demonstrate that the fre-

quency of bursts mainly determines the frequency of monoallelic observations. Further-

more, we show that transcriptional bursts may lead to false positive observations of

monoallelic expression across cell populations. Therefore, stochastic transcription renders

large fluctuations in allelic origin of RNA in cells over time, including frequent monoalle-

lic observations when profiling single cells.

Introduction

Stochastic transcription generates biological variation across individual cells of the same cell

type [1,2]. Independent transcriptional bursting of each allele [1,3–6] generates periodic fluc-

tuations in the abundance of transcripts, and unequal expression of two functionally different

alleles can give rise to cellular and phenotypic variability [7].

As single-cell RNA-sequencing (scRNA-seq) protocols arrived at higher sensitivity and

accuracy [8–10], it has become feasible to study transcriptome-wide patterns of allelic expres-

sion across single cells. Indeed, allele-sensitive scRNA-seq analysis across individual cells have

revealed that RNA from substantial numbers of autosomal genes were detected from only a

single allele in individual cells at any given time point [11]. The observed autosomal random

monoallelic expression (aRME) could be generated from transcriptional bursting [3,4,6,12], in

particular since subsequent work demonstrated that the allelic patterns were primarily due to a

stochastic process in somatic cells, rather than a mitotically heritable characteristic [13]. Fur-

thermore, allele-specific RNA FISH of autosomal genes in situ has shown that transcriptional

bursting can explain the observed aRME of individual genes [14]. However, the explicit rela-

tionship between aRME and transcriptional burst kinetics has not been systematically

explored.

Analysis of transcriptional burst kinetics is generally based on the two-state model of

transcription [4,15] (Fig 1A), which is the simplest model to describe both bursting and

constitutive expression dynamics, and it has been extensively used to investigate quantita-

tive relationships between burst kinetics and gene-level measurements [4,5,16]. The two-

state model consists of four allele-specific parameters that may accommodate different tran-

scriptional kinetics, mainly characterized by the burst frequency and size, with frequency

normalized by mRNA degradation rates. A severe limitation to investigating the general

implications of transcriptional bursting in diploid cells has been the challenge of obtain reli-

able allelic estimates of transcriptional burst kinetics for sufficiently large numbers of

genes. However, this barrier was recently overcome by advances in the inference of tran-

scriptional burst kinetics from allele-sensitive scRNA-seq [6,16,17], culminating in the

demonstration that enhancers drive burst frequencies and that core promoter elements

affect burst size [6].

In the present study, we used state-of-the-art scRNA-seq measurements to infer transcrip-

tional bursting parameters transcriptome-wide across cells of a mouse cross breed (CAST/

EiJ × C57BL/6J). We show that the observed allelic expression patterns across cells are consis-

tent with those predicted from the inferred transcriptional bursting parameters, explaining the

frequent observations of monoallelic expression in single-cell data [11,13] as independent

bursts of transcription from each allele. We further show, for in vitro and in vivo cells, that the

fraction of monoallelic expression is mainly driven by the frequency of transcriptional bursts

rather than burst sizes, whereas allelic imbalance is a consequence of both burst frequencies

and size.
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Results

We first investigated the theoretical impact of transcriptional burst kinetics on random mono-

allelic gene expression, using the two-state model of transcription (Fig 1A) that consists of the

parameters (kon,koff,ksyn) which describe the distribution of transcripts at steady state (Meth-

ods). The same mean expression level across cells can result from multiple distinct combina-

tions of burst frequencies and sizes, which is readily observable in scRNA-seq data [6](Fig 1B).

We examined how the probability of observing monoallelic gene expression in cells depend

upon the transcriptional bursting parameters. To this end, we modelled transcriptional burst-

ing processes for two alleles with identical kinetics as a function of burst frequency and size

Fig 1. The theoretical effect of transcriptional bursting on dynamic random monoallelic expression. (A) Illustration of the model

used for transcriptional burst kinetics. The time for the gene to transition are given by the exponentially distributed parameters kon
(from off to on) and koff (from on to off). While the gene is active, the gene is transcribed at rate ksyn. The burst frequency is given by

kon and the average number of transcripts produced in a burst (burst size) is given by ksyn /koff. (B) A scatter plot showing burst

frequency and burst size estimates from the C57 allele of autosomal genes in mouse fibroblasts (CAST/EiJ × C57BL/6J, n = 7,606

genes), where each gene is colored based on the mean expression level of that gene (mean number of observed UMIs per cell). (C)

Contour plot of the conditional probability of observing monoallelic expression when there is expression of that gene in the parameter

space of burst frequency and size. (D) Contour plot of the probability of observing monoallelic expression in the parameter space of

burst frequency and size, irrespectively if the gene is expressed or not. (E) A scatter plot showing burst frequency and burst size

estimates from both alleles in mouse fibroblasts (C57 square, CAST pentagon, n = 7,606 autosomal genes), where each gene is colored

based on the fraction of cells which expressed the gene monoallelically from that allele (n = 682 cells).

https://doi.org/10.1371/journal.pcbi.1008772.g001
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throughout the transcriptional bursting space. The probability of detecting n RNA transcripts

from one allele at a given time can be expressed as P(n|kon,koff,ksyn). By conditioning the proba-

bility on the total probability of expression P(monoallelic|expressed), we find that genes with

low burst frequency (kon) and size (ksyn/koff) are always monoallelically expressed given that

there is expression at all (Fig 1C). A combination of high burst frequency and size gives exclu-

sively rise to biallelic states, while intermediate combinations of these extremes lie on a spec-

trum in-between. If we did not condition on expression, we observed a ridge of states of

monoallelic expression where biallelic and no expression dominate on either side of the ridge

respectively (Fig 1D).

We next generated allele-resolution scRNA-seq data from 682 individual primary mouse

fibroblasts (F1 offspring of CAST/EiJ and C57BL/6J crosses) using Smart-seq3[10], the

scRNA-seq method that currently that has highest sensitivity and best coverage across genes.

The deeply sequenced cells (average of 3.5M read pairs per cell) resulted in the average detec-

tion of 206,944 molecules per cell (i.e. error corrected UMIs). We inferred transcriptional

burst kinetic parameters from the molecule counts observed per gene and allele (S1 Table), as

described previously [6], which resulted in robust transcriptional burst inference for both

alleles independently for 7,606 autosomal genes. Using these data, we asked to what extent the

measurements of monoallelic and biallelic expression from scRNA-seq experiments concur

with the two-state model predictions. Strikingly, the observed fraction of monoallelic expres-

sion per gene was highest on the ridge that was visible across the parameter space of burst

kinetics (Fig 1E), as predicted by the theory (Fig 1D).

We then continued the comparison between predicted patterns of allelic expression to

those observed in the scRNA-seq data, by estimating the probabilities of observing a cell which

is either silent, biallelic, monoallelic on CAST or monoallelic on C57 for all genes based on

their bursting parameters (S2 Table), assuming that transcription occurs independently on

each allele. The predicted fractions of cells in each state were highly correlated with the

observed fraction of cells in each category (Fig 2A and Table 1) demonstrating that modelling

transcription using the two-state model at each allele independently agrees with experimental

allelic expression analyses by scRNA-seq. We also performed cross-validation so that the

bursting kinetics were inferred from a subset of cells and the remaining cells were used to esti-

mate fraction of allelic observations in cells, which reassured that we were not overfitting the

model (Table 1). We also investigated the potential agreement between theory and observa-

tions if we were to model the data using the simpler Poisson distribution. The Poisson model

predictions resulted in grossly overestimating biallelic expression and underestimating the

fractions of no expression (S1 Fig), demonstrating significantly worse fit than the bursting

model. The theoretical results indicated levels of observed autosomal monoallelic gene expres-

sion can result from modulation of either burst frequency or size. To investigate whether either

of the parameters was the more determining parameter for the amount of monoallelic expres-

sion observations, we examined the profile of burst frequency and size in relation to monoalle-

lic expression to isolate their relative contributions. Comparing the burst frequency to the

observed fraction of monoallelic expression showed a striking relationship (Fig 2B). At lower

burst frequencies, we observed very low amounts of monoallelic expression. The fraction of

monoallelic expression increased as the burst frequency was elevated, up until the point where

biallelic expression became the predominant observation and monoallelic expression declined.

This relationship was also clear in the theoretically predicted case which demonstrated that

our model predictions were consistent with the biological data (S2 Fig). The same analysis on

burst size showed that the distribution of monoallelic expression was almost uniform over

burst size with a tendency of genes with large burst sizes to have more biallelic expression (Fig

2C). Therefore, while burst size has the theoretical capability to influence the amount of
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Fig 2. The relationship between transcriptional burst kinetics and dynamic random monoallelic expression in primary mouse

fibroblasts. (A) Correlations between the predicted and observed fraction of cells with: no expression (left), biallelic expression (middle)

and monoallelic expression from the C57 allele (right), n = 7,606 genes. (B) The observed fraction of cells with silent (right), biallelic

(middle), and monoallelic (C57, right) compared to burst frequency for 7,606 autosomal genes inferred in mouse fibroblasts. (C) The

observed fraction of cells with silent (right), biallelic (middle), and monoallelic (C57, right) compared to burst size for 7,606 autosomal

genes inferred in mouse fibroblasts.

https://doi.org/10.1371/journal.pcbi.1008772.g002

Table 1. Spearman correlation coefficients for predicted and actual fraction of cells in each category over genes.

No Expression Biallelic Monoallelic (CAST) Monoallelic (C57)

Full data 0.99 0.97 0.96 0.96

Train/Test Cross-validation 0.98 0.97 0.88 0.89

Full data uses all the cells to infer transcriptional burst kinetics compared to all cells. The cross-validation approach randomly splits the cells into two equal groups. One

group is used to infer kinetics for prediction and the other group to calculate the observed fraction.

https://doi.org/10.1371/journal.pcbi.1008772.t001
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monoallelic expression in cells, it plays a minor role relative to burst frequency. The predomi-

nant role of burst frequencies in determining monoallelic gene expression can also be seen in

the slope of the ridge of monoallelic expression (Fig 1D and 1E).

To extend the inference and analyses of transcriptional burst kinetics to cell types in vivo,

we sequenced individual cells from dorsal skin of the same mouse cross breed (C57BL/

6JxCAST/EiJ) using Smart-seq2 [18]. We analyzed the 354 single-cell transcriptomes that

passed quality control filtering, and those could be grouped into 10 clusters (Fig 3A) that could

be further assigned to cell types of variable heterogeneity using existing skin single-cell tran-

scriptomics data [19]. The relationship between burst kinetics and random monoallelic gene

Fig 3. Heterogeneity in cell clusters from an in vivo experiment in mouse skin measured by observed-to-expected biallelic expression. (A) T-distributed

stochastic neighbour embedding (tSNE) of the skin cells, colored by SNN-based clustering (n = 354 cells). (B) The median observed-to-expected (O/E) ratio

of biallelic expression, comparing the theoretical predictions from burst kinetics to that observed in all cells without stratifying cells to clusters. Boxplot show

median O/E biallelic expression from random sets of genes (n = 3,727 autosomal genes and 100,000 permutations) whereas the red dot show the O/E ratio

when analyzing ubiquitously expressed genes in all cells. For comparison, the analyses of all genes in primary fibroblasts are shown in green. (C) The median

O/E ratio of biallelic expression within cell clusters shown as colored dots. These were compared to randomly selected cells of the same size (n = 83, 75, 57,

43, 22, 21, 21, 20, 8, 4 cells respectively, 1,000 permutations for each cluster). Asterisk denotes significance at alpha = 0.05. (D) The median O/E ratio after

adding n number of cells from the T-cell cluster to the Interfollicular epidermis (IFE) cluster. Bootstrapped 20 times. (E) The median O/E ratio after adding n
number of cells from the Interfollicular epidermis (IFE) cluster to the Lower hair follicle (LHF) cluster. Bootstrapped 20 times.

https://doi.org/10.1371/journal.pcbi.1008772.g003
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expression for cells in vivo was consistent with the data from primary fibroblasts (S3 Fig), rein-

forcing the generality of our results to cells in vivo. For the application of the steady state distri-

bution of the two-state model we assume ergodicity [20]. In scRNA-seq experiments, large

numbers of individual cells are sampled to statistically characterize what the process would

look like if we followed one cell over time, with the underlying assumption that sampled cells

follow similar bursting kinetics. Due to the heterogeneous cellular composition of certain clus-

ters, we therefore wanted to quantify how well each cell-type cluster represent the same under-

lying bursting process. We therefore assessed the extent to which a cell cluster predicted its

own biallelic expression based on the model of independent allelic transcriptional bursting

(Methods). We anticipated that high heterogeneity within a cell cluster would show an under-

estimation of predicted biallelic expression due to subsets of heterogeneous cells with higher

burst frequency for certain genes. Indeed, the median observed-to-expected ratio of biallelic

expression (O/E ratio) based on all cells (irrespective of clustering) indicated a clear transcrip-

tome-wide underestimation of biallelic expression (median = 2.1, n = 10,543 genes). To exam-

ine the potential of allelic-expression modelling as an unbiased method to assess the degree of

bursting heterogeneity within groups of cells, we first examined ubiquitously expressed genes

as they are expected to have less cell-type-specific transcriptional burst regulation compared to

other genes and thereby have observed biallelic observations closer to the expected value (an

O/E ratio closer to 1). Indeed, these genes had a significantly lower O/E ratio compared to ran-

domly selected subsets of genes and were close to the ratio observed in the fibroblast cells,

which show high bursting homogeneity according to this metric for all genes (P< 10−5, per-

mutation test, Fig 3B). This result was not biased due to total expression level, as evaluated

against a set of random genes with similar expression levels (S4 Fig). Importantly, the stratifi-

cation of cells into clusters greatly improved the O/E ratio compared to randomly selected sets

of cells, with the exception of three clusters (containing mixed unassigned cells, endothelial

and dermal papillae cells, P< 10−3, permutation test, Fig 3C). By artificially adding cells from

one cluster to another cell clusters, we grossly evaluated the sensitivity of this metric. When

adding cells from the T-cell cluster to the cluster of interfollicular epidermis (two dissimilar

clusters), the median O/E ratio increased rapidly with the addition of only a few T-cells (Fig

3D), whereas adding interfollicular epidermis cells to the cluster of lower hair follicle cells (two

similar clusters) resulted in no detectable increase in the median O/E ratio (Fig 3E). Therefore,

in the analyzed cells the observed-to-expected biallelic expression metric could quantify larger

heterogeneity in cell clusters without having the resolution to assess purity among cell types

with more similar transcriptomes.

Investigating gene expression at the discrete level of monoallelic and biallelic expression

was motivated by their frequent occurrence in single-cell data. We naturally extended these

analyses to the whole range of biased expression between the alleles, defined here as the theo-

retical probabilities of one allele occurring in larger or equal amounts to the other allele, P
(C57> CAST), P(CAST > C57) and P(CAST = C57). We estimated these probabilities in the

primary fibroblasts data generated with Smart-seq3. Most genes have very similar kinetics

between the two alleles and therefore a close to equal probability of unequal expression for

each allele, as measured by P(C57> CAST | C57 6¼ CAST) (S5A Fig). The probability of equal

expression is dominated by the outcome of no expression on either allele, which is predictably

related to the burst frequencies of the two alleles of the gene (CAST = C57 = 0, S5B Fig). The

probabilities were in good agreement with the observed fractions of allelic bias (Fig 4A). By

comparing the fold changes in burst size and frequency between alleles to their observed frac-

tion of allelic bias, we found that the relative differences in transcriptional burst kinetics in

burst frequency as well as size tended to affect allelic bias for that gene (Fig 4B). Interestingly,

simultaneous relative changes in both burst frequency and size may cancel each other out. For
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example, a reduction in burst size may be compensated by an increase in burst frequency (Fig

4B; visualized along the diagonal of the scatter plot). By using linear regression with allelic bias

as the dependent variable, we determined that relative changes in both burst frequency and

size together explain the allelic bias to a high degree (R2 = 83.7%) and both relative changes

have significant impact on allelic bias (Table 2).

To determine the extent to which transcriptional bursting may give rise to false positives in

studies of allelic imbalance in cell populations, we simulated the expression from two alleles

with kinetics identical to those inferred from the C57 allele for different number of cells (Fig

5A, n = 10, 20, 50, 100, 1,000 and 10,000 cells). We then estimated the allelic imbalance for all

genes in the bulk population based on a model that expected equal expression from both alleles.

At a low number of pooled sequenced cells, the variance in expression due to transcriptional

bursting severely impacts the allelic imbalance measurements and give rise to a high number of

false positives, but becomes increasingly stable with a higher number of cells (Fig 5B). In rela-

tion to mean expression, we find that it is only for low-expressed genes that false positive allelic

imbalance becomes frequent, and this declines as the number of cells increases (Fig 5C).

Discussion

In this study, we explored to what extent transcriptional bursting can explain the patterns of

random monoallelic gene expression of autosomal genes observed in single-cell analysis [7].

We report a striking agreement between the two-state model and biological observations of

cellular allelic expression patterns, and frequencies of cells with monoallelic and biallelic

Fig 4. Allelic bias is affected by relative changes in both burst frequency and size. (A) Comparison between the probability of

observing allelic imbalance between the alleles and the actual fraction of cells with the imbalance (n = 7,606 autosomal genes).

(B) The relative allelic differences in burst kinetics for each gene, colored by their allelic bias (n = 7,606 genes).

https://doi.org/10.1371/journal.pcbi.1008772.g004

Table 2. Ordinary least squares regression results for the effect of burst kinetics on allelic imbalance.

coef std err t P>|t| [0.025 0.975]

Intercept -0.0017 0.001 -1.278 0.201 -0.004 0.001

log10
bf C57
bf CAST

� �
1.2864 0.007 175.109 0.000 1.272 1.301

log10
bsC57
bsCAST

� �
0.9272 0.008 120.609 0.000 0.912 0.942

log10
bf C57
bf CAST

� �
: log10

bsC57
bsCAST

� �
-0.740 0.021 -3.593 0.000 -0.114 -0.034

Dependent variable: log
10

C57>CAST
CAST>C57

, R-squared: 0.805. bf: burst frequency, bs: burst size,coef: linear regression coefficient, std err: standard error, t: t-statistic.

https://doi.org/10.1371/journal.pcbi.1008772.t002
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expression closely follows the frequencies predicted from theory. Thus, transcriptional burst-

ing result in extensive monoallelic expression of autosomal genes that explains earlier observa-

tions of frequent monoallelic expression of autosomal genes in scRNA-seq data[11,13].

Moreover, we show that burst frequency largely determines how often a gene is monoallelically

expressed in somatic diploid cells.

We also explored to what extent transcriptional bursting can lead to spurious observations

of allelic imbalance in cell population studies. In full agreement with single-molecule RNA

FISH analyses of allelic gene expression in cells in vivo [14], we found that lowly expressed

genes can be falsely identified as having allelic imbalance simply due to their stochastic tran-

scription. It is interesting in this context to note that most of the previously identified genes

with fixed autosomal random monoallelic expression were detected at very low levels around

two RNA transcripts per cell on average when expressed [13,21,22]. It is clear that future stud-

ies of monoallelic gene expression and allelic imbalance in diploid cells need to consider the

consequences of transcriptional bursting in order not to attribute stochastic fluctuations as

regulated allele-specific expression.

Transcriptional bursting results in considerable cellular heterogeneity from the unequal

expression of two functionally different alleles (e.g. see [23]). It is however not explored to

what extent such variation has phenotypic consequences. The relative abundances of protein

products resulting from translation of the two different alleles may be affected by burst size

which could be relevant in the case of phenotypes that result due to the stoichiometric

Fig 5. Low-expressed genes frequently show false positive allelic imbalance due to transcriptional bursting. (A) Outline of the

simulation strategy. (B) The cumulative distribution of allelic bias of the simulated genes with the same kinetics (n = 4,905 autosomal

genes), where allele with the highest allelic bias is the chosen value for each gene. (C) The relationship between the mean expression of a

gene and allelic bias based on the number of simulated cells (n = 4,905 genes). Figure based on data from [6].

https://doi.org/10.1371/journal.pcbi.1008772.g005
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constraints present in signaling pathways and gene networks. Interestingly, transcriptional

bursting was recently shown to impact T-cell linage commitment [24], which raises the

intriguing question whether cell fate decisions in general could be affected by stochastic tran-

scription. Since burst frequency is preferentially encoded in enhancer regions [6] it is likely

that mutations in cis-regulatory sequences or trans-activating factors may affect the penetrance

of phenotypes. This may be particularly relevant in the case of lineage commitment, which

exhibits switch-like irreversible activation.

Inference of transcriptional burst kinetic parameters from the single-cell observations of a

large number of cells, rely on the cells being homogeneous, i.e. that the cells have very similar

bursting kinetics. We show that groups of cells that are more heterogeneous are characterized

by deviations in the expected patterns of allelic expression from theory. There is currently great

excitement in using single-cell RNA-sequencing to identify and characterize cell types, sub-

types and cellular states throughout human tissues and in model organisms [25], and computa-

tional strategies to assess cell cluster accuracy would be very useful. Here, we explored to what

extent deviations in biallelic expression from the predicted, where heterogeneous groups of cells

have biallelic expression at a much higher frequency than what would be predicted (and there-

fore a higher biallelic O/E ratio). Although this strategy had power to assess purity of clusters

from cells of different types, we found that the allelic modeling had low power to assess hetero-

geneity between closely related cell types. A future strategy could be to assign cells to a latent

space of bursting parameters governing the random process by which molecules arise, so that

the assumption of homogeneity to study transcriptional bursts can be effectively bypassed.

Together, we have explored how transcriptional bursting through the two-state model pre-

dicts the observed amounts of allelic expression patterns in mammalian cells, finding remark-

able agreement between predictions and observations. Therefore, the generalized theoretical

framework of bursting combined with transcriptome-wide kinetic parameters has important

implications to the interpretation of allele-specific gene expression in cells, and ultimately, to

our understanding of phenotypic variation in diploid organisms.

Methods

Ethics statement

The research carried out in this study was approved by the Swedish Board of Agriculture (Jord-

bruksverket: N95/15).

Generation of Smart-seq3 libraries

Smart-seq3 libraries were generated according to previously published protocol [10]. Briefly,

primary mouse fibroblasts were obtained from tail explants of CAST/EiJ × C57/Bl6J mice

(>10 weeks old) and passaged for at least ten days. Cells were sorted in 384-well plates with

dead-cell exclusion (propidium iodide; Thermo Fisher) on a FACSMelody (BDBiosciences)

using a 100 μM nozzle. Plates contained 3 μl of Smart-seq3 lysis buffer (6.67% PEG (Sigma),

0.10% Triton X-100 (Sigma), 0.5 U L-1 of recombinant RNase inhibitor, (Takara), 0.67 M

Smart-seq3 oligo-dT primer (5-biotin-ACGAGCATCAGCAGCATACGA-T30VN-3; IDT),

0.67 mM dNTPs (Thermo Scientific)) and were spun down and stored at 80˚C immediately

after sorting. The standard Smart-seq3 protocol was applied, using 20 cycles of PCR for pre-

amplification of cDNA, a 0.6:1 bead:sample ratio for purification of pre-amplified cDNA

(using homemade 22% PEG beads) and tagmentation of 100 pg purified cDNA using 0.1 μL of

ATM. Libraries were indexed using 12 cycles of PCR for library amplification of the tagmented

samples using custom-designed Nextera index primers containing 10-bp indexes and 5’ phos-

phorylation. Samples were finally pooled, bead purified at a ratio of 0.7:1 (using homemade
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22% PEG beads) and prepared for sequencing on a DNBSEQ-G400RS (MGI) generating 100

bp paired-end reads.

Analysis of Smart-seq3 libraries

Fastq files were processed using zUMIs v2.9.3e [26] with STAR v2.7.3a [27] to map reads to

the mouse genome (mm10) and generate error-corrected UMI count tables for Ensembl gene

annotations (GRCm38.91). UMI counts were classified into the two alleles by analyzing cover-

age over validated heterozygous SNP positions (see https://github.com/sandberg-lab/Smart-

seq3/tree/master/allele_level_expression for details).

The two-state (beta-poisson) model

The model used for stochastic gene expression is a particular case of a birth-and-death process

in a Markovian environment. In short, the model has the states (i, n) with i being 0 or 1 indi-

cating if the gene is active or not, and n is the number of RNA transcripts in the cell.

In the off state, the gene can turn on with the rate kon. In the on state, the gene can turn off

with rate koff and produce one RNA transcript with the rate ksyn. Regardless of the state, one

RNA transcript can be degraded with rate λ. At the steady state of this process, the stationary

distribution can be shown to be described by the Poisson-beta distribution, in which we let

pjkon;koff � Betaðkon; koff Þ

njksyn; p � Poissonðp ksynÞ

The resulting marginal distribution P(n| kon, koff, ksyn) is the probability distribution for the

amount of RNA transcripts observed at steady state given the rates kon, koff, ksyn.

The Poisson model

We compared the two-state model to the Poisson model. For the Poisson model, we used the

mean number of molecules as the estimator for the λ parameter where n | λ ~ Poisson(λ).

Inference of transcriptional burst kinetics

We calculated the number of molecules per allele by first calculating the fraction of reads support-

ing the CAST allele and multiplying that by the total number of UMIs present in that cell and

gene. The remaining fraction of UMIs were assigned as C57. However, we did not link the UMI

to its genotype. UMI counts but no allele supporting reads were considered as missing data. We

inferred kinetic bursting parameters for 9,337 and 9,606 genes for the C57 and CAST allele

respectively from 682 F1 cross-breed (CASTxC57) adult tail fibroblasts. The intersection of

kinetic parameters between both alleles resulted in 7,606 usable genes for our analysis. The

method to infer these parameters given allele-sensitive scRNA-seq data is described in [6] and the

code for doing so is available at (https://github.com/sandberg-lab/txburst), and we required genes

to have confidence interval spans (CI-high / CI-low) below 10 for both burst size and frequency.

Calculating the probabilities and observed fractions for silent, biallelic,

monoallelic expression and allelic bias

From the transcriptional burst kinetic parameters, we can calculate the probability of an allele

expressing a given gene or not at the time of sampling. We define a function of the probability

of observing k UMI counts for an allele of gene g given the parameters, P(K = k| kon, koff, ksyn).
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With the resulting genes we can calculate the probabilities of an allele of a gene not being

expressed, i.e. PgC57 = PgC57 (K = 0| kon, koff, ksyn) and PgCAST = PgCAST (K = 0| kon, koff, ksyn).

This allows us to calculate the probabilities of:

Probability of no expression on any allele: Psilent = PgC57 PgCAST

Probability of monoallelic expression on the C57 allele: PmonoC57 = (1—PgC57) PgCAST

Probability of monoallelic expression on the CAST allele: PmonoCAST = (1—PgCAST) PgC57

Probability of biallelic expression: Pbiallelic = (1—PgC57) (1—PgCAST)

These probabilities assume that the alleles burst independently, which previous analysis

have indicated (see [11]). Moreover, the computed probabilities closely followed the observed

fractions, giving further support to this assumption. The contour plots in Fig 1C and 1D are

based on 100x100 parameter combinations where koff is varied to change burst size while ksyn

is held constant at 100.

For each gene, we calculated the fraction of no expression, monoallelic on C57, monoallelic

on CAST and biallelic expression by averaging the following conditional statements over the

cells where nallele refers to the number of actual UMI counts for that allele in that cell:

No expression: nC57 = 0 and nCAST = 0

Monoallelic expression on the C57 allele: nC57> 0 and nCAST = 0

Monoallelic expression on the CAST allele: nC57 = 0 and nCAST> 0

Biallelic expression: nC57> 0 and nCAST> 0

For the comparisons between predicted and observed values we used spearman

correlations.

We then calculated the theoretical probabilities of the allele of a gene occurring in larger

amounts than the other allele by considering the probability of

Pða1 > a2Þ ¼
Xn

k¼0

Pða1 > a2ja1 ¼ kÞPða1 ¼ kÞ

where a1 and a2 is the number of RNA transcripts from allele 1 and 2 respectively and n is the

highest number of RNA transcripts for a1 with a non-zero probability of being observed. For

each gene we then find three probabilities P(C57> CAST), P(CAST > C57) and P
(CAST = C57). The code is available on Github (https://github.com/sandberg-lab/aRME_and_

bursting).

Cross-validation of predictions

To assess whether the above predictions hold in general, we generated a test and train dataset

by randomly splitting the cells into two equal groups. We inferred the kinetics and predicted

using the train set, and we compared that to the observed allelic expression detected in the test

set.

Preparation and sequencing of skin cells

Skin tissue was dissected from 9 week old female F1 offspring of matings between CAST/EiJ

and C57BL/6J mice (approval by the Swedish Board of Agriculture, Jordbruksverket: N95/15).

Cells were dissociated from skin as described in Joost et al. [19], or using GentleMACS (Milte-

nyi Biotec); with both methods giving similar cell yields and viability. Briefly, for the Gentle-

MACS method, dorsal skin was cut and minced into small pieces (approximately 1x1mm) and

incubated in HBSS (Sigma) + 0.04% BSA (Sigma) + 0.2% Collagenase Ia (Sigma) at 37˚C for

60 minutes with occasional agitation. Thereafter this slurry was processed on a GentleMACS

(Miltenyi Biotec) with 2x Program D, cell-strained (70um) and washed. Residual tissue was

further treated with HBSS + 0.05% Trypsin-EDTA (Sigma) at 37˚C for 15 minutes and
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processed likewise. For the Joost et al method [19], GentleMACS dissociation was substituted

with manual disaggregation by smashing tissue fragments against a cell strainer with the piston

from a 5 mL syringe. Cells were sorted into 384-well plate by FACS, and subject to Smart-seq2

single-cell RNA-sequencing library creation [18]. The single-cell libraries were sequenced on

an Illumina HiSeq4000, the sequence fragments aligned to the mouse genome (mm10) and

summarized into expression levels (RPKMs) and allele-resolved expression, as previously

described [6].

Analysis of skin cells

Single-cell data was processed and analysed using Seurat (version 2.3.4), including log-normal-

ization, regression of the total number of detected reads, identification of genes with most bio-

logical variation (n = 1,000), SNN-based clustering (distances in PCA-space, using the 20 top

principal components), followed by manual curation of certain clusters (endothelial cells, der-

mal papillae, dendritic cells, mixed cluster). Cells with less than 100k mapped reads were

excluded from the analysis (30 cells). The allelic expression levels were used for transcriptional

burst kinetics inference, as described above. The discrepancy in scale between burst size values

inferred from Smart-seq2 data and Smart-seq3 data is due to UMIs, for a more detailed discus-

sion see [6].

Assessing heterogeneity of cell-type clusters by observed-to-expected

biallelic expression

To calculate the observed-to-expected ratio of biallelic expression for each gene, we calculated

the expected fraction of cells with biallelic expression based on the model of independent

bursts of transcription,

Ebiallelic gð Þ ¼
1

C2

XC

k

Iðnk;C57Þ
XC

k

Iðnk;CASTÞ

where C is the number of cells, k the kth cell and I(n) is the indicator function

IðnÞ ¼
1; n > 0

0; n ¼ 0

(

We then calculate the observed number of cells with biallelic expression for that gene, Obial-

lelic(g), to combine them to obtain Obiallelic(g)/ Ebiallelic(g). The list of ubiquitously expressed

genes was obtained from [28].

Ordinary least squares regression of the effect of burst kinetics on allelic

bias

We used the OLS module of the statsmodels package in Python with the formula:

log
10

C57 > CAST
CAST > C57

¼ b1log10

bfC57

bfCAST
þ b2log10

bsC57

bsCAST
þ b3log10

bfC57

bfCAST
� log

10

bsC57

bsCAST

where bf is burst frequency and bs is burst size.

Calculating allelic bias based on simulated observations

For Fig 5, we used the burst kinetics parameters inferred from the C57 allele and simulated

observations for each gene twice for a varying number of observations (n = 10, 20, 50, 100,
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1000 and 10000 observations). We then calculated

maxð
Xn

k
Bða1k

; a2k
Þ;
Xn

k
Bða2k

; a1k
ÞÞ=n

for each gene where a1k and a2k are the observed values for the kth simulated pair of observa-

tions and

Bða1; a2Þ ¼
1; a1 > a2

0; a1 � a2

(

Supporting information

S1 Fig. Observed fraction of cells with allelic expression patterns compared against those

predicted. Predicted fraction of cells with (A) biallelic, (B) no expression, monoallelic expres-

sion from the (C) C57 and (D) CAST allele based on either the Poisson model (left) or the

two-state model of transcription (right).

(PDF)

S2 Fig. Theoretical dependence of bursting parameters on allelic expression patterns. The

probabilities of having biallelic, monoallelic (from CAST or C57) or no detectable expression

directly predicted from the two-state model of transcription. Inferred kinetics were used for

each gene. Plotting the allelic expression patterns as a function of burst frequency (A) and

burst size (B). Note, the results are almost identical to the dependencies observed in single-cell

RNA-seq data (shown in Fig 2B and 2C).

(PDF)

S3 Fig. Investigating the bursting parameter dependence on allelic expression patterns

observed on cells in vivo. Analyses on the three largest cell type clusters observed in the sin-

gle-cell RNA-seq analysis of the mouse skin. (top) T-cells (n = 4,299 genes and 83 cells), (mid-

dle) Lower Hair Follicle cells (n = 5,807 genes and 75 cells), (bottom) Interfollicular Epidermal

cells (n = 5,145 genes and 57 cells). Left panels show the relationship between inferred burst

kinetics and allelic expression patterns. Right panels show the correlations between predicted

and actual allelic expression patters, with spearman correlation coefficient in the bottom right

corners. Note these patterns observed in cells in vivo are highly consistent with the analyses

performed on cells in primary cultures.

(PDF)

S4 Fig. Comparison of ubiquitously expressed and expression matched genes. Histogram

and densities showing the ratio (Observed/Expected fraction biallelic expression) for ubiqui-

tously expressed genes and random genes with matched total expression across cells.

(PDF)

S5 Fig. Comparison of allelic biased expression to bursting parameters. (A) Histogram

showing the distribution of P(C57 > CAST | C57 6¼ CAST, n = 7,606 genes). (B) Relationship

between burst frequency and equal expression (which is dominated by no expression on either

allele).

(PDF)

S1 Table. Inferred transcriptional burst parameters for the C57 and CAST allele. k_on,

k_off and k_syn are maximum likelihood estimates. bf_lower, bf_upper,bs_lower and bs_up-

per are confidence intervals based on bootstrap estimates. bf_n and bs_n are the successful

number of bootstrap attempts (out of 100).

(XLSX)
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S2 Table. Predicted probabilities, observed fractions and mean expression for all genes

used in the analysis. Analysis code is also available at https://github.com/sandberg-lab/

aRME_and_bursting.

(XLSX)
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