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Necroptosis and neutrophil-associated
disorders
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Abstract
Necroptosis is a form of regulated necrosis and is dependent on a signaling pathway involving receptor interacting
protein kinase-3 (RIPK3) and mixed lineage kinase domain-like protein (MLKL). Necroptosis is considered to have
important functions in inflammation and, based on studies with animal disease models, is believed likely to be
involved in the pathogenesis of many human inflammatory diseases. In neutrophils, necroptosis has recently been
reported to be triggered by tumor necrosis factor (TNF) stimulation, ligation of adhesion receptors, exposure to
monosodium urate (MSU) crystals, or phagocytosis of Staphylococcus aureus (S. aureus). Because neutrophils are
involved in many kinds of tissue inflammation and disease, neutrophil necroptosis probably plays a vital role in such
processes. Dissecting the signaling pathway of neutrophil necroptotic death may help to identify novel drug targets
for inflammatory or autoimmune diseases. In this review, we discuss different mechanisms which regulate neutrophil
necroptosis and are thus potentially important in neutrophil-associated disorders.

Facts

● Necroptosis is one type of regulated necrosis and is
dependent on RIPK3 and MLKL activities, showing
morphologic features similar to necrosis.

● Death receptors, Toll-like receptors (TLRs), the IFN-
α receptor (IFNAR), adhesion receptors, and DNA-
dependent activator of IFN (DAI) regulatory factors
have been shown to trigger RIPK3-MLKL-dependent
necroptosis.

● Neutrophil necroptosis can be induced by TNF
stimulation, ligation of adhesion receptors, exposure
to monosodium urate (MSU) crystals, or
phagocytosis of S. aureus.

● Reactive oxygen species (ROS) are important
contributors to neutrophil necroptosis induced by
ligation of adhesion receptors or MSU stimulation.

● Human neutrophils migrating to inflammatory sites
can activate the RIPK3-MLKL pathway as seen in

neutrophilic diseases such as cutaneous vasculitis,
ulcerative colitis, and psoriasis.

Open questions

● Is necroptosis involved in the pathogenesis of human
inflammatory diseases?

● How does neutrophil necroptosis impact on
inflammatory and autoimmune diseases?

● How can one distinguish between neutrophil
extracellular trap (NET) formation and necroptosis-
related, passive release of chromatin?

● How is RIPK3 activated by adhesion receptors in
neutrophil necroptosis?

● How is p38 MAPK activated by the RIPK3-MLKL
complex?

● Are ROS initiators or executors in neutrophil
necroptosis?

● How can XIAP restrict the switch to TNF-induced
necroptosis in mouse neutrophils? What is the role of
XIAP in human neutrophils?

● What is the executor of RIPK3-dependent regulated
necrosis induced in human neutrophils by the
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phagocytosis of S. aureus?
● Why do mouse neutrophils lacking MLKL clear S.

aureus at the site of infection only poorly?

Introduction
Apoptosis was long thought to be the only form of

programmed cell death during homeostasis, development
and disease. The key regulators of apoptotic cell death are
caspases and the characteristic morphological hallmarks,
cell shrinkage, nuclear condensation, cell membrane
blebbing, and formation of apoptotic bodies. In contrast,
necrosis was long considered to be an unregulated and
uncontrollable accidental cell death, for which the char-
acteristic morphologic changes are cell swelling, plasma
membrane rupture, and release of intracellular con-
tents1,2. However, recent evidence has shown that
necrosis can also occur in a regulated manner called
necroptosis, now recognized as one type of regulated
necrosis, dependent on RIPK33–5 and MLKL6–9 activities
and exhibiting morphologic features similar to necrosis.
This necrosis-like regulated cell death can be triggered
when caspases are inhibited, as was already demonstrated
in 199610. Since 2000, the important role of RIPK1 and of
its kinase inhibitor, necrostatin-1, in this caspase-
independent necrosis have been recognized11–13. The
subsequent discovery of RIPK3 as the key protein in
necroptosis3–5 and the identification of the pseudokinase
MLKL as an effector protein downstream of RIPK36 were
crucial for understanding the necroptosis pathway. (Fig. 1)
illustrates the history of progress in defining the

necroptosis pathway. Death receptors1,2, Toll-like recep-
tors (TLRs)14–16, IFN-α receptor (IFNAR)16–18, adhesion
receptors19,20 and DNA-dependent activator of IFN (DAI)
regulatory factors21,22, have all been shown to be involved
in RIPK3-MLKL-dependent necroptosis (Fig. 2).
In contrast to apoptosis, which can limit inflammation,

necroptotic cells can release massive amounts of damage-
associated molecular patterns (DAMPs) from disin-
tegrating membranes, depending on the cellular envir-
onment; thus, necroptosis is generally considered to be a
contributor to inflammation1,23. On the other hand,
necroptosis may also reduce the production of pro-
inflammatory cytokines by shortening the cell lifespan,
decreasing the overall inflammatory response induced by
tumor necrosis factor (TNF) or lipopolysaccharide (LPS),
thus suppressing the host immune response and benefit-
ing intracellular pathogens24. Moreover, necroptosis is
also considered to be involved in normal development2,25.
Neutrophils are important effector cells in innate

immunity, being the most abundant population of leu-
kocytes in the circulation26. They are produced in the
bone marrow, where they mature before being released
into the bloodstream. Neutrophils are essential for the
innate immune system and rapidly migrate to inflamed
tissues in response to pathogens or sterile harmful sti-
muli27,28. At the inflammatory sites, neutrophils can fight
infection with an array of strategies, including phagocy-
tosis, generation of reactive oxygen species (ROS),
degranulation, and release of neutrophil extracellular
traps (NETs)29. These functions are responsible for the

Fig. 1 Timeline for the discovery of key proteins in the molecular pathways of necroptosis. Necroptosis (Grey box); neutrophil necroptosis
(Blue box); eosinophil necroptosis (Green box). TNF tumor necrosis factor, FASL FAS ligand, TRAIL TNF-related apoptosis-inducing ligand, RIPK1
receptor interacting protein kinase-1, RIPK3 receptor interacting protein kinase-3, DAI DNA-dependent activator of IFN regulatory factors, RHIM RIP
homotypic interaction motif, MLKL mixed lineage kinase domain-like protein, TLR Toll-like receptor, TRIF Toll/IL-1 receptor domain-containing adaptor
protein-inducing interferon-β, S. aureus Staphylococcus aureus, IFNs interferons, IFN-I type I interferons IFNAR1 IFN-α receptor type I, MSUmonosodium
urate, PMA phorbol 12-myristate 13-acetate, ROS reactive oxygen species, NET neutrophil extracellular trap, KO knockout, WT wild-type
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vital contribution of neutrophils in fighting pathogens and
in preventing spread of infection; however, when they
overreact, they also damage host tissues27.
Apoptosis is the most common physiological and

pathological cell death in neutrophils28. In the resolution
of inflammation, neutrophils accumulated locally rapidly
undergo apoptosis and are removed by other phagocytic
cells. Therefore, neutrophil apoptosis is considered to
limit tissue damage by preventing the release of histotoxic
contents from dying cells28. In contrast, neutrophil
necrosis is considered highly detrimental to the resolution
of inflammation owing to the release of toxic contents and
potential escape of pathogens into the surroundings30.
Recently, several groups have reported that necroptosis
can also occur in neutrophils. For instance, TNF receptor
1 (TNFR1) stimulation31, ligation of adhesion recep-
tors19,20, activation by MSU crystals32,33, or phagocytosis
of S. aureus34,35 can all trigger neutrophil necroptosis
(Fig. 3). Neutrophils are involved in many kinds of tissue
inflammation and disease;36 unlike apoptosis, necroptotic
death of neutrophils may induce tissue injury and
inflammation similar to necrosis and is thus likely to be
important for the pathogenesis of infectious or auto-
immune diseases. In this article, we discuss the different
mechanisms regulating neutrophil necroptosis and their
potential for causing neutrophil-associated disorders.

The signaling pathway of TNF-induced
necroptosis
TNFR1 is one of the death receptors in the TNF

superfamily and much of our knowledge of necroptosis
comes from studies of the TNFR1 signaling pathway
(Fig. 4)1. TNFR1 stimulation induces an early complex
formation comprising TNFR1-associated death domain
protein (TRADD) and RIPK1. Cellular inhibitors of
apoptosis (cIAPs), including cIAP1 and cIAP2, and the
linear ubiquitin chain assembly complex (LUBAC) are
recruited to the initial complex, inducing Lys63-linked or
linear ubiquitylation of RIPK1, respectively2. In con-
sequence of ubiquitylation, the initial complex is stabi-
lized, going on to activate Nuclear Factor-κB (NF-κB)
transcriptional activity, which contributes to cell survival,
proliferation, and the production of pro-inflammatory
cytokines (Fig. 4)1,2. Conversely, inhibiting the ubiquity-
lation of RIPK1 through blocking of cIAPs (Smac
mimetics or genetic deletion of IAPs)37–40 facilitates the
formation of a different complex composed of TRADD,
RIPK1, and oligomerized FAS-associated death domain
protein (FADD)2. This second complex then recruits and
activates caspase-8, finally inducing an RIPK1 activity-
dependent apoptosis (Fig. 4). Moreover, LUBAC inhibi-
tion2,41, transforming growth factor-β-activated kinase 1
inhibition42, NF-κB essential modulator silencing43, or
Pellino silencing44 also favor the formation of a FADD-
containing complex and thus promote apoptosis1.
Following the stimulation of apoptosis, if caspase-8

activity is blocked, RIPK1 recruits RIPK3 through inter-
actions between the RIP homotypic interaction motif
(RHIM) domains. This RIPK3-containing complex is
termed the necrosome. The RIPK3 can subsequently
recruit and phosphorylate MLKL to trigger necroptosis
(Fig. 4)6,9. MLKL, a downstream target of RIPK3, is con-
sidered as the effector of necroptosis6,9. RIPK3 can acti-
vate MLKL and induce its oligomerization, which
facilitates oligomerized MLKL translocation to the plasma
membrane and triggers cell permeabilization and
necroptosis45–48.
Some additional proteins have been reported to be

involved in the function of the necrosome. The FADD-
like interleukin (IL)-1β-converting enzyme (FLICE)-inhi-
bitory protein (FLIP) plays an important role in the con-
trol of necroptosis induced by TNF2,38,49, since caspase-8
—FLIP heterodimers are believed to inhibit necroptosis
by disrupting RIPK1-RIPK3 necrosome formation2,49.
Cylindromatosis protein (CYLD) is an ubiquitin-editing
enzyme which can remove ubiquitin chains from RIPK1
to facilitate the induction of necroptosis50,51. Upon TNF
stimulation, CYLD can trigger necroptosis by promoting
necrosome formation, phosphorylation and activation of
RIPK351, but caspase-8 can cleave CYLD to suppress
necroptosis50. Moreover, heat shock protein 90 and its co-

Fig. 2 RIPK3-MLKL-mediated necroptosis induced by receptors or
DAI. Death receptors can trigger a RIPK1-RIPK3-MLKL-mediated
necroptosis and TLRs are able to induce a TRIF-RIPK3-MLKL-mediated
necroptosis. Viruses, too, can trigger a DAI-RIPK3-MLKL-mediated
necroptosis as can adhesion receptors or IFN-I signaling (IFNAR),
inducing a RIPK3-MLKL-mediated necroptosis. RIPK3 can be engaged
by RIPK1, TRIF, or DAI through their respective RHIM domains and,
furthermore, MLKL can be recruited and phosphorylated by RIPK3 to
trigger necroptosis
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chaperone CDC37 complex are required for RIPK3 acti-
vation during necroptosis52. In contrast, both the phos-
phatase PPM1B53 and the ubiquitin-modifying enzyme
A2054 can negatively regulate necroptosis through sup-
pressing RIPK3 activity.

TNF-induced necroptosis in neutrophils
A TNF-induced neutrophil necroptosis was reported

recently which is dependent on a RIPK1- RIPK3-MLKL
signaling31. In that work, the authors showed that in
mouse neutrophils responding to high concentrations of
TNF, X-linked IAP (XIAP) plays a crucial role in deter-
mining the type of neutrophil death, i.e. either apoptosis
or necroptosis31. XIAP and cIAPs are all members of the
IAP family. Like the cIAPs, XIAP was also reported to
ubiquitylate RIPK1 and trigger NF-κB activation2. Thus,
blocking XIAP could also facilitate the formation of the
FADD-containing complex to induce either apoptosis or
necroptosis in response to TNF (Fig. 4)2,37. In other cell
types, however, evidence shows that the role of XIAP in
restricting TNF-induced death is dispensable, because
loss of XIAP fails to trigger TNF-induced apoptosis in

mouse embryonic fibroblasts39 and cIAP1 inhibition alone
is a sufficient induction for either apoptosis or necroptosis
upon TNF stimulation37,39.
Moreover, in mouse neutrophils, the inhibition of XIAP

results also in increased ubiquitylation of RIPK1 instead of
the reduced ubiquitylation observed when cIAPs are
blocked31. In line with these findings in mouse neu-
trophils, XIAP has also been reported to restrict TNF and
RIPK3-dependent cell death in dendritic cells55 and to
limit TLR and TNFR1-induced necroptosis in macro-
phages56. Similarly, loss of XIAP can also lead to elevated
ubiquitylation of RIPK155. Taken together, XIAP appears
to be able to function independently of cIAPs in reg-
ulating the neutrophil death pathways and the compli-
cated XIAP functions in different kinds of cells may well
imply that the role of XIAP in regulating necroptosis is
cell type dependent.
LPS can activate TLR4 to induce macrophage necrop-

tosis when caspases are inhibited; here, autocrine TNF
plays only a minor role15. However, in mouse neutrophils,
it has been reported that only when cIAPs and XIAP
are both blocked, can LPS trigger RIPK1-dependent

Fig. 3 The signaling pathway of neutrophil necroptosis. Neutrophil necroptosis triggered by various stimuli, including TNF, adhesion receptors,
MSU crystals or phagocytosis of S. aureus. TNF-induced mouse neutrophil necroptosis is dependent on a RIPK1-RIPK3-MLKL signaling pathway.
Ligation of adhesion receptors, including CD44, CD11b, CD18, and CD15, can induce a human neutrophil necroptosis involving the RIPK3 – MLKL -
p38 MAPK - PI3K axis, in which all of these molecular components are prerequisite for generation of ROS induced by NADPH oxidase, and subsequent
necroptosis. However, how the RIPK3-MLKL complex activates p38 MAPK requires further investigation and confirmation in other cell types. MSU
crystal-induced neutrophil necroptosis is triggered by ROS production which further activates RIPK1-RIPK3-MLKL and subsequent cell death. The
mechanism of ROS production by MSU exposure remains to be investigated. Phagocytosis of S. aureus can also trigger RIPK3-dependent regulated
necrosis in human neutrophils
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apoptosis, which is then almost completely dependent on
autocrine TNF31. Thus, XIAP can maintain neutrophil
viability when cIAPs are blocked in response to LPS.
RIPK1-dependent apoptosis initiated by LPS-induced
autocrine TNF can then switch to an RIPK3 and
MLKL-dependent necroptosis when caspases are inhib-
ited31. However, these authors also show that low con-
centrations of TNF can also induce neutrophil cell death
when cIAPs alone, or both cIAPs and XIAP, are blocked
by Smac mimetics31. Accordingly, this cell death is
probably an RIPK1-dependent apoptosis. Thus, it seems
reasonable that low concentrations of TNF should also be
able to induce neutrophil necroptosis in the presence of
Smac mimetics when caspases are also inhibited. This,
however, needs to be confirmed. Furthermore, we cannot
exclude a role for XIAP in maintaining neutrophil viability
by blocking LPS-induced TNF production when cIAPs are
functionally absent. This hypothesis is also suggested by
XIAP restriction of granulocyte/macrophage colony-
stimulating factor (GM-CSF)-primed neutrophil death in
response to TNF and increased XIAP expression upon
GM-CSF stimulation31. Finally, the execution of necrop-
tosis in mouse neutrophils appears to be dependent on
MLKL translocation to the plasma membrane31. How-
ever, the role of ROS in TNF-induced necroptosis in
mouse neutrophils has so far not been well investigated.

Moreover, it should be noted, that TNF-induced
necroptosis in human neutrophils has not been demon-
strated so far.

The mechanism of neutrophil necroptosis induced
by adhesion receptors
Ligation of adhesion receptors, including CD44, CD11b,

CD18, and CD15, can induce necroptosis in human
neutrophils if the cells have been exposed to GM-CSF
(Fig. 3)19. This process is characterized by cytoplasmic
vacuolization, a phenomenon seen both in vitro and
in vivo under inflammatory conditions19,57. This necrop-
tosis pathway involves a RIPK3–MLKL—p38
MAPK–PI3K axis, for which all these molecular compo-
nents are required to generate ROS via NADPH oxidase
and subsequent necrosis. It is unknown how RIPK3 is
activated by adhesion receptors. TLR stimulation can
induce necroptosis by the TRIF-RIPK3 interaction
through their RHIM domains (Fig. 2)14,15, for which TRIF
may also play a role by activating RIPK3 in the neutrophil
necroptosis induced by adhesion receptors. Clearly, this
pathway needs confirmation. While the essential roles of
p38 and PI3K in the activation of the NADPH oxidase
within neutrophil cell death pathways had been reported
earlier57–59, it remains unclear how the RIPK3-MLKL
complex is able to bring about p38 MAPK activation.
Increased ROS production is indispensable for neu-

trophil necroptosis, because neutrophils from patients
with chronic granulomatous disease (CGD) exhibiting a
genetic defect in NADPH oxidase were unable to undergo
necroptosis induced by adhesion receptors19. The strong
increase in ROS production in human neutrophils may
result in irreversible damage to biomolecules and is
therefore severely deleterious for the cell. However, a
direct MLKL-mediated plasma membrane disruption
does not seem to occur. Instead, MLKL, perhaps together
with RIPK3, was required to activate p38 MAPK, PI3K
and NADPH oxidase, which finally triggered ROS pro-
duction and neutrophil death. Therefore, MLKL should
be seen not only as a necroptosis executor protein, but
also as an adaptor protein for necrosis signaling.
In line with this idea, it has been shown that MLKL is

able to activate p38 MAPK and NADPH oxidase, leading
to regulated necrosis induced by adhesion in human
eosinophils60. The execution of both neutrophil and
eosinophil necroptosis appears to involve an ROS-
dependent permeabilization of vacuole membranes,
intracellular structures containing toxic granule pro-
teins20,57,60. Moreover, MLKL can contribute to inflam-
masome activation56. In addition, RIPK3 fails to trigger
phosphorylation on the mitochondrial protein phospha-
tase PGMA5S in the absence of MLKL61 and over-
expression of MLKL was reported to activate JNK9.
Interestingly, at the site of infection, wild-type mouse

Fig. 4 Necroptosis signaling pathway induced by
TNFR1 stimulation via TNF. TNF is a pleiotropic cytokine playing a
key role in infection and tissue injury. TNF has a role not only in
inflammation, since, under some conditions, as a consequence of
TNFR1 ligation, it can also trigger regulated cell death pathways such
as apoptosis or necroptosis
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neutrophils are able to clear S. aureus while neutrophils
lacking MLKL, like human neutrophils from CGD
patients, kill microbes poorly62,63. Furthermore, this cell
death pathway appears to be independent of autocrine
TNF and can be induced without blocking IAP or caspase
activities. Thus, the mechanism of necroptosis induced by
adhesion receptors is quite different from TNF-induced
necroptosis, though this cell death pathway does appear to
be a close analogy to the necroptosis observed under
physiological conditions. Clearly, the mechanism of
RIPK3 activation by adhesion receptors in cytokine-
primed neutrophils should be further investigated.

The role of MSU crystals in neutrophil necroptosis
Neutrophil necroptosis has also been shown to be

induced by phorbol 12-myristate 13-acetate (PMA)
treatment or exposure to MSU crystals32,33. This cell
death, measured 2 h after stimulation, is triggered by ROS
production which further activates RIPK1, RIPK3, and
MLKL. Thus, ROS are upstream of RIPK1-RIPK3-MLKL
signaling and are believed to be initiators of the necrop-
tosis induced by PMA or MSU crystals (Fig. 3). This cell
death, whether induced by PMA or MSU crystals, can be
inhibited by necrostatin-1 (a RIPK1 inhibitor) or necro-
sulfonamide (NSA; a MLKL inhibitor)6,13. However, these
findings have been contradicted in a publication
arguing that NSA was unable to block human neutrophil
death in response to PMA under the same stimulation
conditions64.
On the other hand, neutrophil necroptosis induced by

MSU crystals was shown to be reduced by either
necrostatin-1 treatment or by silencing the Ripk3 gene in
experimental mouse gouty arthritis models32,65. Further-
more, MSU crystals have also been shown to induce
necroptosis in other cell types66. Clearly, more work needs
to be done to confirm the role of ROS as initiators of
neutrophil necroptosis (Fig. 3). This is also true, because it
has also been shown that MLKL can be proximal to the
generation of ROS in TNF-induced necroptosis9 and
RIPK3 triggered ROS production plays an important role
in myocardial necroptosis67.
NETs were first interpreted as a mechanism for fighting

microbial infection68,69. Subsequently, it was found that
NETs are generated in the course of neutrophil necrop-
tosis induced by PMA or MSU crystals32,33. In contrast,
another report described NET formation induced in live
neutrophils independent of RIPK3 and MLKL64. One
explanation may be that the so-called NET release during
necroptosis is in fact a necrosis-related, passive release of
chromatin32,33. So interpreted, NET formation would be
independent of necroptosis64. In fact, it is unlikely that
necroptosis would be beneficial for the host under con-
ditions where NET formation would seem to be an
appropriate anti-microbial response70.

The mechanism of RIPK3-dependent regulated
necrosis induced by phagocytosis of S. aureus1
in neutrophils
Human neutrophils can phagocytose community-

associated methicillin-resistant S. aureus (CA-MRSA)
strain USA300 to fight infection. Some ingested S. aureus
may survive within the neutrophils phagosome, however,
preventing apoptosis and resulting in a necrosis-like cell
death. Such human neutrophil death is considered to be
an RIPK1-dependent necroptosis based on the inhibition
of lysis by Nec-134. However, later, the same authors
found that cell lysis inhibited by Nec-1 is owing to its off-
target effects and that this necrosis-like death in neu-
trophils partially requires RIPK3 activity, though inde-
pendent of RIPK1 and MLKL35. These authors did not
identify the executioner protein in this RIPK3-dependent
necrosis and they considered this regulated cell death
pathway to be distinct from necroptosis. However,
ischemia- and oxidative stress-induced myocardial
necroptosis is also independent of RIPK1 and MLKL,
acting through the RIPK3-Ca2+-calmodulin–dependent
protein kinase (CaMKII) pathway67. Thus, lysis of neu-
trophils by CA-MRSA may also be interpreted as one type
of RIPK3-dependent necroptosis (Fig. 3). This RIPK3-
dependent regulated necrosis induced by phagocytosis of
S. aureus in human neutrophils is believed to facilitate the
release of DAMPs and to allow the escape of viable bac-
teria leading to an amplification of local tissue damage
and persisting infection34.

The role of necroptosis in neutrophil-associated
disorders
It has been predicted that necroptosis is involved in

disease pathogenesis since studies in animal disease models
provided strong evidence for this hypothesis. However, the
role of necroptosis in human pathologies remains to be
further identified1,2. Neutrophils are involved in many
kinds of diseases; unlike apoptosis, necrosis of neutrophils
can be very harmful during inflammation due to the lib-
eration of their toxic contents and ROS production, which
induce further tissue damage and an amplified inflamma-
tory response. Furthermore, neutrophils undergoing
necrosis may allow pathogens to escape from dead cells,
inducing further infections30. Thus, an understanding of
neutrophil necroptosis undoubtedly promises an approach
for preventing neutrophil-associated excessive tissue injury
or inflammatory disease by targeting key proteins in the
necroptosis pathway.
The induction of necroptosis occurring under in vivo

inflammatory conditions has been explored and the
migration of human neutrophils to inflammatory sites was
found to activate the RIPK3-MLKL pathway in tissue
samples from patients with neutrophilic diseases includ-
ing cutaneous vasculitis, ulcerative colitis, and psoriasis19.
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These diseases are characterized not only by neutrophilic
tissues, but also by strong triggers of inflammation, which
involve autoimmune mechanisms71–73. Although tissue
samples from patients with neutrophilic diseases are
without any experimental stimulation, adhesion recep-
tors19,57, including CD44, CD11b, CD18, CD15, and
Siglec-9 may be the triggers for neutrophil necroptosis,
because the cytoplasmic vacuolization of neutrophils can
also be observed in inflamed tissue samples of these
patients57. Moreover, it has been previously demonstrated
that hyaluronan, a natural ligand of CD44, is able to
trigger the necroptotic pathway in neutrophils57. How-
ever, exactly when necroptosis triggering occurs is not
clear, since it could be during migration, but could also be
later at the site of inflammation. Thus, adhesion receptors,
RIPK3 and MLKL are all potential therapy targets.
Neutrophil necroptosis seems also to be involved in the

pathology of gout, because, in the mouse, gouty arthritis
models based on the injection of MSU crystals into sub-
cutaneous air pouches exhibit the gout-like tophus for-
mation induced by neutrophil necrosis which can be
reduced both by necrostatin-1 treatment or by silencing
of the Ripk3 gene32. Thus, RIPK1, RIPK3, and MLKL
might serve as molecular targets for gout therapy. Fur-
thermore, in patients diagnosed with X-linked lympho-
proliferative syndrome type 2 (deficient in XIAP),
neutrophil necroptosis may play a role in disease pro-
gression31, and TNF, XIAP, RIPK1, RIPK3, and MLKL
promise to be therapy targets. However, the role of TNF,
adhesion receptors, MSU crystals, and phagocytosis-
induced neutrophil necroptosis in human diseases
remains to be further investigated.

Conclusions
The identification of the necroptosis death pathway

helps us to better understand overall necrotic cell death,
which is not always an accidental or uncontrolled process,
and which appears to play an important role in inflam-
mation and disease pathogenesis. The characterization of
the neutrophil necroptosis signaling pathway may facil-
itate a better control of tissue damage or excessive
inflammation induced by neutrophil dysfunction, helping
us to identify appropriate drug targets in neutrophil-
associated disorders such as cutaneous vasculitis, ulcera-
tive colitis, and psoriasis. Although necroptosis has been
extensively studied, neutrophil necroptosis has so far been
little investigated. Given the important role of neutrophils
in the immune system and in different pathologies, it is
worthwhile to explore the mechanisms, as well as the
triggers and key proteins of neutrophil necroptosis. A
better understanding of this signaling pathway will
hopefully benefit the treatment of inflammatory or auto-
immune diseases in the future.
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