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Abstract: In this paper, a hyperchaotic four-dimensional fractional discrete Hopfield neural network
system (4D-FDHNN) with four positive Lyapunov exponents is proposed. Firstly, the chaotic dy-
namics’ characteristics of the system are verified by analyzing and comparing the iterative trajectory
diagram, phase diagram, attractor diagram, 0-1 test, sample entropy, and Lyapunov exponent. Fur-
thermore, a novel image encryption scheme is designed to use the chaotic system as a pseudo-random
number generator. In the scenario, the confusion phase using the fractal idea proposes a fractal-like
model scrambling method, effectively enhancing the complexity and security of the confusion. For
the advanced diffusion phase, we proposed a kind of Hilbert dynamic random diffusion method,
synchronously changing the size and location of the pixel values, which improves the efficiency of
the encryption algorithm. Finally, simulation results and security analysis experiments show that the
proposed encryption algorithm has good efficiency and high security, and can resist common types
of attacks.

Keywords: 4D-FDHNN; dynamic analysis; fractal-like scrambling; Hilbert curve; dynamic random
diffusion; image encryption

1. Introduction

With the development of social networks and multimedia platforms, massive amounts
of information are exposed under the open network, so data protection is extremely urgent.
Because an image is one of the main media types of data transmission, the security of
image data protection has become a hot topic for scholars. Image encryption is an effective
way to protect image information. In recent years, a large number of excellent image
encryption algorithms have emerged, constantly promoting the development and progress
of image encryption.

The chaotic system has been widely used in the field of image encryption as a pseudo-
random number generator due to its unique advantages of extreme sensitivity to initial
parameters and unpredictability. Maria Munoz-Guillermo [1] designed an encryption
algorithm based on the q variant Logistic mapping, which greatly improves the security of
the algorithm by expanding the key space and parameter range of the system. Wang et al.
proposed a fractional one-dimensional chaotic map with a large chaotic space and designed
a real-time image encryption scheme based on the chaotic map [2]. Subsequently, to fur-
ther improve the chaotic characteristics, Wang et al. also proposed a random scrambled
image encryption algorithm on the basis of a one-dimensional Logistic self-embedding
chaotic system, which effectively improved the security and efficiency of the encryption
algorithm [3]. In order to enhance the complexity of chaotic system, Zhu et al. artificially
constructed a five-dimensional continuous hyperchaotic system [4]. The encryption al-
gorithm adopted a DNA dynamic coding mechanism and classical scrambling diffusion
structure. Although these designed schemes are effective, they are also accompanied by
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several problems. This is because some low-dimensional chaotic systems are proved to be
easy to predict due to their simple structure, while high-dimensional chaotic systems have
a large chaotic space, but also bring about the problem that the structure is too complex
to be suitable for real-time image encryption. Inspired by this, this paper proposes a
four-dimensional fractional-order discrete neural network chaotic system (4D-FDHNN),
which has complex dynamic behavior within the parameter range and does not cause low
efficiency, and at the same time meets the real-time requirements of image encryption.

Generally speaking, the image encryption algorithm includes scrambling and diffusion.
In order to obtain better an encryption effect, most of the existing image encryption schemes
are organically combined with DNA coding [5], S-box transformation [6], compressed
sensing, bit level [7], semi-tensor product operation [8,9], fractal model [10], and other
advanced technologies. Ayubi et al. proposed a digital image encryption algorithm based
on a generalized chaotic game model [11]. Chaos game is a famous fractal, which acts as a
pseudo-random number generator in the proposed encryption algorithm, with dynamic
behavior and complete chaos characteristics. Xian et al. proposed a kind of fractal ordering
matrix with fractal characteristics, and this new matrix cluster can effectively improve the
security of encryption algorithm by scrambling images or information [12]. In order to avoid
the security risks in data transmission and storage environment, Sun et al. combined fractal
dictionary coding with Julia Set and designed a new compression encryption scheme [13],
which make a breakthrough in time and key security. When encrypting color images,
Duan et al. determined the structural complexity of the nonlinear fractal scrambling
method directly from the plaintext image, making the algorithm sufficiently resistant to
known-plaintext attacks and chosen-plaintext attacks [14]. Hasanzadeh et al. designed a
color image encryption scheme based on a hyperchaotic system by combining fractal with
S-box in order to further improve the security of the algorithm [15]. The scheme uses a
Hilbert fractal structure S box for scrambling, and Chen hyperchaotic system for diffusion
operation. Experimental results show that the algorithm has high security in key space and
sensitivity. It can be seen that fractal is widely used in image encryption algorithm and has
become one of the effective encryption technologies. Therefore, the algorithm proposed in
this paper slightly changes the fractal model and applies it to the scrambling process, thus
effectively improving the complexity and security of the scrambling stage.

It is worth noting that some existing encryption systems are still vulnerable to cracking
due to insufficient consideration of the chaotic characteristics of the system and the lack of
security of the algorithm itself in the scheme design [16]. Dhall et al. made a cryptographic
analysis of the image encryption scheme proposed in literature [17] and found some
problems and unenforceability in the encryption scheme. Finally, they improved the
scheme effectively to improve the security of the algorithm. In order to avoid such a
situation, this paper adopts the dynamic random diffusion method based on Hilbert curve
in the diffusion process when designing the encryption algorithm. When changing the size
of the pixel value, the pixel position also changes, which not only improves the efficiency
of the algorithm, but also greatly improves the security of the algorithm.

The advent of the information explosion era means that information security has
become a key issue. Since images contain a wide range of information, including personal
information, medical privacy and confidential remote sensing data, it is particularly impor-
tant to protect their security. In view of the above problems in image encryption technology
and the inspiration of existing encryption technology, the main contributions of this paper
are as follows:

1. A new hyperchaotic four-dimensional fractional-order discrete Hopfield neural net-
work system (4D-FDHNN) is proposed. The Lyapunov analysis indicates that the
system has four positive Lyapunov exponent values, so it is called a hyperchaotic
system. It also has rich dynamic characteristics, which is in line with the needs of
image encryption for pseudo-random number generators.

2. Through the study and analysis of the fractal concept, a fractal-like model scrambling
method is designed. This method has excellent scrambling effect, and the whole pixel
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matrix can be confused only after scrambling, which makes the image lose readability.
This increases the complexity and security of the scrambling stage.

3. A Hilbert dynamic random diffusion scheme is designed to change the position
and size of pixels synchronously, which strengthens the diffusion performance and
improves the efficiency of the algorithm.

The rest of this paper is organized as follows: in Section 2, the hyperchaotic system
of 4D fractional order discrete neural network is introduced and its dynamic behavior is
analyzed. In Section 3, a kind of fractal model scrambling method is designed. The entire
encryption algorithm is shown in Section 4. Section 5 is the experimental results and safety
analysis. Finally, the whole paper is summarized in Section 6.

2. Four-Dimensional Fractional-Order Discrete Hopfield Neural Network and Its
Dynamic Analysis
2.1. 4D-FDHNN Chaotic System

Low-dimensional chaotic systems often face security risks due to their simple structure
and insufficient chaotic characteristics. High-dimensional chaotic systems will have the
problem of too long an iteration time. Therefore, we have made certain improvements on
the basis of the three-neuron fractional-order discrete Hopfield neural network proposed by
Chen Liping et al. [18–20]. It is extended to the four-dimensional model, thereby enhancing
the chaotic characteristics of the system, which is more suitable for the needs of image
encryption. The improved four-dimensional fractional-order discrete Hopfield neural
network (4D-FDHNN) is as follows:

x(n + 1) = x(n) + hv

Γ(1+v) [−x(n) + 2 sin(x(n)) + sin(y(n))

−9 sin(z(n)) + 2 sin(w(n))]
y(n + 1) = y(n) + hv

Γ(1+v) [−y(n)− 9 sin(x(n)) + 2 sin(y(n))

+ sin(z(n))− 9 sin(w(n))]
z(n + 1) = z(n) + hv

Γ(1+v) [−z(n) + sin(x(n))− 9 sin(y(n))

+2 sin(z(n)) + sin(w(n))]
w(n + 1) = w(n) + hv

Γ(1+v) [−w(n)− 9 sin(x(n)) + sin(y(n))

−9 sin(z(n)) + 2 sin(w(n))]

(1)

Among them, x, y, z, w are the state variables of the 4D-FDHNN chaotic system, h is
the discrete step size, and v is the fractional order, h ∈ R+,v ∈ (0, 1), Γ(x) =

∫ ∞
0 tx−1e−t dt,

which represents the gamma function. Next, the dynamic characteristics of the modified
system will be analyzed.

2.2. Random Behavior Analysis

The random behaviors of the sequences x, y, z, w generated by a 4D-FDHNN chaotic
system when (x0, y0, z0, w0, h, v) = (0.08, 0.8,−6.2,−0.62, 0.05, 0.6) with 105 iterations is
illustrated in Figure 1. The horizontal axis represents the number of iterations, and the
vertical axis is the value of the chaotic sequence. The graphs show that the values generated
by the system are randomly distributed in the range of approximately −5 to 5 and −10 to
10. Furthermore, we can observe the phase diagram and the attractor diagram of the system.
As shown in Figure 2, the phase diagram of 4D-FDHNN chaotic system is described in
two-dimensional space. The attractor diagram of three-dimensional space is depicted in
Figure 3. The phase diagram and the attractor diagram show that the trajectories eventually
converge to a disorderly state rather than converging to an equilibrium point, whether the
perturbations are small or large. It is thus clear that the 4D-FDHNN chaotic system exhibits
good chaotic behavior.
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Figure 1. Random behaviors of the 4D-FDHNN chaotic system.
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Figure 2. Phase diagrams of the 4D-FDHNN chaotic system for the initial value (x0, y0, z0, w0) =

(0.08, 0.8,−6.2,−0.62), fractional order v = 0.6, and step size h = 0.05 (x-y plane; x-z plane; x-w
plane; y-z plane; y-w plane; z-w plane).
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Figure 3. Attractor graph of the 4D-FDHNN chaotic system.

2.3. 0-1 Test

In order to further verify the chaotic characteristics of the proposed chaotic system,
it is compared and analyzed with the 4D-FDHNN chaotic system. The 0-1 test is used to
distinguish between regular and chaotic dynamics in deterministic dynamical systems [21].
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It can measure the chaotic state of the time series, and the results obtained are close to 0
or 1, 0 corresponding to regular dynamics and 1 to chaotic dynamics [22]. We perform 0-1
tests using the calculations in the literature [22]. Figures 4 and 5 depict the 0-1 test of two
chaotic systems under the parameters h ∈ (0, 2) and v ∈ (0, 0.6), respectively. It can be
clearly seen from the figure that the test results of the 4D-FDHNN chaotic system within
the parameter range are basically close to 1, while the 4D-FDHNN chaotic system has a
certain decline and fluctuation.

Figure 4. 0-1 test results. (a) the 0-1 test of 3D-FDHNN with h ∈ (0, 2), v = 0.6; (b) the 0-1 test of
4D-FDHNN with h ∈ (0, 2), v = 0.6.

Figure 5. 0-1 test results. (a) the 0-1 test of 3D-FDHNN with v ∈ (0, 0.6), h = 0.05; (b) the 0-1 test of
4D-FDHNN with v ∈ (0, 0.6), h = 0.05.

2.4. Sample Entropy Analysis

Sample Entropy (SE) is derived from approximate entropy, which is a measure of the
complexity of a time series [23]. SE is derived from approximate entropy and overcomes the
problem that approximate entropy statistics can lead to inconsistent results, as proposed by
Joshua et al. [24] in 2000. The complexity of the time series is measured by measuring the
probability of generating a new pattern in the signal. The greater the probability of a new
pattern, the greater the complexity of the sequence. In other words, the lower the value
of sample entropy, the higher the self-similarity of the sequence. Conversely, the larger
the value of sample entropy, the more complicated the sample sequence. We calculated
the sample entropy using the method of literature [24] as shown in Figures 6 and 7, which
show the results of the sample entropy of the chaotic sequence generated by the two chaotic
systems under the parameter h ∈ (0, 2) and v ∈ (0, 0.6). Obviously, the SE values of the
4D-FDHNN chaotic system fluctuate slightly around 2, while the three-neuron chaotic
system performs unsatisfactorily at h ∈ (0, 0.2) and v ∈ (0.25, 0.35). Through the above
analysis, the proposed 4D-FDHNN chaotic system has more complex dynamics and is
suitable for the needs of image encryption.
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Figure 6. Sample Entropy. (a) the sample entropy of 3D-FDHNN with h ∈ (0, 2); (b) the sample
entropy of 4D-FDHNN with h ∈ (0, 2).

Figure 7. Sample Entropy. (a) the sample entropy of 3D-FDHNN with v ∈ (0, 0.6); (b) the sample
entropy of 4D-FDHNN with v ∈ (0, 0.6).

2.5. Lyapunov Exponent Analysis

Lyapunov exponent is a characteristic feature of chaotic systems that initially nearby
trajectories separate exponentially in time. It is typically computed by following the lin-
earization along a given reference trajectory. In ergodic systems, most trajectories will
yield the same Lyapunov exponent, asymptotically for long times. The positive Lyapunov
exponent is the source of the local instability of the chaotic attractor, which leads to the expo-
nential separation of the two orbits generated by the two initial values with time, and since
the system is dissipative, the chaotic system becomes locally unstable while the whole is sta-
ble [25]. Checking whether the Lyapunov exponent λ of the system is or is not positive can
determine whether the system has chaotic motion. When λ < 0, the system state tends to be
stable and is not sensitive to the initial value; when λ > 0, the system will eventually enter a
chaotic state. Therefore, a chaotic system should have at least one positive λ. A system with
two or more Lyapunov exponents is considered to be a hyperchaotic system. For discrete
systems, the Lyapunov exponent is usually calculated by the eigenvalue method. We
adopt a method based on QR orthogonal decomposition to calculate the Lyapunov expo-
nents of the dynamic system proposed in this paper. The calculation method is shown in
Equation (2) [26]: 

λ1 = lim
T→∞

1
T

T

∑
t=1

ln |r(t)1 |

λ2 = lim
T→∞

1
T

T

∑
t=1

ln |r(t)2 |

λ3 = lim
T→∞

1
T

T

∑
t=1

ln |r(t)3 |

λ4 = lim
T→∞

1
T

T

∑
t=1

ln |r(t)4 |

(2)

where T is the times of orthogonal decompositions, and r(t)i is the i-th (i = 1, 2, 3, 4) diagonal
element corresponding to the upper triangular matrix obtained after the t-th orthogonal
decomposition. This calculation method can avoid the error message of NaN or Inf due to
too large number of iterations, and the problem of inaccurate calculation results caused
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by too few iterations. The calculation results are shown in Figure 8. It is not difficult
to find that, when h is probably greater than 0.8, the four Lyapunov exponents all reach
positive values. In order to more accurately represent the definite parameter range in which
the Lyapunov exponent turns positive, the changes of the λ near 0 are listed in Table 1.
According to the table and figure that, when h > 0.88, λ1, λ2, λ3, λ4 are all positive, i.e., the
system has four positive Lyapunov exponents. Thus, 4D-FDHNN is a hyperchaotic system.
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Figure 8. Lyapunov exponent.

Table 1. The key point of Lyapunov exponent turning into positive.

h
Lyapunov Exponent

λ1 λ2 λ3 λ4

0.84 −0.0211 −0.0078 −0.0561 −0.0022
0.85 −0.0094 0.0090 −0.0493 0.0177
0.86 0.00791 0.0330 0.0311 −0.0020
0.87 0.03733 −0.0059 −0.0027 0.0390
0.88 0.06598 0.0038 0.0751 0.0113

In conclusion, the proposed 4D-FDHNN shows good chaotic characteristics and is
very suitable for the demand of pseudo random sequence generator for image encryption.
Its application in image encryption will be studied, which follows.

3. Scrambling Method Based on a Fractal-like Model

Considering that the scrambling process of general algorithms is too simple and the
overall security of the algorithm is insufficient [27], this section proposes a scrambling
scheme based on a fractal-like model. This method improves the complexity and security
of the scrambling phase. Before introducing specific methods, a brief explanation of fractals
is given. The concept of fractal starts from the chaos game, and the basic theory of chaos
game will be described below.

3.1. Chaos Game

In mathematics, the term “chaos game” was originally proposed by Michael Barns-
ley [28], which represents a method of creating fractals by polygons and randomly selected
initial points in them. Taking a triangle as an example, the rules for creating a point
sequence of fractals through iteration are as follows: determine the three vertices of the
triangle as bases and mark them as 1, 2, 3; select a point in the triangle as the initial point s;
randomly select a base from 1, 2, and 3; the midpoint between the initial point s and the
base is recorded as the new game point x1; select a base randomly; the midpoint of x1 and
the selected base are marked as another new game point x2, . . . , repeat the process until the
number of iterations ends. An example of a simulated chaos game is shown in Figure 9.
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Figure 9a illustrates the first three iterations. The black circles indicate the position of three
bases, the blue circles are the selected initial point, and the new game points generated by
these three iterations are marked with red circles. Figure 9b,c show the effects of 1000 and
10,000 iterations, respectively.

Figure 9. Chaos game with three bases. (a) the first three iterations, (b) 1000 iterations,
(c) 10,000 iterations.

The two-dimensional mathematical description of the Barnsley chaos game is as
follows: {

µn+1 = µn + d× (B[R][1]− µn)

νn+1 = νn + d× (B[R][2]− νn)
(3)

where µ, ν ∈ [0, 1], R ∈ 1, 2, . . . , N (N is the number of bases), d is the distance ratio
parameter in the game, the above example is the iteration result of d = 0.5, and B is the
two-dimensional array containing the bases coordinates of the chaos game.

In order to observe the fractal phenomenon more clearly, fractal structures exhibited
at different bases number N and different distance ratio d are simulated in Figure 10.
The number of bases from top to bottom are N = 4, 5, 6, 8. The distance ratios d from left to
right are 0.15, 0.35, 0.5, and 0.65, respectively. The corresponding bases’ coordinate matrices
of the four different bases number are as follows:

B(N = 4) =


0 0
0 1
1 0
1 1

, B(N = 5) =


0 1/2

1/2 1
1 1/2

1/4 0
3/4 0



B(N = 6) =



0 1/2
1 1/2

1/4 0
3/4 0
1/4 1
3/4 1

, B(N = 8) =



0 1/3
0 2/3

1/3 0
2/3 0
1/3 1
2/3 1

1 1/3
1 2/3


As we can find in the two figures above, the fractals have self-similarity. This is an

interesting phenomenon. There is such a thing, no matter how you zoom in it, what you
see is a cycle of similar patterns. That is, every detail of it looks almost exactly like the
whole thing when blown up.

Fractal is produced by iteratively generating sequences in chaotic games. When
specific parameter values are taken, sequences can also show chaotic characteristics [11].
After observing a series of iterations, at N = 4, d = 0.5, the new game points are almost
evenly distributed in the entire space bounded by the rectangle. Similarly, the pixel space
can also be viewed as a rectangular area, traversing each pixel value by iterating to create
new game points, thus disrupting the entire pixel plane. Motivated by the above, this paper
innovatively proposes a kind of fractal-like model scrambling method, which is introduced
in the following section.
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Figure 10. Fractal iteration results under different parameters. (Each column from left to right is
d = 0.15, d = 0.35, d = 0.5, and d = 0.65, respectively.).

3.2. Fractal-like Model Scrambling Method

Scrambling is an important step in encryption algorithm. The complexity and unpre-
dictability of the scrambling process are enhanced by using the fractal model, a scrambling
method to make the encryption algorithm more secure. The procedure is given in detail:

Step 1. Choose a grayscale image IM with size of M× N as the original image.
Step 2. The pixel matrix represented by the original image IM is mapped in a two-

dimensional rectangular coordinate system. As shown in Figure 11, (50,97,112) marked in
red indicates that the pixel value of the image matrix at (50,97) is 112 in a two-dimensional
rectangular coordinate system.

Figure 11. Pixel matrix mapped in a two-dimensional rectangular coordinate system.

Step 3. The four corners of the two-dimensional pixel matrix IM are taken as the bases
of the fractal-like model and recorded in the bases matrix B:

B(N = 4) =


1 1
1 N
M 1
M N
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Step 4. For the sake of making each new game point determined can be located to
a certain position in the pixel matrix, we make some modifications on the base of the
original fractal model Equation (1). The structure of the fractal-like model is shown in
Equations (4)–(6): {

s1 = mod( f loor(r1 × 1012), M)

s2 = mod( f loor(r2 × 1012), N)
(4)

{
µ1 = f loor(s1 + d× (B[R1][1]− s1))

ν1 = f loor(s2 + d× (B[R1][2]− s2))
(5)

{
µn+1 = f loor(µn + d× (B[R1][1]− µn))

νn+1 = f loor(νn + d× (B[R1][2]− νn))
(6)

where n = 1, 2, . . . , M × N, r1 = rand(), r2 = rand(), which generates random number
between 0 and 1. The random initial point s in the pixel matrix is generated from r1 and r2,
and the coordinates are (s1, s2). d = 0.5, r1, r2, d are used as the key. R is the bases random
selection matrix, and one of the four bases is randomly selected for the new iterative process.
The matrix R in this algorithm is calculated by a chaotic key stream generated by the chaotic
system, and the specific calculation method is given a minute description in Section 4.2.

Step 5. As shown in Equation (6), initialize the value of all elements in matrix ISC
to −1:

ISC[i, j] = −1 (7)

where i = 1, 2, . . . , M, j = 1, 2, . . . , N.
Step 6: The matrix ISC is updated according to the pixel values in the image deter-

mined by the game point array generated in step 4, to reorder the original pixel matrix
IM. The specific implementation process is shown in Algorithm 1. For the purpose of
distinguishing the pixel positions that have been scrambled, the pixel value at the traversed
position in IM is marked as −1.

Step 7: Insert the pixel values not traversed in the matrix IM into the position with the
value of−1 in the matrix ISC sequentially. The pixel matrix SCR after the fractal-like model
scrambling is obtained. For a clearer description, a pseudocode is given in Algorithm 2.

The above is the proposed fractal-like model scrambling method. Then, two pictures
“boat” with size of 256× 256 and “airfield” with size of 512× 512 are used to test the
scrambling effect. It can be clearly observed in Figure 12c,d that, only after the fractal-
like model scrambling, the pixel values are fully disorganized, and no plaintext related
information can be seen from the scrambled image. Consequently, the proposed scrambling
method is effective.

Algorithm 1 Fractal-like model scrambling I.

Input: Original image IM, matrix ISC, Game point array (µk, νk)
1: k = 1;
2: for i = 1 to M do
3: for j = 1 to N do
4: if IM(i, j) = −1 then
5: IM(i, j) = ISC(µk, νk);
6: ISC(µk, νk) = −1;
7: k = k + 1;
8: end if
9: end for

10: end for
Output: The updated matrix IM, ISC
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Algorithm 2 Fractal-like model scrambling II.

Input: The updated matrix IM, ISC
1: IM′ = reshape (IM, 1, M× N);
2: index = 0;
3: for i = 1 to M do
4: for j = 1 to N do
5: if ISC(i, j) = −1 then
6: while (IM′(index + 1) = −1) do
7: index = index + 1;
8: end while
9: ISC(i, j) = IM′(index + 1);

10: index = index + 1;
11: end if
12: end for
13: end for
14: SCR = ISC;
Output: Scrambling matrix SCR

Figure 12. Scrambling effects of a fractal-like model. (a) original image “boat” (256× 256); (b) original
image “airfield” (512× 512); (c) scrambled of (a); (d) scrambled of (b).

4. Encryption Algorithm Based on a Fractal-like Model Scrambling and Hilbert
Dynamic Random Diffusion

The encryption algorithm includes four stages: chaotic key stream generation, fractal-
like model scrambling, row-column dual scrambling, and Hilbert dynamic random diffu-
sion. The encryption process is described in Figure 13, and the specific steps are as follows:
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Figure 13. Encryption process.

4.1. Generate Random Key Stream

Step 1. Divide the original image IM with size of M× N according to Equation (8) to
obtain four sub-images IM1, IM2, IM3, IM4:

IM1 = IM(1 : M
2 , ; )

IM2 = IM(M
2 + 1, :)

IM3 = IM(:, 1 : N
2 )

IM4 = IM(:, N
2 + 1 : N)

(8)

Step 2. The sum of pixel values SUM1, SUM2, SUM3 and SUM4 of image
IM1, IM2, IM3, IM4, as well as their information entropy KS, KS1, KS2, KS3, KS4 are calcu-
lated respectively, as shown in Equations (9) and (10):

SUM1 = sum(IM1(:))
SUM2 = sum(IM2(:))
SUM3 = sum(IM3(:))
SUM4 = sum(IM4(:))

(9)



KS = ∑2L−1
i=0 p(xi) log2

1
p(xi)

KS1 = ∑2L−1
i=0 p(x1i) log2

1
p(x1i)

KS2 = ∑2L−1
i=0 p(x2i) log2

1
p(x2i)

KS3 = ∑2L−1
i=0 p(x3i) log2

1
p(x3i)

KS4 = ∑2L−1
i=0 p(x4i) log2

1
p(x4i)

(10)

where L is the gray level of the pixel, p(xi), p(x1i), p(x2i), p(x3i), and p(x4i) represent the
probability of the pixel value i in the image, respectively.

Step 3. The key stream generation process embeds parameters related to plaintext,
which can effectively resist common known/chosen plaintext attacks. We use plain-
text related pixel information SUM1, SUM2, SUM3, SUM4, and information entropy
KS, KS1, KS2, KS3, KS4 to generate the initial value of the chaotic system. The method is
given in Equation (11). In this way, when inputting different original images for encryption,
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the system will generate completely different random key streams. This greatly enhances
the security of the algorithm:

x0 = a + mod( f loor(SUM1+KS1×107),M)
10×(M+N)

y0 = b + mod( f loor(SUM2+KS2×107),M)
10×(M+N)

z0 = c + mod( f loor(SUM3+KS3×107),M)
10×(M+N)

w0 = d + mod( f loor(SUM4+KS4×107),M)
10×(M+N)

(11)

where mod() is remainder function, and f loor() means round down function. x0, y0, z0, w0
are the initial value of the 4D-FDHNN chaotic system, and a, b, c, d are the keys, which are
set as (0.08, 0.8, −6.2, −0.62).

Step 4. Iterating the 4D-FDHNN chaotic system pp + M× N times with initial val-
ues (x0, y0, z0, w0, h, v). pp is an iterative parameter. In order to avoid the influence of
instantaneous effect on the randomness of chaotic sequence, the former pp group val-
ues are discarded, and four groups of chaotic sequence X, Y, Z, W with the length of
M× N are obtained. They are recorded as X = x1, x2, x3, . . . , xMN , Y = y1, y2, y3, . . . , yMN ,
Z = z1, z2, z3, . . . , zMN , W = w1, w2, w3, . . . , wMN . These pseudo random sequences will
be used in the confusion and diffusion processes. The calculation method of pp is shown
as follows: 

p = ceil(KS× 1000√
M+N

)

pp =

{
p p > 500

p + 500 p < 500

(12)

where ceil() stands for round up function.

4.2. Fractal-like Model Scrambling

The specific steps are explained in detail in Section 3.2, in which the chaotic sequence X
is processed as Equation (13) to obtain the bases selection matrix R. After that, the scrambled
matrix SCR is obtained:

R = mod(ceil(mod(X, 1)× 1013 − KS× 109), 4) + 1 (13)

4.3. Row-Column Dual Scrambling

To ensure the efficiency and enhance the scrambling effect, a row-column dual scram-
bling algorithm is added.

Step 1. As Equation (14), the chaotic sequence Y, Z is intercepted to obtain two
sequences S1 and S2 with lengths of M and N, respectively:{

S1 = Y(1 : M)

S2 = Z(1 : N)
(14)

Step 2. Arrange S1 and S2 in ascending order and record the index matrices ID1 and
ID2 as follows: {

ID1 = index(S1)

ID2 = index(S2)
(15)

Step 3. The index matrix ID1 is used to perform further column scrambling on the
pixel matrix SCR after fractal-like model scrambling. The pixel matrix ISC1 after column
scrambling is generated by Equation (16):

ISC1 = SCR(:, ID1) (16)
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Step 4. Perform row scrambling on the pixel matrix ISC1 generated in the previous
step with the index matrix ID2. The pixel matrix ISC1 after row scrambling is generated as
Equation (17):

ISC2 = ISC1(ID2, :) (17)

The scrambling process is complete. Taking the 512× 512 grayscale image “Airfield”
as an example, a comparison diagram of the scrambling effect is depicted in Figure 14.
Figure 14a is the original image “Airfield”, (b) shows the result of using only the row-
column dual scrambling, (c) is the effect after using the fractal-like model scrambling,
and (d) depicts the combination of these two methods. Visibly, the pixel information of the
original image can be basically hidden after the fractal-like model scrambling. In addition,
the scrambling effect has been further strengthened after the row-column dual scrambling.
Almost no valid information is displayed in the ciphertext image.

Figure 14. Comparison of scrambling effects. (a) original image “airfield”; (b) only row-column dual
scrambling; (c) only fractal-like model scrambling; (d) combined scrambling (proposed).

4.4. Hilbert Dynamic Random Diffusion
4.4.1. Hilbert Curve

There are many traversal scanning methods in two-dimensional space, the common
ones are zigzag scanning, spiral scanning, raster scanning, Hilbert curve and so on [29].
These scanning methods can traverse every element in the matrix, and the traversal order is
different. Therefore, it has been widely used in the scrambling process of image encryption.
After the pixel matrix is traversed and reordered, the position of the pixels will be disrupted.

The Hilbert curve is one of the scanning methods of the square array because it has a
surjective effect in the array, that is, all the points in the matrix will be scanned when one
traversal is completed. Figure 15 depicts the Hilbert curve of order 1, 2, 3, 4, and 5. Many
scholars use this traversal method in the image scrambling process and have achieved good
scrambling results. However, in this algorithm, we innovatively devote it to the diffusion
process and randomly select the diffusion path according to the order of Hilbert traversal.
The particular process of diffusion is described in the following section.

Figure 15. Hilbert curve of order 1–5.

4.4.2. Diffusion Process

Step 1. According to Equation (18), the chaotic sequence W is processed and its
elements are mapped in the range of [0, 255] to obtain the sequence W1 with the size of
M× N:

W1 = mod( f loor(W × 1013), 256) (18)

Step 2. Transform W1 into diffusion mask D with size of M× N, as follows:

D = reshape(W1, M, N) (19)

Step 3. The specific description of the Hilbert dynamic random diffusion method is
shown in Equation (20). h1 and h2 are position matrices, which represent the horizontal
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and vertical coordinates of the Hilbert curve, respectively. After diffusion, the position
of the pixel and the size of the pixel value change synchronously, and the security of the
algorithm is enhanced. The final ciphertext image is CM.

CM(h1(1, 1), h2(1, 1)) = ISC2(1, 1)
⊕

D(1, 1)
CM(h1(1, j), h2(1, j)) = mod(ISC2(1, j) + CM(h1(1, j− 1), h2(1, j− 1)), 256)

⊕
D(1, j)

CM(h1(i, 1), h2(i, 1)) = mod(ISC2(i, 1) + CM(h1(i− 1, 1), h2(i− 1, 1)), 256)
⊕

D(i, 1)
CM(h1(i, j), h2(i, j)) = mod(ISC2(i, j) + CM(h1(i, j− 1), h2(i, j− 1))

+CM(h1(i− 1, j), h2(i− 1, j)), 256)
⊕

D(i, j)

(20)

where i = 2, 3, . . . , M, j = 2, 3, . . . , N.

5. Experimental Results and Safety Analysis
5.1. Simulation Results

For testing the encryption effect of the proposed algorithm, a simulation experiment
was completed on the MATLAB 2015b platform. The computer environment is equipped
with Intel(R) Core(TM)i7-6500U CPU@2.50 GHz, 8.00 GB RAM, and Windows 10 operating
system. Select 10 grayscale images with sizes of 256× 256, 512× 512, and 1024× 1024 from
the standard database (https://ccia.ugr.es/cvg/dbimagenes/ accessed on 13 March 2014)
to carry out the simulation experiment of encryption and decryption. The experimental
results are shown in Figure 16. From the ciphertext image, it can be found that the encrypted
images are noise-like and without any visible information. After decryption, the plain
images can be completely restored without pixel loss. It is worth noting that the proposed
algorithm is equally effective for all black and white images.

Figure 16. Encryption and decryption effects. (a–e) show the images with size of 256 × 256:
“boat256”, “house256”, “kod256”, “all-white”, “all-black”. (f–h) are the images with size of 512× 512:
“hill512”, “airfield512”, “bridge512”. (i,j) are the images with the size of 1024× 1024 : “saturn1024”,
“tile roof1024”.

https://ccia.ugr.es/cvg/dbimagenes/
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5.2. Key Security Analysis
5.2.1. Key Space

A key space is a set of possible keys in an encryption system [30], indicating the range
of key sizes. It is a key indicator used to detect the ability of an encryption algorithm to
resist brute force cracking. The larger the key space, the stronger the ability of the algorithm
to resist violent attacks, and the better the security performance of the algorithm. Generally,
the key space greater than 2100 is considered to be able to resist the brute force attacks of
modern computers [31]. The initial parameters (x0, y0, z0, w0, h, v) of the chaotic system,
the plaintext related key KS, the random number r1, r2 of the base point random selection
matrix, and the parameter d of the fractal-like model can be regarded as the security key.
According to the IEEE standard, the accuracy of each initial key is 1015 [32]. With the
premise of ensuring h > 0.88, the key space of this algorithm is (1015)10 = 10150. Because
the system is chaotic when h is in this parameter range, beyond this range, the system will
no longer have chaotic behavior. In addition, for special images of all-black or all-white,
the initial parameter setting requires special attention to ensure that the system exhibits
chaotic behavior within the parameter space, which is rarely used. The key space of this
algorithm is much larger than 2100, hence, the key space of the algorithm is too large to
resist brute force attacks.

5.2.2. Key Sensitivity

Key sensitivity describes the influence of key change on decryption result. A good
encryption algorithm should be sensitive enough to the key that it cannot recover the
original image while the key changes only slightly. Figures 17–19 show the decryption
results of ’boat256’, ’airfield512’, and ’saturn1024’ of different sizes, respectively, when the
correct key is used or only one key in (x0, y0, z0, w0, h, v) is changed. Obviously, a small
change 10−15 or even 10−16 in a single key followed by decryption cannot restore the
original image. This shows that the algorithm is more sensitive than ordinary algorithms
that are only sensitive to 10−15 changes [5].

Figure 17. Key sensitivity of “boat256”. (a) The decrypted image with correct key; (b) the decrypted
image with key x0 + 10−16; (c) the decrypted image with key y0 + 10−16; (d) the decrypted image
with key z0 + 10−15; (e) the decrypted image with key w0 + 10−16; (f) the decrypted image with key
h + 10−16; (g) the decrypted image with key v + 10−16.
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Figure 18. Key sensitivity of “airfield512”. (a) the decrypted image with a correct key; (b) the
decrypted image with key x0 + 10−16; (c) the decrypted image with key y0 + 10−15; (d) the decrypted
image with key z0 + 10−15; (e) the decrypted image with key w0 + 10−16; (f) the decrypted image
with key h + 10−16; (g) the decrypted image with key v + 10−16.

Figure 19. Key sensitivity of “saturn1024”. (a) the decrypted image with correct key; (b) the
decrypted image with key x0 + 10−16; (c) the decrypted image with key y0 + 10−15; (d) the decrypted
image with key z0 + 10−15; (e) the decrypted image with key w0 + 10−16; (f) the decrypted image
with key h + 10−16; (g) the decrypted image with key v + 10−16.

Furthermore, the impact of the small shift of the key on the generated ciphertext image
is also tested. Taking ‘boat256’, ‘airfield512’, and ‘saturn1024’ as examples, the test results
are displayed in Figure 20. By changing only 10−15 of the key x0 of the image ‘boat256’, y0
of the image ‘airfield512’, and z0 of the image ‘saturn1024’, the differences between the two
ciphertext images are 99.6139523%, 99.6292114%, and 99.5986938%, respectively. All of the
above analysis proves that the key of this algorithm is highly sensitive.
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Figure 20. The difference between ciphertext images when the key changes slightly. (a) plain image
“boat256”; (b) ciphertext Images with x0; (c) ciphertext Images with x0 + 10−15; (d) the differences
between (b,c); (e) plain image “airfield512”; (f) ciphertext Images with y0; (g) ciphertext images with
y0 + 10−15; (h) the differences between (f,g); (i) plain image “saturn1024”; (j) ciphertext Images with
z0; (k) ciphertext images with z0 + 10−15; (l) the differences between (j,k).

5.3. NIST Randomness Tests

One of the essential criteria to examine the security of an image cipher is randomness.
SP800-22 proposed by the “National Institute of Standards and Technology” (NIST) is one
of the popularly used test suits. We have checked the randomness of the proposed scheme,
and the results are shown in Table 2. The test suit contains various randomness tests
based on different types of distribution such as normal distribution, chi-square distribution,
half-normal distribution, etc. with different significant levels and p-values. It is usually
considered that the test is successful when the p-value is greater than 0.01. The detailed
p-values against different cipher images as listed in Table 2, and the scheme has passed all
the tests confirming the randomness of the image cipher.

5.4. Statistical Analysis
5.4.1. Histogram Analysis

Histogram statistics is a significant graphic measure to evaluate the randomness and
redundancy of intensity distribution, and it is used as a crucial observable index to evaluate
the robustness of image encryption algorithm [33]. The flat histogram indicates that all gray
levels occur the same numbers, the pixel distribution is uniform, and the randomness is
high. Figure 21 tests the histograms of all image samples and their corresponding ciphertext
images in this experiment. It can be clearly found that the histogram of the plain images
fluctuates and is special uneven, while the ciphertext image is close to horizontal. This
shows that the pixel values of the encrypted images are uniformly distributed, and the
redundancies in the plain images are completely masked. An attacker cannot obtain any
plaintext-related information from the histogram.
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Table 2. NIST randomness tests for the proposed scheme and its comparison.

Image Size 256 × 256 512 × 512 1024 × 1024

Tests p-Value Result p-Value Result p-Value Result

Approximate Entropy 0.921541 X 0.948753 X 0.85384 X
Block Frequency 0.821153 X 0.618297 X 0.996283 X
Cumulative Sums 0.42738 X 0.023076 X 0.125491 X
FFT 0.705674 X 0.552252 X 0.196993 X
Frequency 0.33783 X 0.022113 X 0.258306 X
Linear Complexity 0.042136 X 0.367285 X 0.676756 X
Longest Runs of 1 s 0.860484 X 0.07015 X 0.927182 X
Non-overlapping Templates 0.500097 X 0.353505 X 0.351968 X
Overlapping Templates 0.370476 X 0.819045 X 0.16745 X
Random Excursions 0.841748 X 0.050996 X 0.140009 X
Random Excursions Variant 0.101973 X 0.589966 X 0.340509 X
Rank 0.615691 X 0.727356 X 0.036279 X
Runs 0.858687 X 0.561305 X 0.853917 X
Serial 0.283802 X 0.403982 X 0.70536 X
Universal 0.806738 X 0.698998 X 0.259228 X

Figure 21. Histograms of plain images and their corresponding cipher images. Each plain image is
followed by its histogram, the corresponding cipher image, and its histogram.

5.4.2. Correlation Coefficient Analysis

Correlation coefficient is a statistical index that expresses the degree of correlation be-
tween variables. It is commonly used in image processing to study the relationship between
two adjacent pixels. In a readable image, the correlation between adjacent pixels is usually
high, with a correlation coefficient value close to 1. The smaller the correlation between
two adjacent pixels, the closer the correlation coefficient is to 0, indicating the higher the
security of the encrypted image. To investigate the obfuscation effect of encrypted images,
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the correlation between horizontal (rh), vertical(rv) and diagonal(rd) adjacent pixels is tested
respectively. The correlation coefficients of adjacent pixels are calculated as follows [34]:

Rpq =
cov(p, q)√

D(p)
√

D(q)
(21)


cov(p, q) = 1

n ∑n
i=1(pi − E(p))(qi − E(q))

E(p) = 1
n ∑n

i=1 pi, D(p) = 1
n ∑n

i=1(pi − E(p))2

E(q) = 1
n ∑n

i=1 qi, D(q) = 1
n ∑n

i=1(qi − E(q))2

(22)

where n is pair numbers of adjacent pixels, pi and qi are a pair of adjacent pixel values,
E(p) is the mean of p, E(q) is the mean of q, D(p) is the variance of p, D(q) is the variance
of q, and cov(p, q) represents the covariance of p and q. Randomly select 5000 pairs of
adjacent pixels in each direction from the image samples used in this algorithm and their
encrypted images. The correlation coefficients are calculated and compared with other
advanced references, and the results are listed in Table 3. As can be seen from Table 3,
the correlation between adjacent pixels in each direction in the plain images is strong,
and the correlation coefficients are all close to 1. However, in the proposed encryption
algorithm, the correlation coefficient of ciphertext image is closer to 0, which indicates that
the correlation between adjacent pixels of ciphertext image can be ignored.

Table 3. Correlation coefficients between adjacent pixels of the image.

Image Direction Plain Image Cipher Image

boat256 rh 0.9546 −0.0198
rv 0.9416 0.0046
rd 0.9074 −0.0026

house256 rh 0.9686 0.0082
rv 0.9773 0.0001
rd 0.9514 −0.0221

kod256 rh 0.9127 0.0002
rv 0.8748 0.0005
rd 0.8016 0.0179

hill512 rh 0.9737 0.0087
rv 0.9710 −0.0008
rd 0.9520 0.0046

airfield512 rh 0.9412 −0.0007
rv 0.9421 −0.0060
rd 0.9059 0.0077

bridge512 rh 0.9229 −0.0078
rv 0.9413 0.0059
rd 0.8932 0.0014

saturn1024 rh 0.9731 0.0024
rv 0.9900 −0.0001
rd 0.9669 0.0012

tile roof1024 rh 0.9996 −0.0007
rv 0.9995 0.0000
rd 0.9987 −0.0035

Ref. [29] rh 0.8364 0.0069
rv 0.8848 0.0037
rd 0.8690 −0.0079

Ref. [35] rh 0.9356 0.0236
rv 0.9604 0.0235
rd 0.9116 0.0189

Figures 22–24 show the distribution of adjacent pixels in “boat256”, “airfield512”,
and “saturn1024”, where (b–d) are the distribution on horizontal, vertical, and diagonal
of plain image, (f–h) are the distribution of ciphertext image in three directions. In (b–d),
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the pixels gather along the diagonal, and there is an obvious strong correlation between
adjacent pixels in the plain image. However, in (f–h), the pixels are evenly distributed
on the entire plane, indicating that the correlation of the ciphertext is greatly lessened.
By reducing the correlation of adjacent pixels, the proposed encryption algorithm effec-
tively avoids attackers from obtaining information from adjacent pixels when intercepting
ciphertext images.

Figure 22. Adjacent pixel correlation of “boat256”. (a) plain image “boat256”; (b–d) correlation of
adjacent pixels in the horizontal, vertical, and diagonal directions of (a); (e) ciphertext image of (a);
(f–h) correlation of adjacent pixels in the horizontal, vertical, and diagonal directions of (e).

Figure 23. Adjacent pixel correlation of “airfield512”. (a) plain image “airfield512”; (b–d) correlation
of adjacent pixels in the horizontal, vertical, and diagonal directions of (a); (e) ciphertext image of (a).
(f–h) correlation of adjacent pixels in the horizontal, vertical, and diagonal directions of (e).

Figure 24. Adjacent pixel correlation of “saturn1024”. (a) plain image “saturn1024”; (b–d) correlation
of adjacent pixels in the horizontal, vertical, and diagonal directions of (a); (e) ciphertext image of (a);
(f–h) correlation of adjacent pixels in the horizontal, vertical, and diagonal directions of (e).

5.4.3. Information Entropy Analysis

The concept of information entropy was first proposed by Shannon [36], which can be
used to quantify information and reflect the random distribution of images. Its calculation
formula is shown in Equation (23) [37]. The more disordered a system is, the higher
its entropy and the more effort it takes for an attacker to crack it. In image processing,
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ciphertext images with higher entropy can resist entropy attack. For a 256-level gray image,
the maximum value of information entropy is 8:

H =
255

∑
i=0

p(xi) log2
1

p(xi)
(23)

where xi represents the i-th pixel value, and p(xi) represents the probability of pixel xi.
Table 4 is the calculation results and comparative analysis of the information entropy of the
image sample in this experiment. The information entropy of ciphertext image is close to 8.
Compared with other algorithms, the proposed algorithm has greater information entropy.
This shows that the encrypted image is extremely random, which is difficult to crack.

Table 4. Information entropy.

Algorithm Image Information Entropy

Proposed boat256 7.9970
house256 7.9970
kod256 7.9964

all-white 7.9975
all-black 7.9975
hill512 7.9994

bridge512 7.9992
airfield512 7.9992
saturn1024 7.9998

tile roof1024 7.9998
Ref. [38] 256× 256 7.9899

512× 512 7.9914
1024× 1024 7.9919

Ref. [39] 256× 256 7.9975

5.5. Plain Image Sensitivity Analysis

Excellent encryption algorithms need to be able to resist differential attacks. In other
words, it is sensitive enough to the plain image, and the small change of the original image
will make the generated ciphertext image most different. Pixel change rate (NPCR) and
uniform average change intensity (UACI) are two indicators commonly used to describe the
ability of encryption algorithms to withstand differential attacks, and it is also possible to
estimate the performance of the diffusion process [40]. NPCR is to calculate the percentage
of differences numbers in the corresponding pixel values of two images in all pixels. UACI
portrays the difference between all the corresponding pixels of two images. The ideal
values of NPCR and UACI are 99.6094 and 33.4635, respectively. It can be calculated by
Equations (24) and (25) [41]:{

NPCR =
∑i,j D(i,j)

MN × 100D(i, j) =

{
0 C(i, j) = C′(i, j)
1 C(i, j) 6= C′(i, j)

(24)

UACI =
∑i,j |C(i, j)− C′(i, j)|

MN
× 100 (25)

where M and N represent the size of the image. C and C′ are the normal ciphertext image
and the ciphertext image obtained by changing one pixel of the plain image. NPCR and
UACI values of “boat256”, “airfield512”, and “saturn1024” are tested and listed in Table 5.
Compared with other algorithms, the results of the proposed algorithm are closer to the
ideal value. Therefore, the algorithm can resist differential attacks and is sensitive to
plain images.
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Table 5. Plain image sensitivity analysis.

Algorithm NPCR UACI

Proposed-boat256 99.6109 33.4645
Proposed-airfield512 99.6048 33.4054
Proposed-saturn1024 99.6036 33.4606

Ref. [35]-256× 256 99.6277 33.5045
Ref. [35]-512× 512 99.6025 33.4814

Ref. [35]-1024× 1024 99.6233 33.4678
Ref. [38]-256× 256 99.6002 33.5524
Ref. [38]-512× 512 99.5937 33.4086

Ref. [38]-1024× 1024 99.5991 33.4656
Ref. [42] 98.9874 33.2516

5.6. Peak Signal-to-Noise Ratio

Peak signal-to-noise ratio (PSNR) is the most common and widely used objective
evaluation index of image, which is used to measure the degree of image distortion. In the
field of image encryption, the degradation degree of the encrypted image is reflected by
calculating the PSNR of the plain image and the encrypted image. PSNR is defined by
mean square error (MSE) and calculated by the following equation [43]:

MSE =
1

MN

M−1

∑
i=0

N−1

∑
j=0

[P(i, j)− C(i, j)]2 (26)

PSNR = 10× log1 0(
(MAXI)

2

MSE
) (27)

where M and N represent the size of the image. P(i, j), C(i, j) represent the pixel of
the original image and the ciphertext image. MAXI is the maximum value of the pixel.
Generally speaking, the larger MSE and the smaller PSNR indicate that more severe image
distortion will affect the visual perception. Table 6 demonstrates the PSNR calculation
results of “boat256”, “airfield512”, and “saturn1024”. The results display that the ciphertext
image is seriously distorted, and no trace of the plain image can be seen.

Table 6. PSNR and MSE results.

Index MSE PSNR

boat256 7697.5205 9.2673
airfield512 9310.7735 8.4409
saturn1024 15,142.9713 6.3287

5.7. Running Performance
5.7.1. Computational Complexity

Computational complexity is also an important indicator for evaluating the quality of
an algorithm. Even with high security, algorithms are not sufficient for practical applica-
tions. Therefore, the algorithm needs to ensure that the computational complexity is as low
as possible on the basis of safety.

To compute the complications of performing the presented algorithm, the image size
as M × N is taken into consideration. Let n indicate the quantity of pixels inside the
image. The complexity of the presented algorithm can be determined by the following
discussed operations. These operations consist of secret key generation, fractal-like model
scrambling, row-column dual scrambling, and Hilbert dynamic random diffusion. The com-
putational complexity of secret key generation is O(n2), the complexity of fractal-like model
scrambling is O(3n2), the complexity of row-column dual scrambling is O(n2), and the
complexity of Hilbert dynamic random diffusion is O(n2). Therefore, the total complexity
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of the proposed image encryption scheme is O(5n2), which is much smaller than O(14n2)
of reference [33] and O(78n2) of reference [44].

5.7.2. Running Time

We tested the running time of all image samples in the experiment and performed
comparative analysis. The results are listed in Table 7. After a large number of comparative
analysis of encryption time with other relevant references, it can be noted that the proposed
algorithm has a higher speed when encrypting images of the same size. Since the whole
process is a symmetric algorithm, the time consumption of the decryption process is
theoretically the same as that of encryption. This also verifies the superiority of the
proposed algorithm.

Table 7. Running time analysis.

Algorithm Image Size Running Time (s)

Proposed-boat256 256× 256 0.0806
Proposed-house256 256× 256 0.0757
Proposed-kod256 256× 256 0.0774
Proposed-hill512 512× 512 0.3395

Proposed-airfield512 512× 512 0.3494
Proposed-bridge512 512× 512 0.3203
Proposed-saturn1024 1024× 1024 1.3284

Proposed-tile roof1024 1024× 1024 1.3175
512× 512 3.3833

Ref. [29] 256× 256 0.4060
Ref. [32] 256× 256 0.8158
Ref. [38] 256× 256 0.459837

512× 512 1.769703
1024× 1024 2.700164

Ref. [45] 512× 512 0.7738
Ref. [46] 256× 256 0.256722

512× 512 0.620413
1024× 1024 2.895086

5.8. Robustness Analysis

Cryptographic data are vulnerable to various threats when transmitted in open net-
work space, such as noise pollution and pixel loss. Hence, the ideal encryption scheme
should have strong robustness to resist different noise pollution and shear attacks [47].

5.8.1. Noise Attack

Figures 25–27 depict the robustness analysis results of “boat256”, “airfield512”, and
“saturn1024” against Salt and Pepper noise. The intensity of 0.5%, 1%, 5%, 10%, and 20% of
Salt and Pepper noise were added to the cipher image. As we can see, the decrypted image
is still visually valid. In addition, the ability of the algorithm to resist Gaussian noise is also
investigated. Figure 28 shows the result of “airfield512” to Gaussian noise. We added 0.1%,
0.5%, 1%, 5%, and 10% Gaussian noise to the cipher image, which can basically resume the
plain image after decryption. Experimental results certify that the proposed algorithm can
recovery the image clearly despite different degrees of noise attacks.
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Figure 25. Salt and Pepper noise test of “boat256”. The first row from left to right: encrypted image
with 0.5%, 1%, 5%, 10% and 20% Salt and Pepper noise added. The second row: decrypted image of
the corresponding cipher image in the first row.

Figure 26. Salt and Pepper noise test of “airfield512”. The first row from left to right: encrypted
image with 0.5%, 1%, 5%, 10% and 20% Salt and Pepper noise added. The second row: decrypted
image of the corresponding cipher image in the first row.

Figure 27. Salt and Pepper noise test of “saturn1024”. The first row from left to right: encrypted
image with 0.5%, 1%, 5%, 10%, and 20% Salt and Pepper noise added. The second row: decrypted
image of the corresponding cipher image in the first row.
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Figure 28. Gaussian noise test of “airfield512”. The first row from left to right: encrypted image
with 0.1%, 0.5%, 1%, 5%, and 10% Gaussian noise added. The second row: decrypted image of the
corresponding cipher image in the first row.

5.8.2. Clipping Attack

Apart from noise interference, the cipher image should also possess good anti-clipping
attack performance [48]. Cut out the size of 1/16, 1/8, 1/4, and 1/2 of the ciphertext image
“airfield512”, and the decryption results are portrayed in Figure 29. The main content of
the image is still visible even if the clipping rate reaches 1/2. Consequently, the proposed
algorithm can effectively resist clipping attack.

Figure 29. Clipping attack test of “airfield512”. The first row from left to right: encrypted image
has been clipped 1/16, 1/8, 1/4, 1/4 (middle), and 1/2. The second row: decrypted image of the
corresponding cipher image in the first row.

6. Conclusions

In this paper, based on four-dimensional fractional-order discrete Hopfield neural
network (4D-FDHNN), an image encryption scheme is proposed. In order to strengthen the
dynamic behavior of the chaotic system, the three-neuron chaotic system is improved and
obtains a new 4D-FDHNN. The experimental results of dynamic analysis show that the
system has good chaotic characteristics and is hyperchaotic. Then, 4D-FDHNN is applied to
the design of image cryptography system. The feature information of the original image is
extracted to generate the initial value of the chaotic system, and the plaintext correlation of
the key is realized. The encryption step is performed with the chaotic key stream generated
by the system. The scrambling process consists of two stages: fractal-like model scrambling
and row-column double scrambling. In addition, then, the Hilbert dynamic random
diffusion is performed to complete the entire encryption. Finally, a quantity of experimental
performance analyses show that the proposed algorithm has the characteristics of large key
space, high efficiency, and can resist various common attacks. In addition, the experimental
results in this paper are only shown with a single-channel image as an example, and the
proposed encryption scheme is also applicable to multi-channel images. The encryption
process of multi-channel image can be completed by performing the proposed encryption
method on the pixel matrix of each channel, and then synthesizing the generated ciphertext.
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