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Evaluation of machine learning 
algorithms for predicting 
direct‑acting antiviral treatment 
failure among patients with chronic 
hepatitis C infection
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Despite the availability of efficacious direct-acting antiviral (DAA) therapy, the number of people 
infected with hepatitis C virus (HCV) continues to rise, and HCV remains a leading cause of liver-
related morbidity, liver transplantation, and mortality. We developed and validated machine learning 
(ML) algorithms to predict DAA treatment failure. Using the HCV-TARGET registry of adults who 
initiated all-oral DAA treatment, we developed elastic net (EN), random forest (RF), gradient boosting 
machine (GBM), and feedforward neural network (FNN) ML algorithms. Model performances were 
compared with multivariable logistic regression (MLR) by assessing C statistics and other prediction 
evaluation metrics. Among 6525 HCV-infected adults, 308 patients (4.7%) experienced DAA treatment 
failure. ML models performed similarly in predicting DAA treatment failure (C statistic [95% CI]: 
EN, 0.74 [0.69–0.79]; RF, 0.74 [0.69–0.80]; GBM, 0.72 [0.67–0.78]; FNN, 0.75 [0.70–0.80]), and all 4 
outperformed MLR (C statistic [95% CI]: 0.51 [0.46–0.57]), and EN used the fewest predictors (n = 27). 
With Youden index, the EN had 58.4% sensitivity and 77.8% specificity, and nine patients were 
needed to evaluate to identify 1 DAA treatment failure. Over 60% treatment failure were classified 
in top three risk decile subgroups. EN-identified predictors included male sex, treatment < 8 weeks, 
treatment discontinuation due to adverse events, albumin level < 3.5 g/dL, total bilirubin level > 1.2 g/
dL, advanced liver disease, and use of tobacco, alcohol, or vitamins. Addressing modifiable factors of 
DAA treatment failure may reduce the burden of retreatment. Machine learning algorithms have the 
potential to inform public health policies regarding curative treatment of HCV.

Abbreviations
DAA	� Direct-acting antiviral
EN	� Elastic net
HCV	� Hepatitis C virus
NNE	� Number needed to evaluate
PPI	� Proton pump inhibitor
SVR	� Sustained virologic response

Hepatitis C virus (HCV) is the most common chronic bloodborne infection in the U.S. and a leading cause of 
liver-related morbidity, liver transplantation, and mortality1–4. The number of deaths resulting from HCV has 
exceeded the total number of deaths due to 60 other infectious diseases combined, including HIV, pneumococ-
cal disease, and tuberculosis, and the rate of HCV infection continues to increase1,5. In 2014, HCV treatment 
greatly improved with the approval of direct-acting antiviral (DAA) therapy, with therapeutic efficacy of 95% 
or higher6, yet new cases of this preventable disease are still increasing7–12. With less than a decade remaining 
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to reach the goal set by the World Health Organization to eliminate viral hepatitis by reducing new hepatitis 
infections by 90% and to reduce death due to hepatitis infections by 65% by 203013, HCV remains one of the top 
causes of chronic liver disease worldwide14.

The rate of treatment failures, though small in percentage (< 5%), remains large in number considering that 
the magnitude of patients with HCV means that a substantial number of first DAA therapy interventions will 
fail and that more patients will need to be treated in the near future15–17. To understand more about patients 
who are at high risk of treatment failure, a recent study by members of our team used machine learning to 
identify pretreatment risk factors to help clinicians identify factors that may be modifiable before initiation of 
DAA treatment18. That study found that an algorithm using a gradient boosting machine (GBM) performed 
effectively for DAA treatment risk prediction with 41 pretreatment predictors; the top 10 GBM-identified pre-
dictors included albumin, liver enzyme, and total bilirubin levels, sex, HCV viral load, sodium level, presence 
of hepatocellular carcinoma, platelet level and tobacco use18.

However, despite the best performance by the GBM algorithm among the four machine learning algorithms 
assessed in that study, the C statistic was suboptimal (0.69), suggesting that there may be important predictors 
not included in the model. We hypothesized here that predictors present during treatment, such as the duration 
of treatment, adherence to the prescribe medication treatment, and adverse events experienced, may better 
explain treatment failure when combined with patient characteristics present prior to treatment. Therefore, we 
developed and validated additional machine learning algorithms to predict DAA treatment failure, this time using 
predictors both before and during treatment. An overarching goal of the present study was to provide clinicians 
with a reasonable list of risk factors that may be amendable to modification prior to or during treatment of HCV 
to reduce the rate of DAA treatment failure.

Methods
Study design and participants.  The data for this cohort study were obtained from HCV-TARGET (Hep-
atitis C Therapeutic Registry and Research Network), a longitudinal, prospective, observational cohort study of 
the real-world administration of DAA therapy19. The use by HCV-TARGET of a standardized and centralized 
method to abstract data from medical records combined with a detailed data monitoring system ensures both 
the quality and integrity of the database. Patients included in the present study were 18 years of age or older, 
initiated an all-oral DAA HCV treatment regimen between February 2014 and 2018, had virologic outcome data 
available as of June 2019, and provided written informed consent to participate in HCV-TARGET. The DAA 
regimens used with or without ribavirin included ledipasvir/sofosbuvir; sofosbuvir plus daclatasvir; ombitasvir/
paritaprevir/ritonavir plus dasabuvir; elbasvir/grazoprevir; sofosbuvir/velpatasvir; sofosbuvir/velpatasvir/voxil-
aprevir; and glecaprevir/pibrentasvir. Patients who completed the assigned HCV treatment or who discontinued 
treatment early owing to efficacy concerns or adverse effects and who had virologic outcome data available were 
assigned to the per-protocol population. This report complies with the Transparent Reporting of a Multivariable 
Prediction Model for Individual Prognosis or Diagnosis (TRIPOD) guideline (Supplementary Table 1)20. This 
study was approved by the institutional review board of the University of Florida, Gainesville.

Primary outcome.  Sustained virologic response (SVR) was the primary efficacy end point and was defined 
as plasma HCV RNA levels undetectable or below quantitation 12 or more weeks after completing DAA treat-
ment.

Predictor candidates.  Given the results in prior studies21–23 as well as previous work by members of our 
team18, we assessed 359 variables as candidate predictors. The candidates included sociodemographic and clini-
cal characteristics, DAA treatment regimen and duration, and laboratory test results consisting of 242 predictors 
before therapy initiation and 117 predictors 4 weeks after initiation (Supplementary Table 2).

Approaches to machine learning and evaluation of prediction model performance.  A full 
description of the machine learning approach used in the present study was previously described18. In brief, our 
analyses generated risk prediction scores for DAA treatment failure per individual and then used these risk pre-
diction scores to group individuals into subgroups comprising similar DAA treatment failure risks. Two-thirds 
of patients were randomly assigned to a training sample for development of a prediction algorithm, which was 
then validated with the remaining one-third of patients. The prediction results of four commonly used machine 
learning approaches shown to have the best prediction results, elastic net (EN), random forest (RF), GBM, 
and feedforward neural network (FNN)24,25,  were compared with a multivariable logistic regression algorithm 
previously generated from HCV-TARGET data, which included as predictors male sex, albumin level, platelet 
count, total bilirubin level, history of previous treatment, proton pump inhibitor [PPI] use, and HCV genotype 
subtype26. The Methods in the Supplement describe the details for each of the machine learning approaches 
used. We assessed the discrimination performance ability of the various models by comparing the DAA treat-
ment failure rates of patients who had been predicted to be high risk of DAA treatment failure vs. the patients 
who had been predicted to be at low risk. Using the DeLong test, the C statistics (0.7–0.8 considered good; > 0.8, 
very good) and precision-recall curves for the various models were compared using the validation sample27. 
Eight metrics of evaluation were also assessed: sensitivity, specificity, positive predictive value (PPV), negative 
predictive value (NPV), positive likelihood ratio, negative likelihood ratio, number needed to evaluate (NNE) 
to identify 1 DAA treatment failure, and estimated positive alert rate. For the EN final model, we report beta 
coefficients and odds ratios. Because EN regularization does not provide an estimate of precision, 95% CIs are 
not given herein.
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Supplementary Table 3 gives the prediction metrics at numerous sensitivity and specificity levels, including 
the arbitrary selection of 90% sensitivity as an anchor and the use of the Youden index to obtained a threshold 
with balanced sensitivity and specificity28. To enable a more granular examination of patients at highest risk of 
DAA treatment failure, the validation sample was split into subgroups using the decile of the predicted risk score 
from the training algorithm. The highest decile was further split into three strata: the top first percentile, the 
second through fifth percentile, and the sixth through tenth percentile. Calibration plots were used to compare 
the agreement between the observed and predicted risk of DAA treatment failure for each risk subgroup. For 
potential clinical use, we report the top 25 most important prediction factors. For comparison of the training 
and validation samples, patient characteristics were analyzed using 2-tailed t tests for continuous variables and 
chi-square tests for categorical variables. All analyses were performed using SAS, version 9.4 (SAS Institute Inc, 
Cary, North Carolina) and Python, version 3.6 (Python Software Foundation, Delaware).

Results
Patient characteristics.  In total, 6525 patients (4894 in the training sample and 1631 in the validation 
sample) were included in this study. The sociodemographic (e.g. mean [SD] age, 57 [11] years; 60% male; 23% 
Black race and ethnicity; and 66% White race and ethnicity) and clinical characteristics (e.g. 36% with cirrhosis) 
of the training and validation groups were similar (Table 1). Approximately 50% of participants had HCV geno-
type subtype 1a, 15% had a viral load of at least 6 million IU/mL, 14% had a history of hepatic decompensation, 
and 8% had undergone a prior liver transplantation. Overall, 65% were treatment naïve and the three most com-
monly used DAA treatment regimens for the remaining patients were ledipasvir/sofosbuvir (39%), followed by 
sofosbuvir/velpatasvir (11%), and then glecaprevir/pibrentasvir (9%). At baseline, approximately 28% of patients 
reported PPI use, 35% reported vitamin use, 60% reported tobacco product use; and 29% reported alcohol use. 
Overall, 6217 patients (95.3%) achieved an SVR; however, 308 patients (4.7%) experienced DAA treatment fail-
ure.

Prediction performance.  The ability to predict DAA treatment failure was similar across the four machine 
learning models, which all performed better than the previously developed multivariable logistic regression 
model: EN (C statistic = 0.74, 95% CI = 0.69–0.79), FNN (C statistic = 0.75, 95% CI = 0.70–0.80), RF (C statis-
tic = 0.74, 95% CI = 0.69–0.80), GBM (C statistic = 0.72, 95% CI = 0.67–0.78), and multivariable logistic regres-
sion (C statistic = 0.51, 95% CI = 0.46–0.57) (Fig. 1A). Of the four machine learning models, the EN required the 
fewest predictors (EN = 27 vs. GBM = 47, FNN = 359 and RF = 268), and the GBM had slightly better precision-
recall performance (Fig. 1B) as assessed by the area under the receiving operating characteristic curves. Supple-
mentary Table 3 presents the prediction performance measures by sensitivity and specificity levels (90–100%). 
With performance measures balanced for sensitivity and specificity (using the Youden index), the EN approach 
had 58.4% sensitivity, 77.8% specificity, 11.5% PPV, 97.4% NPV, 9 needed to identify 1 DAA treatment failure, 
and 24 positive alerts per 100 patients. After setting the sensitivity to 90% to attempt to identify 90% of the 
observed DAA treatment failure, the EN had 44.3% specificity, 7.4% PPV, 98.9% NPV, 14 needed to identify 1 
DAA treatment failure, and 57 positive alerts per 100 patients (Fig. 1C,D; Supplementary Table 3).

Risk stratification by decile risk subgroup.  The observed (actual) DAA treatment failure rates for 
patients by each decile subgroup using the EN model are shown in Fig. 2. The high-risk subgroup (with risk 
scores in the top decile; 155 patients [9.5%] in the validation sample) had a PPV of 14.8% and needed 7 to 
identify 1 treatment failure. Of 77 patients with DAA treatment failure, 47 (61%) were assigned to 1 of the top 
3 subgroups (decile 1 = 30%, decile 2 = 15.6%, and decile 3 = 15.6%), that is, 7–22 per 100 patients. The DAA 
treatment failure rate in the first decile subgroup was at least 20-fold as high as that in the lower-risk groups 
(e.g. first percentile = 22.7% vs. tenth decile = 1.1%). Minimal rates of DAA treatment failure were found in the 
fourth through tenth decile subgroups (0.5–5 per 100 patients). The top 25 key predictors as identified by the 
EN model are shown in Fig. 3. Those predictors included male sex, DAA treatment duration < 8 weeks, treat-
ment discontinuation due to adverse events, advanced liver disease (i.e. cirrhosis and hepatocellular carcinoma), 
albumin level < 3.5 g/dL, total bilirubin level > 1.2 g/dL, alcohol or tobacco use, pain, hyperlipidemia, and use of 
immunosuppressants, PPI, or vitamins.

Discussion
In this cohort study, we used HCV-TARGET registry data to develop and evaluate four machine learning models 
to predict DAA treatment failure among patients treated for HCV. All four models showed good discrimination 
performance, outperforming models developed and assessed in a previous study by members of our group18 (C 
statistics 0.72–0.75 vs. 0.64–0.69) and substantially outperforming the multivariable logistic regression model 
result (C statistic, 0.51)29. As expected, the PPV was low given the low incidence of DAA treatment failure. 
However, the EN algorithm effectively subdivided the sample into different risk groups based on predicted risk 
scores, with 60% of the individuals with DAA treatment failure placed in the top three decile risk subgroups. The 
EN model was also the preferred and most parsimonious algorithm because it required only 25 predictors (vs. 
359 predictors for FNN), reducing computational time. Identifying these risk subgroups as well as risk factors 
may inform treatment strategies for patients with HCV.

In the previous machine learning study by members of our group using the same dataset as in the present 
study (HCV-TARGET), only predictor candidates of DAA treatment failure before DAA treatment were assessed. 
That study found that the factors most strongly associated with treatment failure were albumin, bilirubin and liver 
enzyme (aspartate aminotransferase, alkaline phosphatase) levels, male sex, HCV RNA level, and the presence of 
advanced liver disease18. In the present study, we assessed the same pretreatment factors but also included factors 
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associated with HCV treatment. Although low albumin levels, high bilirubin levels, male sex, and presence of 
advanced liver disease remained significant as predictors of DAA treatment failure, the other two factors (e.g. liver 
enzymes, HCV RNA level) previously found to be significant predictors did not. The most significant prediction 
factors in the present study were male sex, treatment duration < 8 weeks, or treatment discontinuation due to 
adverse effects, suggesting that treatment continuation is a key factor for achieving SVR. Although we do not 
know why patients discontinued early, further analysis indicated that 44% of patients had treatment durations 

Table 1.   Baseline sociodemographic and clinical characteristics of patients treated with all-oral DAAs and 
DAA treatment failure rates, stratified by training and validation samples. DAA direct-acting antiviral, HCV 
hepatitis C virus, MELD model for end-stage liver disease, RBV ribavirin.

Characteristic

No. (%) of patients in sample

Training (n = 4894) Validation (n = 1631)

Age, mean (SD), y 57.51 (10.6) 57.50 (10.5)

Sex

Male 2978 (60.9) 982 (60.2)

Race and ethnicity

White 3259 (66.6) 1080 (66.2)

Black 1126 (23.0) 378 (23.2)

Other/not reported 509 (10.4) 173 (10.6)

Cirrhosis 1780 (36.4) 564 (34.6)

Decompensated cirrhosis 688 (14.1) 225 (13.8)

Hepatocellular carcinoma 295 (6.0) 84 (5.2)

Liver transplantation 371 (7.6) 124 (7.6)

HCV genotype

1a 2,404 (49.1) 773 (47.4)

1b 1,162 (23.7) 383 (23.5)

3 650 (13.2) 204 (12.5)

Other/unknown 678 (13.9) 271 (16.6)

HCV RNA ≥ 6 million IU/mL 739 (15.1) 250 (15.3)

Albumin level ≥ 3.5 g/dL 3,784 (77.3) 1,252 (76.8)

Total bilirubin level ≤ 1.2 g/dL 4,268 (87.2) 1,433 (87.9)

Platelet count, median (range), × 103/μL 182 (6–746) 182 (3–548)

MELD score, median (range) 8 (6–39) 8 (6–33)

DAAs

Ledipasvir/sofosbuvir 1916 (39.1) 624 (38.2)

Ledipasvir/sofosbuvir + RBV 314 (6.4) 103 (6.4)

Ombitasvir/paritaprevir/ritonavir + dasabuvir 214 (4.4) 87 (5.3)

Ombitasvir/paritaprevir/ritonavir + dasabuvir + RBV 423 (8.6) 143 (8.8)

Glecaprevir/pibrentasvir 459 (9.4) 152 (9.3)

Glecaprevir/pibrentasvir + RBV 1 (0.0) 1 (0.0)

Elbasvir/grazoprevir 375 (7.7) 127 (7.8)

Elbasvir/grazoprevir + RBV 23 (0.5) 9 (0.5)

Sofosbuvir + daclatasvir 236 (4.8) 72 (4.4)

Sofosbuvir + daclatasvir + RBV 169 (3.5) 55 (3.4)

Sofosbuvir/velpatasvir 562 (11.5) 185 (11.3)

Sofosbuvir/velpatasvir + RBV 125 (2.5) 53 (3.3)

Sofosbuvir/velpatasvir/voxilaprevir 77 (1.6) 20 (1.2)

Treatment status

Naïve 3139 (64.1) 1068 (65.5)

Experienced 1309 (26.7) 434 (26.6)

DAA-experienced 284 (5.8) 86 (5.3)

Baseline use

Proton pump inhibitor 1350 (27.6) 465 (28.5)

Tobacco 2910 (59.5) 1011 (62.0)

Alcohol 1362 (27.8) 539 (33.0)

Vitamins 1715 (35.0) 552 (33.8)
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of < 8 weeks and discontinued treatment due to adverse effects (data not shown). Of those, 38% had ribavirin, 
which is known to be associated with anemia, nausea, pulmonary, and dermatologic adverse conditions30.

The use of machine learning statistical approaches enabled us to confirm the results of prior studies that found 
similar baseline predictors of treatment failure, including factors associated with advanced liver disease or with 
treatment for advanced liver disease (e.g. use of immunosuppressants, diuretics, pain medication, or bile and 
liver therapies), PPI use, albumin level < 3.5 g/dL, total bilirubin level > 1.2 g/dL, and male sex, and predictors 
associated with treatment discontinuation21,22. We also suggest that given the significant interaction with PPIs 
resulting in a reduction in SVR, clinicians should address how best to control patient symptoms during DAA 
treatment18,26. In contrast to the results of these studies, we did not find a significant association of HCV genotype 
(e.g. genotype 3 or 1a) with increased risk of DAA treatment failure. The lack of this association may be due to 
the more common use now of pangenotypic DAA regimens for treating HCV.

Among the top ten predictors of DAA treatment failure, we identified several potentially modifiable risk fac-
tors, including tobacco, alcohol, and vitamin use. Several studies using National Health and Nutrition Examina-
tion Survey data have reported that individuals with HCV are nearly 3 times as likely to smoke tobacco (62% vs. 
23%) and 3 times as likely to consume an average of more than 1 drink per day (36% vs. 14%) than individuals 
without HCV31,32. More than half of patients with HCV included in the present study smoked cigarettes, and 

A. Area under the ROC curve   B. Precision-recall plot

C. Number needed to evaluate    D. Alerts per 100 patients 

Figure 1.   Prediction performance of 4 machine learning models vs. a multivariable logistic regression model. 
FNN feedforward neural network, EN elastic net, GBM gradient boosting machine, MLR multivariable logistic 
regression, RF random forest, ROC receiver operating characteristic. Data were derived using the validation 
sample, which comprised 1631 patients: 1554 with direct-acting antiviral treatment success, and 77 with 
treatment failure. (A), Results include C statistics and 95% CIs. (B), precision is equivalent to the positive 
predictive value, and recall to sensitivity). Models with curves closer to the upper right corner or above another 
curve have improved performance. (C), Number needed to evaluate by different cutoff points for sensitivity. (D), 
Alerts per 100 patients by various sensitivity cutoff points.
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30% reported alcohol use at baseline, which is well representative of patients with HCV in the U.S. Another 
study found that 32% of patients with HCV treatment reported alcohol use and that unhealthy alcohol users 
(adjusted odds ratio, 0.75) among veterans with HCV were less likely to achieve SVR than those who were absti-
nent or reported low-level alcohol use33. Although the present study results suggested that the vast majority of 
patients with HCV were cured in the era of available DAA therapy, tobacco and alcohol use may be associated 
with decreased SVR rate or may serve as markers for patients at risk of treatment failure. It is also important 
to recognize that continued alcohol and tobacco use even after SVR may put patients at risk for progression of 
liver disease31,33.

The use of vitamins as a factor associated with DAA treatment failure has not been previously reported, but 
several studies have demonstrated that deficiency in vitamin A or vitamin D is a risk factor for fibrosis and for 
interferon/ribavirin treatment failure among patients with HCV infection34–36. We postulate that it may not be 
the use of vitamins themselves that is associated with DAA treatment failure, but that their use may be a proxy 
measure for the presence of a vitamin deficiency or malnutrition. A recent meta-analysis reported that low vita-
min levels are common among patients with HCV infection and are associated with advanced liver fibrosis37,38. 
In the present study, we also found that patients with vitamin use were more likely to be older (59.7 vs. 56.4 years) 
and have advanced liver diseases (e.g. cirrhosis 39.5% vs. 34.0%; hepatocellular carcinoma 8.7% vs. 4.3%) [data 
not shown]. Nonetheless, further research is needed to validate our findings and to determine why multivitamin 
use may be adversely associated with or interact with DAAs.

Together, the findings of the present study have important implications for clinicians. First, in the high-risk 
group with many known risk factors, more than 95% of the group achieved SVR, suggesting that despite these 
risk factors, DAA treatment should be prescribed when indicated. Second, pretreatment risk factors, such as 
indictors of liver function, while important should not be used as discriminators when making decisions regard-
ing whether to prescribe treatment. Rather, clinicians should continuously encourage treatment adherence and 
offer alternative ways to address modifiable risk factors (e.g. smoking cessation).

This study has several limitations. First, we did not include data on baseline resistance-associated substitutions 
(RASs) in NS3 or NS5A proteins. Although RASs have been associated with treatment failure, their contribution 
appears to be minimal and routine baseline RAS testing is not recommended39,40. Second, although we did not 
use an external validation data set, the present study expanding on the recent study by members of our group18 
found that the factors associated with SVR failure remained similar to those of the previous study. In addition, 
we used data from the HCV-TARGET registry, one of the largest databases for patients with HCV infection 
prescribed DAAs in the U.S. Nevertheless, our results should be validated with other data sets. Third, machine 
learning requires extensive amounts of data and may incur high computational costs. However, by selecting the 
most parsimonious model (the EN model with 25 predictors), we reduced computational costs while maintain-
ing high prediction validity and accuracy. Fourth, it is important that our results not be interpreted as causal 
inference between individual predictors and treatment failure but as associations.

In conclusion, the present study demonstrated that machine learning approaches provide a simple algorithm 
for identifying factors predictive of DAA treatment failure. Given that the number of HCV infection cases 
is increasing and that the number of patients with the infection still requiring treatment is high, addressing 
modifiable factors of DAA treatment failure (tobacco, alcohol, vitamin and PPI use) may reduce the burden of 
retreatment. Machine learning algorithms have the potential to inform public health policies regarding curative 
treatment of HCV.
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Data availability
The data that support the findings of this study are available from HCV-TARGET research consortium, but 
restrictions apply to the availability of these data, which were used under license for the current study, and so 
are not publicly available. Data are however available from the authors (Joy Peter; joy.peter@medicine.ufl.edu) 
upon reasonable request and with permission of HACV-TARGET research consortium.
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