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Abstract
Although multicenter data are common, many prediction model studies ignore this

during model development. The objective of this study is to evaluate the predictive

performance of regression methods for developing clinical risk prediction models

using multicenter data, and provide guidelines for practice. We compared the pre-

dictive performance of standard logistic regression, generalized estimating equations,

random intercept logistic regression, and fixed effects logistic regression. First, we

presented a case study on the diagnosis of ovarian cancer. Subsequently, a simulation

study investigated the performance of the different models as a function of the amount

of clustering, development sample size, distribution of center-specific intercepts, the

presence of a center-predictor interaction, and the presence of a dependency between

center effects and predictors. The results showed that when sample sizes were suf-

ficiently large, conditional models yielded calibrated predictions, whereas marginal

models yielded miscalibrated predictions. Small sample sizes led to overfitting and

unreliable predictions. This miscalibration was worse with more heavily clustered

data. Calibration of random intercept logistic regression was better than that of stan-

dard logistic regression even when center-specific intercepts were not normally dis-

tributed, a center-predictor interaction was present, center effects and predictors were

dependent, or when the model was applied in a new center. Therefore, to make reliable

predictions in a specific center, we recommend random intercept logistic regression.

K E Y W O R D S
calibration, discrimination, multicenter, random effects, risk prediction model

1 INTRODUCTION

Clinical risk prediction models have the purpose of enhancing personalized medicine: they yield personalized risk estimates

based on several predictors. When performing clinical studies, multicenter data is often used. For example, 64% of the models

published after the year 2000 in the Tufts PACE Clinical Prediction Model Registry are developed on multicenter data (Wynants,

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium,

provided the original work is properly cited and is not used for commercial purposes.

© 2020 The Authors. Biometrical Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

932 www.biometrical-journal.com Biometrical Journal. 2020;62:932–944.

https://orcid.org/0000-0002-9533-0859
https://orcid.org/0000-0003-1613-7450
https://orcid.org/0000-0002-3707-6645
https://orcid.org/0000-0002-3037-122X
http://creativecommons.org/licenses/by-nc/4.0/


FALCONIERI ET AL. 933

Kent, Timmerman, Lunquist, & Van Calster, 2019). This practice has two advantages: enhancing the efficiency of the data

collection process as well as the generalizability of results. However, data are no longer independent, because patients within

the same center tend to be more similar than patients from different centers (“clustering”) (Snijders & Bosker, 2012).

Although multicenter data are common, many prediction model studies ignore this during model development. In a random

selection of 50 multicenter studies from the Tufts Registry, only 11 studies addressed the multicenter nature in some aspect of

the analysis (Wynants et al., 2019).

Methodology for clustered data in randomized clinical trials is well developed. This is not the case for prediction research.

There are several ways to take into account clustering: random effects models, fixed effects models including dummies for all

minus 1 cluster (i.e., center), and generalized estimating equations. Previous studies claim that fixed effects models should be

used to analyze trial data when there are few centers and when the number of people in each center is sufficiently large (Kahan,

2014; Kahan & Harhay, 2015). The number of coefficients to be estimated increases with the number of centers, and estimates

become less precise as the number of patients per center decreases. In contrast, for the random intercept model, only one extra

variable needs to be estimated: the random intercept variance. However, this requires the assumption of normality for the center

effects. It is also thought that random intercept models should only be used when there is an adequate number of centers to make

sure there is sufficient information to estimate the random intercept variance (Kahan, 2014; Kahan & Harhay, 2015; Moineddin,

Matheson, & Glazier, 2007).

Usually, prediction models are intended to be broadly applied in a wide variety of clinical centers. When validating the

model performance, it should be investigated whether the model performs well within individual centers. It has therefore been

recommended to use within-center performance measures, which also allow to investigate heterogeneity in performance between

centers (Meisner, Parikh, & Kerr, 2017; Van Klaveren, Steyerberg, Perel, & Vergouwe, 2014; Wynants, Vergouwe, Van Huffel,

Timmerman, & Van Calster, 2018).

This paper compares different approaches to account for multicenter data when developing risk prediction models. We demon-

strate the modeling approaches in a case study to diagnose ovarian cancer and perform a simulation study to investigate different

possible scenarios. Based on our findings, we formulate recommendations for practice.

2 MOTIVATING CASE STUDY: DIAGNOSIS OF OVARIAN CANCER

When a suspicious ovarian tumor is detected, it is important to predict whether it is malignant prior to surgery. High-risk tumors

should then be referred for specialized oncological care, whereas low-risk tumors may be treated locally. We developed and

validated risk models for ovarian malignancy on data from the International Ovarian Tumor Analysis group (IOTA). Data from

IOTA phases 1, 1B, and 2 (1999–2007, n = 3,506, 21 centers) (Timmerman et al., 2005, 2010; Van Holsbeke et al., 2009) were

used for model development. Data from phase 3 (2009–2012, n = 2,403, 18 center) (Testa et al., 2014) were used to externally

validate model performance. The validation data included data from 15 centers that also contributed to the development dataset,

as well as data from three new centers. Overall, the data included 5,909 patients from 24 different centers. The number of patients

per center was on average 246 (range 11 to 930). The prevalence of malignant tumors was 33% but center-specific prevalences

ranged from 0 to 66%, reflecting differences in the specialization of centers in ultrasound and oncology. The outcome variable

was whether the tumor was malignant (Y = 1) or benign (Y = 0). The predictor variables used in the models were age, whether

the tumor had more than 10 locules, the proportion of solid tissue, the number of papillary structures, the presence of acoustic

shadows, the presence of ascites, and the maximal diameter of the lesion (Table 1).

2.1 Model development
Four models were fitted in the development set: a standard logistic regression model (SLR), a generalized estimating equation

assuming an exchangeable correlation structure (GEE), a random intercept logistic regression model (RILR), and a fixed effects

logistic regression model (FELR). SLR ignores clustering by center (Neuhaus, 1992; Wynants et al., 2018). GEE takes into

account clustering for the estimation of parameter effects and standard errors, but treats the correlation in the data as nuisance

(Zeger, Liang, & Albert, 1988). SLR and GEE only make marginal predictions, that is, predictions that should be interpreted

at the population level (Neuhaus, 1992; Wynants et al., 2018; Zeger et al., 1988). RILR and FELR allow the intercept to be

different in each center and can therefore make conditional predictions for a patient in a specific center (Neuhaus, 1992; Wynants

et al., 2018).

To make conditional predictions for a new patient coming from a center included in the development set based on FELR or

RILR, the center-specific intercept was used. For patients from centers that were not included in the development set, the mean
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T A B L E 1 Descriptive statistics of the IOTA dataset for ovarian cancer diagnosis (N = 5909)

Variable Median (IQR), or n (%)
Age (years) 47 (35;60)

Maximum lesion diameter (mm) 69 (48;100)

Proportion of solid tissue in the lesion 0.11 (0.00;0.66)

Number of papillations

0 4771 (81%)

1 495 (8%)

2 148 (3%)

3 137 (2%)

4 or more 358 (6%)

Number of locules > 10 471 (8%)

Presence of acoustic shadows 742 (13%)

Presence of ascites 720 (12%)

Malignant mass (outcome) 1929 (33%)

Abbreviation: IQR, interquartile range.

of all the center-specific intercepts was used as the intercept in case of FELR (unweighted average, computed post estimation)

and RILR (random intercept set to 0). Three types of predictions were obtained from RILR: apart from conditional predictions,

we also derived marginal predictions (integrating over the random intercept) (Pavlou, Ambler, Seaman, & Omar, 2015), and

average center predictions (using the average intercept for all patients by setting the random intercept to 0).

2.2 Model evaluation
Although unbiased regression coefficients and type 1 error rate are important considerations in the context of etiological research

and clinical trials, in prediction research the focus should be on the predictive performance in new subjects. Hence, we evaluated

discriminative performance using the c-statistic, which was defined as the probability that a patient with the event has a higher

predicted probability than a patient without the event (Steyerberg, 2009). Perfect discrimination results in a c-statistic of 1. When

the model cannot discriminate between patients with and without the event, the c-statistic is 0.5. We also evaluated performance

in terms of calibration, which refers to agreement between predicted probabilities and observed event rates (Steyerberg, 2009;

Van Calster et al., 2016). We summarized calibration performance through the calibration intercept and calibration slope. The

calibration intercept assesses whether the predicted probabilities are correct on average (Steyerberg, 2009; Van Calster et al.,

2016). Predicted probabilities are on average overestimated if the calibration intercept is below 0 and underestimated if the

calibration intercept is above 0. The calibration slope assesses extremity of risks (Steyerberg, 2009; Van Calster et al., 2016).

A slope below 1 indicates the predicted probabilities were too extreme (too close to 0 or 1), and a slope above 1 indicates the

predicted probabilities are too modest (too close to the prevalence). The calibration slope is influenced by overfitting on the

development data and by true differences in effects of predictors between the development and validation data (Steyerberg,

2009; Vergouwe, Moons, & Steyerberg, 2010). Wynants et al. (2018) mention that the calibration slope is also influenced by the

choice of model (marginal or conditional), the type of predictions, and the level of validation.

We focused on center-level performance, by reporting the within-center c-statistic, calibration slope, and calibration intercept.

The within-center c-statistic only compares pairs of events and nonevents within the same centers. The average center-specific

c-statistic was computed, weighted by the number of pairs of events and nonevents (Van Oirbeek & Lesaffre, 2012; Wynants

et al., 2018). Random effects logistic regression was used to estimate the within-center calibration statistics (Bouwmeester

et al., 2013). The variance of the center-specific calibration intercepts and slopes was examined to investigate the heterogeneity

in calibration performance between centers. Population level performance can be found in the Supporting Information.

2.3 Results
All approaches yielded a c-statistic around 0.91 (Table 2). All calibration intercepts were above 0 indicating the probability

of malignancy was on average underestimated. The best calibration intercepts were found for approaches yielding conditional

predictions (FELR and RILR with conditional predictions). These approaches also had the smallest variance in calibration

intercepts between centers. Conditional predictions already account for differences in prevalence between centers. Hence, these
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T A B L E 2 c-Statistic and calibration results for the case study on the diagnosis of ovarian cancer

Modeling approach c-Index
Calibration
intercept

Variance of
calibration intercept

Calibration
slope

Variance of
calibration slope

FELR 0.910 0.180 0.231 0.915 0.0003

RILR—conditional 0.910 0.225 0.202 0.920 0.0006

RILR—average RI 0.910 0.405 0.459 0.924 <0.0001

RILR—marginal 0.910 0.345 0.416 0.993 <0.0001

GEE 0.911 0.243 0.406 1.008 <0.0001

SLR 0.911 0.400 0.431 0.953 0.0001

Abbreviations: FELR, fixed effects logistic regression; GEE, generalized estimating equations; RILR, random intercept logistic regression; SLR, standard logistic regres-

sion.

models yield improved and more stable calibration intercepts within centers. The marginal models (GEE, RILR with marginal

predictions, and to a lesser extent SLR) yielded calibration slopes around 1 while the conditional models (FELR, RILR with

conditional or average center predictions) resulted in slightly lower slopes (around 0.92). For all approaches, the between-

center variance in calibration slope was very small, indicating the calibration slopes for the different centers were very similar.

Three factors may explain why calibration slopes deviate from 1: the choice of model, overfitting, and a difference in effects of

predictors between the development and validation set (Steyerberg, 2009; Wynants et al., 2018). To disentangle these effects, a

simulation study was conducted in the next section.

3 SIMULATION STUDY

We conducted a simulation study to compare the predictive performance of the different modeling approaches across various

settings. The setup of the simulation study was similar to Wynants et al. (2018). Two basic source populations of 104,157 patients

from 200 centers were created with an intraclass correlation (ICC) of 5% (limited clustering) or 20% (heavy clustering). The

model used to generate the source populations was a random intercept model containing four uncorrelated continuous predictors

and four uncorrelated dichotomous predictors. The continuous predictors had a mean of 0 and standard deviation 1, 0.6, 0.4,

and 0.2, respectively. The dichotomous predictors had a prevalence of 0.2, 0.3, 0.3, and 0.4, respectively. The random intercept

variance was determined by the desired ICC, resulting in a variance of 0.173 when the desired ICC was 5% and 0.822 when the

desired ICC was 20%. The overall intercept was −2.1 and the regression coefficients of all predictors were 0.8. This resulted in

an event rate of 0.3. The outcome variable Yij was generated by computing the predicted probability of experiencing the event,

pij, based on the model described above, and comparing it to a randomly drawn value from a uniform distribution.

From these two source populations, we sampled development datasets by varying two basic parameters (Table 3). First, the

number of centers was either 5 or 50. Second, the number of patients per center was either 50 or 200. This resulted in eight

basic scenarios. Scenario 7 (heavy clustering and 50 centers) was repeated with the number of patients per center drawn from

a Poisson distribution with lambda 50 rather than a fixed center size of 50 patients. The size of the development datasets was

determined by the number of centers and the number of patients per center, and hence varied between 250 and 10,000. The

remaining part of the source population served as the validation set.

Three additional situations were investigated (Table 3). First, the effect of misspecifying the random effects distribution was

investigated by assessing the effect of a nonnormal true random effects distribution on the predictive performance. Therefore,

two additional source populations were created with ICC 20%, where the random intercept had either an underlying uniform or

skewed extreme value distribution (see Supporting Information Figure C.1). In both cases, the mean and variance were equal

to those where the distribution was normal. Second, we examined the impact of ignoring a center-predictor interaction (i.e.,

“random slope”). Therefore, one additional source population was created, including a random slope for X1 with a variance

equal to half the variance of the random intercept (random intercept variance: 0.822; random slope variance: 0.411). Third, we

examined the effect of a dependence between the random intercept and the predictors. Such a dependence may occur when the

distributions of predictors vary across centers. Therefore, an additional source population was created with ICC = 20%, which

included a positive correlation between the random intercept and predictors X1 (Pearson correlation ≈ 0.5) and X5 (point biserial

correlation ≈ 0.2). For these additional situations, we always sampled development datasets with 50 centers and 200 patients

per center. Thus, we used six source populations to investigate 12 scenarios.

The number of datasets drawn per simulation scenario was set to 500. In each dataset, we applied the SLR, GEE, FELR, and

RILR approach. The fitted models were prespecified and used all eight predictors. For the scenario where the source population
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T A B L E 3 Summary of scenarios for the simulation study

Scenario
ICC of
intercept N centers Patients/center

Distribution
intercepts

Random
slope

Dependence
int-pred

Source
population

1 5 5 50 Normal No No 1

2 5 5 200 Normal No No 1

3 5 50 50 Normal No No 1

4 5 50 200 Normal No No 1

5 20 5 50 Normal No No 2

6 20 5 200 Normal No No 2

7 20 50 50** Normal No No 2

8 20 50 200 Normal No No 2

9 20 50 200 Uniform No No 3

10 20 50 200 Extreme value No No 4

11 20* 50 200 Normal Yes No 5

12 20 50 200 Normal No Yes 6

Dependence int-pred: a dependency between the center effect and the predictors X1 and X5.
∗In case of a random slope, this is an underestimation of the true ICC.
∗∗This scenario was investigated twice: once with a fixed number of 50 patients per center, and once with the number of patients per center drawn from a Poisson distribution

with lambda 50.

contained a random slope, we also fitted a random effects model including a random intercept and random slope for X1 and a

fixed effects model including an interaction between X1 and center. For the scenario where the source population included a

correlation between the random intercept and two predictors, we fitted a random intercept model including instead of X1 and X5
the center-specific means (𝑋1

𝑐

and 𝑋5
𝑐

), and the centered versions of X1 and X5 (X1−𝑋1
𝑐

and X5−𝑋5
𝑐

). This is called “poor

man’s method” (PMM) and solves the correlation between the random intercept and the predictor (Neuhaus & Kalbfleisch,

1998; Snijders & Bosker, 2012).

With respect to convergence criteria, for the random effects models, 10–100 iteration to fit the model and a maximum absolute

relative gradient <0.001 were used. For both the standard logistic regression and the fixed effects model, maximally 50 iterations

were used and convergence was assumed if the change in deviance evaluated as |dev − devold|/(|dev| + 0.1) was smaller than

10−8. The maximum number of iterations for the GEE was 25. The iterations converged if the absolute difference in parameter

estimates of the models fitted in the last two iterations was below 10−4. Samples with nonconverging models were removed

from the analysis. Between 0 and 39 (median 2.5) of 500 runs per simulation scenario were deleted from the analysis due to

convergence problems (see Supporting Information Table B.1).

During validation, predictions were made based on the different models. As in the case study, three types of predictions were

obtained from RILR: conditional predictions, marginal predictions (integrating over the random intercept) (Pavlou et al., 2015),

and average center predictions (using the average intercept for all patients). To make conditional predictions for a new patient

coming from a center included in the development set based on FELR or RILR, the center-specific intercept was used. For

patients from centers that were not included in the development set, the mean of all the center-specific intercepts was used as

the intercept in case of FELR and the random intercept was set to 0 in case of RILR.

4 RESULTS

Since the purpose of prediction models is to use them in a practical setting in which one wants to make a prediction concerning

the health of a specific individual in a specific center, validation was conducted on the center level using the within-center c-

statistic, calibration slope, and calibration intercept. The validation results on the population level can be found in the Supporting

Information.

4.1 Data clustering and sample size
In case of heavily clustered data (ICC 20%), the different models performed very similar in terms of discrimination (Figure 1).

Remarkably, the fixed effects model discriminated well when there were many center effects to be estimated (50) and only 50

patients per center, and the random intercept model discriminated well when there were only five centers.
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F I G U R E 1 Center-level c-statistics, calibration slopes, and calibration intercepts obtained by different models using different sample sizes.

The source population used for sampling has an ICC of 20%. The boxplots are made based on the values obtained by fitting and validating the

models 500 times. FELR, fixed effects logistic regression; C.RI, random intercept logistic regression using center-specific random effects; A.RI,

random intercept logistic regression assuming average random intercept; M.RI, random intercept logistic regression integrating over the random

effect; GEE, generalized estimating equations; SLR, standard logistic regression

Using samples of size 10,000 (50 × 200) for model development should prevent statistical overfitting and hence, a perfect

calibration slope of 1 was expected. However, the median calibration slopes obtained by the marginal models were slightly

greater than 1, indicating the predicted probabilities were not extreme enough (Figure 1). This is typical for marginal predictions

evaluated at the center level (Wynants et al., 2018). In contrast, the conditional predictions were well calibrated on the center

level. In case of 50 centers and 50 patients per center, the FELR resulted in a calibration slope slightly smaller than 1 yielding

predicted probabilities that were too extreme. This is likely because many center effects need to be estimated and there is not

a lot of information to do so. Further, in contrast to RILR, FELR does not use shrinkage of center effects (Snijders & Bosker,

2012).

Development samples with 50 centers and number of patients per center drawn from a Poisson distribution with lambda 50

led to very similar results as those with 50 centers and 50 patients per center (see Supporting Information Figure C.2).
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T A B L E 4 Average between-center variance in calibration slope and intercept for all simulation conditions

Average between-center variance in calibration slope Average between-center variance in calibration intercept
50 centers,
200 patients

50 centers,
50 patients

5 centers,
200 patients

5 centers,
50 patients

50 centers,
200 patients

50 centers,
50 patients

5 centers,
200 patients

5 centers,
50 patients

ICC 5% ICC 5%

FELR 0.000116 0.000085 0.000115 0.000111 FELR 0.150412 0.177106 0.186903 0.208066

C.RI 0.000122 0.000115 0.000117 0.000116 C.RI 0.148607 0.159240 0.185964 0.202366

A.RI 0.000140 0.000126 0.000117 0.000117 A.RI 0.183680 0.185150 0.188629 0.204069

M.RI 0.000128 0.000113 0.000110 0.000116 M.RI 0.178831 0.180260 0.184730 0.198751

GEE 0.000150 0.000134 0.000124 0.000122 GEE 0.178861 0.180328 0.184637 0.198974

SLR 0.000151 0.000134 0.000125 0.000121 SLR 0.178940 0.180433 0.184862 0.199143

ICC 20% ICC 20%

FELR 0.000077 0.000286 0.000075 0.000109 FELR 0.674014 0.750286 0.881381 0.972753

C.RI 0.000079 0.000074 0.000076 0.000096 C.RI 0.670376 0.691240 0.877074 0.943464

A.RI 0.000092 0.000079 0.000077 0.000097 A.RI 0.873327 0.878462 0.893019 0.958137

M.RI 0.000030 0.000021 0.000046 0.000106 M.RI 0.790956 0.795093 0.826034 0.874434

GEE 0.000122 0.000104 0.000098 0.000126 GEE 0.788471 0.794514 0.822628 0.872537

SLR 0.000124 0.000106 0.000100 0.000129 SLR 0.791373 0.796660 0.826182 0.879553

Uniform
Extreme
value

Random
slope Dependency Uniform

Extreme
value

Random
slope Dependency

FELR 0.000495 0.000191 0.092956 0.013896 FELR 0.637479 0.642016 0.631857 1.315885

C.RI 0.000506 0.000194 0.094201 0.014242 C.RI 0.634314 0.638339 0.628595 1.283717

A.RI 0.000511 0.000200 0.094578 0.009999 A.RI 0.824441 0.827155 0.817809 1.679083

M.RI 0.000742 0.000564 0.126408 0.015162 M.RI 0.749575 0.753922 0.745689 1.463101

GEE 0.000679 0.000269 0.124778 0.017505 GEE 0.747183 0.748578 0.746005 1.380622

SLR 0.000665 0.000274 0.124797 0.014860 SLR 0.751348 0.745451 0.747522 1.236863

FELR2 0.070592 FELR2 0.676374

C.RS 0.072043 C.RS 0.665660

A.RS 0.087735 A.RS 0.865532

PMM 0.014343 PMM 1.286822

C.PMM 0.014412 C.PMM 1.281027

Abbreviations: FELR, fixed effects logistic regression; C.RI, random intercept logistic regression using center-specific random effects; A.RI, random intercept logistic

regression assuming average random intercept; M.RI, random intercept logistic regression integrating over the random effect; GEE, generalized estimating equations; SLR,

standard logistic regression; FELR2, fixed effects logistic regression including center-predictor interactions; C.RS, random slope logistic regression using center-specific

random effects; A.RS, random slope logistic regression assuming average random effects; PMM, random intercept logistic regression with poor man’s method for X1 and

X5 assuming average random intercept; C.PMM, random intercept logistic regression with poor man’s method for X1 and X5 using center-specific random effects.

Decreasing the sample size leads to overfitting, which lowers calibration slopes for all models. As a result, when the sample

sizes were small (5 × 50), marginal model predictions led to calibration slopes close to 1. The overfitting hence masks the

disadvantageous effect of marginal models on the calibration slope.

Models making conditional predictions led to adequate calibration intercepts. Marginal models tended to yield slightly neg-

ative calibration intercepts (Figure 1), suggesting some overestimation of predicted risks.

Within each simulation, the center-level results are averaged over the centers. Hence, results about heterogeneity in perfor-

mance between centers had to be evaluated as well. The average estimated between-center variance in calibration slopes was

negligible for all types of predictions and sample sizes (<0.0003; Table 4). In case of a development sample of size 10,000

(50 × 200), the average estimated between-center variance of the calibration intercepts was lowest for the conditional predic-

tions based on the random intercept or fixed effects model (0.67; Table 4). The lower variance for conditional predictions was

expected, since center-specific predictions could be used for centers included in the development set. When there were only five

centers in the development sample, the conditional predictions no longer led to a reduction in variance compared to the other

predictions.
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F I G U R E 2 Center-level c-statistic, calibration slope, and calibration intercept for the different models in case of a uniform and extreme value

random effects distribution. FELR, fixed effects logistic regression; C.RI, random intercept logistic regression using center-specific random effects;

A.RI, random intercept logistic regression assuming average random intercept; M.RI, random intercept logistic regression integrating over the

random effect; GEE, generalized estimating equations; SLR, standard logistic regression

The same patterns for the c-statistic, calibration slope, and intercept were observed when the ICC was 5%, but the differences

between the conditional and the marginal models were less pronounced (see Supporting Information Figure C.3).

4.2 Violation of the normality assumption
When the center effects followed a uniform or extreme value distribution, the c-statistics, calibration slopes, and calibration

intercepts were very similar for all conditional models (Figure 2). As before, the marginal models showed miscalibration.

Average estimated variances of the slopes were very small for all models (uniform: <0.00075; extreme value: <0.0006). The

average estimated variance of the intercepts were smallest for the conditional predictions based on the fixed effects logistic

regression and random intercept model using the estimated random effects (0.63–0.64) (Table 4).

These results were very similar to the basic simulation results, indicating that in the context of risk prediction the random

intercept model is robust against violations of the normality assumption.

4.3 Center-predictor interaction (“random slope”)
Ignoring the presence of a center-predictor interaction only affected the calibration slope (Figure 3). All models ignoring the

interaction produced predicted probabilities that were too close to the overall prevalence (FELR, C.RI, A.RI, M.RI, GEE, SLR:

slope > 1), but miscalibration was worse for the marginal models.

When taking into account the center-predictor interaction by including a random slope in the random effects model (C.RS) or

by including interaction terms in the fixed effects model (FELR2), the C-index could be improved (Figure 3). However, median

calibration slopes were below 1, indicating the predicted probabilities were too extreme. (In case validation was performed on

new patients from the same centers as in the development phase, the conditional predictions were calibrated.)

Including center-predictor interactions in the model led to improved between-center variance in calibration slopes for FELR2

and C.RS compared to FELR and C.RI (0.07 vs. 0.09), but not in calibration intercepts (0.67–0.68 vs. 0.63, Table 4). As before,
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F I G U R E 3 Center-level c-statistic, calibration slope, and calibration intercept for the different models in case there is a center-predictor

interaction present in the source populations. FELR, fixed effects logistic regression; FELR2, fixed effects logistic regression including

center-predictor interactions; C.RI, random intercept logistic regression using center-specific random effects; C.RS, random slope logistic regression

using center-specific random effects; A.RI, random intercept logistic regression assuming average random intercept; A.RS, random slope logistic

regression assuming average random effects; M.RI, random intercept logistic regression integrating over the random effect; GEE, generalized

estimating equations; SLR, standard logistic regression

F I G U R E 4 Center-level c-statistic, calibration slope, and calibration intercept for the different models in case there is a dependence between

the random intercept and predictors X1 and X5 present in the source populations. FELR, fixed effects logistic regression; C.RI, random intercept

logistic regression using center-specific random effects; C.PMM, random intercept logistic regression with poor man’s method for X1 and X5 using

center-specific random effects; A.RI, random intercept logistic regression assuming average random intercept; PMM, random intercept logistic

regression with poor man’s method for X1 and X5 assuming average random intercept; M.RI, random intercept logistic regression integrating over

the random effect; GEE, generalized estimating equations; SLR, standard logistic regression

between-center differences in calibration were smallest for the conditional predictions based on the fixed effects logistic regres-

sion and the random intercept model (Table 4).

4.4 Dependence between center effect and predictors
A dependence between the center effects and predictors is likely to occur when the distribution of predictors varies across centers,

for example, due to referral patterns: when nondiseased patients with risk factors indicative for disease are frequently send to

specialized centers with a high disease prevalence. In this situation, a random effects model cannot disentangle the within-center

effect (presence of a risk factor in a patient increases this individual’s probability of disease) and between-center effect (centers

with a high prevalence also see a lot of patients with the risk factor, but not necessarily the disease). According to Meisner et al.

(2017), random intercept models are inadequate under these circumstances in the context of biomarker studies.

SLR had the lowest C-index (Figure 4). The calibration slopes were slightly below 1 for conditional models and above 1 for

marginal models, except for SLR. In contrast to other marginal models, the estimated predictor effects in SLR absorbed part

of the between-center differences, resulting in inflated effect estimates and consequently predicted probabilities that were too

extreme. As before, the conditional models yielded calibration intercepts around 0 while the marginal models were miscalibrated.
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Box 1 Recommendations for building prediction models in multicenter data
Marginal or conditional models for multicenter prediction
Use random intercept logistic regression or fixed effects logistic regression with center dummies to obtain good within-

center calibration and overall discrimination, especially when the differences between centers are large.

• Performance is robust to violations of model assumptions and always superior to standard logistic regression or GEE.

• Performance in new centers (using the average intercept) is also superior to standard logistic regression and GEE.

Center dummies or random intercepts

• When there are many centers with few patients, random intercept logistic regression performs slightly better than

fixed effects logistic regression.

• Making predictions for new centers has better theoretical underpinning for random intercept regression than for fixed

effects regression.

How to use the model to make predictions in new centers?
In absence of information on the new center, use predictions with random intercept 0 to obtain the best expected within-

center calibration. If prevalence estimates or data are available, use existing techniques to tailor the intercept and improve

calibration (see, e.g., Debray, Moons, Ahmed, Koffijberg, & Riley, 2013; Steyerberg, 2009; Strobl et al., 2015).

The poor man’s method can be used to deal with the correlation between the random intercept and the predictors (Meisner

et al., 2017; Neuhaus & Kalbfleisch, 1998). In the current study, these models did not improve calibration much.

The poor man’s method was also employed in the calibration models used to calculate calibration intercepts and slopes. Not

using PMM in the calibration model led to very similar results.

4.5 Validation results on the population level
In the supporting information file, the population level validation results are presented (see Supporting Information Figures

C.4–C.9). Conditional models that use the center-specific effects (fixed effects logistic regression and random intercept model)

resulted in better discrimination compared to other models on the population level. Marginal models were well calibrated on the

population level. Conditional predictions were not calibrated on the population level but resulted in calibration slopes below 1

and calibration intercepts above 0. However, conditional predictions based on the random intercept model would be calibrated

if for all centers an estimate for the center effect was available (Wynants et al., 2018).

5 DISCUSSION

We investigated the predictive performance of standard logistic regression, generalized estimating equations, fixed effects logis-

tic regression, and random intercept logistic regression using simulations, in which the size of the development sample was

varied or some key assumptions underlying the random intercept model were violated. The fixed effects logistic regression and

random intercept logistic regression make predictions conditional on the center, the standard logistic regression, generalized

estimating equations, and random intercept logistic regression integrating over the random effects make marginal predictions

over the centers.

The results of the simulation study show that conditional models are preferable, especially when there are substantial dif-

ferences between centers. The practical implications of our findings are summarized in Box 1. By using conditional models,

systematic over- or underestimated predicted risks are avoided. Marginal models yield predictions that are too moderate, too

close to the marginal prevalence: this means that in the average center, high risks are underestimated and low risks are overes-

timated. This is in line with earlier research of Wynants et al. (2018) who compared the predictive performance of a random

intercept model and a standard logistic regression model. On top of the models included in this study of Wynants et al. (2018), the

current study investigated the predictive performance of fixed effects logistic regression and generalized estimating equations.

The fixed effects logistic regression and the random intercept model perform very similarly. The fixed effect logistic regression

does not perform better than a random intercept model in case of few centers. Only when there are many centers and few patients
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per center, the fixed effects model performs slightly worse than the random intercept model. Previous research by Kahan (2014)

also illustrated using fixed effects logistic regression might introduce bias in the estimated regression coefficients when there

are many centers.

A disadvantage of conditional models is that there is no intercept estimate available for centers not included in the development

set. The random intercept model provides an intercept for the average center (random intercept set to 0). In contrast, the fixed

effects model does not yield an average intercept. In this study, we used the average of all center-specific intercepts for individuals

in new centers.

Although using random effects models leads to satisfactory center-level performance on average, there may be variability in

performance between individual centers. The use of updating methods can be useful to optimally adjust the model to a specific

setting (Debray et al., 2013; Steyerberg, 2009; Strobl et al., 2015). Debray et al. (2013) proposed updating methods for random

intercept models that do not require data from the new setting. Further research should point out which updating methods work

best for multilevel models. Nonetheless, this study demonstrates that using the average center effects yields better predictions

in new centers than using a marginal model.

We showed that a small violation of the normality assumption for the distribution of random intercepts should not raise concern

when using a random effect model for risk predictions. As a result, random intercept models can lead to reliable predictions to

assist medical practitioners in making treatment decisions even when the assumption of normality is not met. This is in line with

previous research that suggests random effects models are quite robust against violations of the normality assumption when it

comes to estimating the fixed effects (Kahan & Morris, 2013; Maas & Hox, 2004; Neuhaus, Mcculloch, & Boylan, 2013). The

current research suggests this is also true within the context of prediction, where the random intercept estimates are of interest to

obtain center-specific prediction. Ignoring the existence of a center-predictor interaction influenced the predictive performance

only minimally in the current simulation.

In reality, the distribution of predictors may differ from center to center. This could give rise to confounding by center.

Meisner et al. (2017) illustrated that in the context of biomarker studies a random effects model is inadequate under these

circumstances in case of many centers (500) and a negative correlation of −0.5. They found a slight disadvantage of random

intercept logistic regression compared to conditional logistic regression in terms of within-center discrimination and suggest

using conditional logistic regression. The regression coefficient estimates of conditional logistic regression are equivalent to

those of fixed effects logistic regression. The current research, with positive correlations of 0.5 (continuous predictor and center

effects) and 0.2 (dichotomous predictor and center effects) and 50 centers, indicates that in clinical risk prediction a random

intercept model yields predictions with good discriminatory performance and only slight miscalibration even when there is

a dependency between the center effects and predictors. Further, the fixed effects and random intercept model lead to better

predictions than the marginal models, even though the effect of the center and the predictor cannot be distinguished properly.

However, it is advisable to remain careful and compare results from a fixed effects (or conditional) logistic regression and a

random intercept model.

A strength of the current research is the focus on the performance within each center, which is of interest to clinicians when

making predictions for patients in their center. The population level results are also investigated and illustrate that the fixed effects

logistic regression and random intercept model result in superior discrimination on the population level. Another strength is that

in the simulation study, the validation set includes both centers included in the development set and new centers. This mimics

reality and gives a more honest appreciation of the benefit of having center-specific intercept estimates. In contrast to previous

research on random intercept models for prediction (Wynants et al., 2018), the current study investigates the consequences of

violating the model assumptions.

A limitation is that we only provided estimates of the center-to-center variation for calibration. For the within-center c-

statistic, we used the estimate proposed by Van Oirbeek and Lesaffre (2012), which does not automatically yield variance

estimates. However, there are other measures for the discriminatory performance that do provide an estimate for the center-to-

center variability (Riley et al., 2015; Snell, Ensor, Debray, Moons, & Riley, 2018; Van Klaveren et al., 2014).

6 CONCLUSIONS

In multicenter prediction research, the multicenter nature of the data is often ignored. The current research illustrates calibration

of random intercept logistic regression or fixed effects logistic regression was better than that of standard logistic regression.

This is true even when center-specific intercepts were not normally distributed, a center-predictor interaction was present, center

effects and predictors were dependent, or when the model was applied in a new center. Therefore, we recommend the use of a
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random intercept model or a fixed effects logistic regression model. The advantage of a random intercept model is that predictions

for new centers can easily be made by assuming an average random intercept.
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