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Abstract

Filling high-aspect-ratio trenches with gold is a frequent requirement in the fabrication of x-ray 

optics as well as micro-electronic components and other fabrication processes. Conformal 

electrodeposition of gold in sub-micron-width silicon trenches with an aspect ratio greater than 35 

over a grating area of several square centimeters is challenging and has not been described in the 

literature previously. A comparison of pulsed plating and constant current plating led to a gold 

electroplating protocol that reliably filled trenches for such structures.
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1. Introduction

The gold electrodeposition process has applications in numerous industries worldwide. For 

x-ray optics, especially in the hard x-ray regime, gold is a widely used absorbing and phase 

shifting material thanks to a high density and high refractive index (1). Conformal gold 

electrodeposition has found routine application in the filling of high-aspect-ratio trenches 

and the fabrication of x-ray absorption and phase gratings (2,3,4) and zone plates (5,6,7). To 

fill nanometer-scale trenches, this method of electrodeposition is only appropriate if a 

conductive seed layer is pre-coated over the substrate prior to the filling of the trenches. 

Conformal electroplating of silicon substrates was recently demonstrated for 100 nm wide 

trenches of 30 aspect ratio for macroscopic imaging applications (6). Electrodeposition of 

gold in the high aspect ratio, nanometric scale trenches requires a specific current flow 

across the surface to facilitate electrodeposition without damaging the grating structures or 

prematurely sealing the trenches. Here, the gold electroplating procedure and process 
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parameters that led to conformal deposition of gold to coat high aspect ratio silicon trenches 

is described along with the steps for the fabrication of a substrate suitable for deposition.

1.1. Electrochemical Reaction

For the electrodeposition of gold films with a potential-driven electrolytic cell, reduction at 

the cathode leads to gold deposition. Reduction is achieved via electron transfer from the 

polarized substrate surface to dissolved Au(CN)2
− ionic complexes, splitting the complex 

and coating the substrate surface with solid gold. This electrolytic reaction occurs at the 

interface of solution and substrate surface. At this interface, the CN− and Au(I) reactive 

species maintain the following equilibrium (8,9):

(1)

The reduction occurs at the cathode (platinum coated silicon substrate) as follows (9):

(2)

The electrodeposition is accomplished with the application of either a constant Direct 

Current (DC) or a pulsed direct current (PC) (10–12). For direct current, the power supply 

generates a constant current across the electrolytic cell, whereas for pulsed direct current the 

current is applied intermittently with pre-determined duty cycle ratio and length. The 

conformal electroplating of high aspect ratio trenches with both direct current and pulsed 

current electroplating protocols was evaluated experimentally and the two protocols were 

compared to determine the protocol and parameters most suited for filling nanometric scale, 

high aspect ratio silicon trenches with electroplated gold. The quality of the gold film was 

evaluated with scanning electron microscopy (SEM) and, combined with experimental 

results from x-ray studies, the best electroplating protocol and process parameters were 

determined from these results and replicated to fabricate x-ray phase contrast gratings.

2. Materials and Methods

2.1. Silicon substrate grating preparation

Silicon gratings of 200 nm and 400 nm periods were patterned with nanoimprint lithography 

and cryogenic reactive ion etched (RIE) to ~ 2 – 4 µm (13). A platinum seed-layer was 

atomic layer deposited (ALD) with a trimethyl(methylcyclopentadienyl)-platinum(IV) 

(MeCpPtMe3) and O2 recipe (10) to a thickness of ~10–30 nm over a 5 nm Al2O3 ALD 

adhesion layer with trimethyl aluminum (TMA) and H2O recipe.

After seed layer deposition, the substrate was cleaned thoroughly with ethyl alcohol, sulfuric 

acid and deionized water. The substrate was submerged with trenches oriented vertically into 

a cyanide based acidic (pH 6) gold electroplating solution at 323 K along with inert 

platinum-steel mesh anode and a magnetic stirbar. A cathode wire was clamped to the 

platinum surface of the substrate above the solution and connected to an 1100V source meter 

along with the counter anode. Figure 1 details the electrodeposition setup.
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2.2. Electrodeposition Process

Both the direct current and pulsed current potentials were supplied long enough to 

completely fill the trenches. For the DC protocol, a constant current density of 0.04 mA/cm2 

was applied to the reactor for 120 minutes. For the PC protocol, the source meter was set to 

supply a square wave current at various duty cycles for 100 minutes. The optimal pulse duty 

cycle and current density for this process was experimentally determined and a 50% duty 

cycle ratio (10 ms on, 10 ms off) with 0.08 mA/cm2 peak current density and 0.04 mA/cm2 

average current density produced the optimal results for this process.

3. Results

3.1. Plating uniformity with respect to the depth of the trench

The DC protocol produced a gold deposition that varied along the length of the substrate, 

indicating the deposition rate increases with the solution depth for the DC protocol (Fig. 2a 

and 2b). Such gold density variation would lead to non-uniform x-ray refraction and poor 

performance of the phase grating. The PC protocol, however, displayed no rate variation 

with respect to solution depth (Fig. 2c and 2d) and the gold deposition formed comparatively 

more densely packed gold granules with improved gold trench filling.

3.2. Duty cycle pulse ratio and cycle length

Several duty cycle ratios and cycle lengths for the pulsed protocol were tested. The lowest 

pulsed duty cycle ratios produced more bulk crystals than the larger duty cycle ratios, 

however, the spacing and uniformity of the deposition was poorer. Longer pulsed cycles 

exhibited more variability from point to point along the substrate surface and fewer single 

crystal granules. The 50% duty cycle ratio with 20 ms cycle length produced the optimum 

deposited gold film after examination under Scanning Electron Microscope.

3.3. Effects of seed-layer morphology

The gold electrodeposition process requires a conductive, electrically continuous surface to 

facilitate deposition. As previously stated, to produce a surface conducive to electroplating, 

the substrate was coated with a conductive material to serve as the seed-layer for the 

electrodeposition. Platinum was chosen as the seed-layer material because of high electrical 

conductivity and similar physical, chemical and x-ray properties to gold. During ALD of the 

seed-layer, disjointed platinum islands were formed and later coalesced to form a fused 

platinum surface. The platinum islands enlarged with each successive cycle until the entire 

surface of the substrate was covered with a uniform platinum seed-layer (Fig. 3a–c).

After 200 loops of platinum ALD, the seed layer primarily consisted of isolated platinum 

islands (Fig. 3a) and was too sparse for uniform gold deposition. Substrate coated with 200 

loops of ALD platinum formed a disjointed seed-layer that led to partial gold trench filling 

with large pockets of empty space along the central trench line (Fig 3d). After 300 loops of 

platinum deposition, the platinum seed-layer completely covered the substrate surface (Fig. 

3b). The resulting gold deposition was dense with large, tightly packed crystals (Fig. 3e). 

400 loops of ALD produced a more uniform and less granular seed-layer (Fig. 3c) and 

electrodeposition facilitated by this seed-layer formed a densely packed gold deposition 
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(Fig. 3f) with consistent formation of large bulk gold crystals and less deposition variation 

from trench to trench.

3.4. Electroplating without adhesion layer

To further understand the difference between DC and PC plating, the DC protocol and PC 

protocol were tested with substrate fabricated without AlO2 adhesive layer and the platinum 

seed layer directly deposited onto the silicon surface. DC plating (Fig. 4a) led to substantial 

detachment of the seed layer from the substrate and partial filling of the trenches, while PC 

plating (Fig. 4b) caused minimal detachment and near complete filling of the trenches, 

consistent with the previous description of pulsed gold electroplating (14).

4. Conclusion and Discussion

Previous studies (15–17) have suggested that electroplating was a viable method to fill high 

aspect ratio trenches with gold. A comparison of pulsed and constant current electroplating 

of high aspect-ratio trenches described here and elsewhere (16,17) suggest the pulsed 

protocol produced more uniform and less porous deposition than the DC protocol. The 

pulsed plating deposition forms closer nucleation sites (Fig 2) and the proximity of the seed 

crystals leads to more uniform and regular gold film deposition.

The density of the gold nuclei formed during the electroplating process was previously 

shown (9) to increase with the magnitude of the applied potential. This would suggest the 

reduced electrical potential during the pulsed protocol relaxation period will produce seed 

crystals with lower density than those formed during direct current electroplating. The 

results obtained with this study suggest the opposite, as the pulsed protocol deposition is 

denser than that of the direct current: the lack of diffusion into the trenches is responsible for 

the lower gold density. The negative electrical potential of the substrate and the resultant 

precipitation of Au(s) reduces the ionic concentration of the interface solution and raises the 

energy required to complete the deposition reaction (9). The relaxation period of the pulsed 

protocol reduces the negative electrical potential at the surface and consequently permits the 

diffusion of Au+ from the bulk solution to the trench where the negative electrical potential 

applied to the substrate drives the reduction and consequent deposition of gold.

After each applied pulse, the interface Au+ concentration starts to return to bulk 

concentration and subsequent pulses initiate new sites for nucleation. This process will lower 

the energy required for deposition and keep the ionic concentration high enough to maintain 

Au reduction and deposition at the substrate surface.

The formation of seed crystal nuclei will place the substrate under stress and may affect or 

even detach the ALD seed-layer under certain circumstances. The effect of stress from seed 

crystal formation was shown to worsen without adhesion of the seed layer to the substrate, 

and the platinum seed-layer detached during direct current gold deposition without adhesion 

layer (Fig. 4a). The large crystalline structures formed during the DC plating protocol 

suggest the DC protocol forms less evenly spaced crystal nuclei than the pulsed protocol. 

Seed-layer detachment was less of a concern with the uniformly spaced nuclei of the pulsed 
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protocol (Fig 4b) and suggest the spacing of the pulsed protocol crystal nuclei will lead to 

less force against the seed layer.

Even when the conformal electroplating was conducted with the pulsed protocol 

electrodeposition, the gold film deposited possesses a granular structure, especially with a 

film only twice as thick as the largest crystal formed. The electrodeposition along each side 

of the high aspect ratio trench draws gold from a shared reservoir of electroplating solution 

saturating the trench space. The simultaneous electrodeposition forces each side to compete 

for access to ionic species from the electroplating solution. Combined with the lack of ionic 

replenishment inside the trench during the last stages of electrodeposition, the concurrent 

electrodeposition at each side and the nanometric scale of the gold layers leads to the 

formation of pockets during trench closing. Despite such apparent defects under high 

magnification, the pulsed current gold deposition was formed evenly and without any large 

scale variation. The trench filling for the pulsed current deposited film was measured as 

equivalent to 87% bulk gold filling of the trenches by x-ray diffraction (13).

These fabricated trench gratings serve as the key component for phase-sensitive imaging 

techniques with phase interferometers (18). The conformal deposition of the gold film to fill 

100–200 nm wide high aspect ratio silicon trenches is largely a result of the ALD platinum 

seed-layer and the application of a 50% duty cycle pulsed electroplating protocol to coat the 

trenches with gold.
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Figure 1. Electrodeposition Setup
The electroplating setup with reactor (left) and sourcemeter (right).
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Figure 2. Direct Current and Pulsed Electroplating
(a) and (b) are cross-sectional SEM images of a sample after DC plating, at a location near 

the surface of the plating solution and at the deep end of the sample, respectively. (c) and (d) 

are the same views of a pulse-plated sample. The DC plating exhibited considerable 

deposition rate variation with respect to the depth of the sample. This issue was addressed by 

the application of pulsed plating.
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Figure 3. Direct Current Electroplating
Side view of cleaved sidewall platinum seedlayer after (a) 200 loops, (b) 300 loops and (c) 

400 loops of atomic layer deposition, and cross-sectional SEMs of the subsequently gold-

filled 400 nm period trenches, with (d) ALD platinum deposition of 200 loops, (e) 300 loops 

and (f) 400 loops. The 3x magnified insets in (a) to (c) illustrate the progression from 

isolated platinum islands to contiguous seedlayer and the corresponding cross sectional 

SEMs (d) to (f) show the similarities between the seedlayer and the resulting gold 

deposition.
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Figure 4. Electroplating without Adhesive Layer
The result of (a) DC and (b) PC electrodeposition of gold following ALD of the platinum 

seed layer without prior Al2O3 adhesion layer. During the DC plating the seedlayer detached 

from the silicon surface (a), and led to incomplete filling of the trenches. The pulsed plating 

deposition (b) lacked the large segments of missing seed layer and gold deposition, 

suggesting the pulsed protocol deposited seed crystals that placed the interface under less 

stress and maintained the integrity of the ALD seed layer.
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