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Abstract: Vascularization in bone tissues is essential for the distribution of nutrients and oxygen,
as well as the removal of waste products. Fabrication of tissue-engineered bone constructs with
functional vascular networks has great potential for biomimicking nature bone tissue in vitro
and enhancing bone regeneration in vivo. Over the past decades, many approaches have been
applied to fabricate biomimetic vascularized tissue-engineered bone constructs. However, traditional
tissue-engineered methods based on seeding cells into scaffolds are unable to control the spatial
architecture and the encapsulated cell distribution precisely, which posed a significant challenge in
constructing complex vascularized bone tissues with precise biomimetic properties. In recent years, as
a pioneering technology, three-dimensional (3D) bioprinting technology has been applied to fabricate
multiscale, biomimetic, multi-cellular tissues with a highly complex tissue microenvironment through
layer-by-layer printing. This review discussed the application of 3D bioprinting technology in the
vascularized tissue-engineered bone fabrication, where the current status and unique challenges
were critically reviewed. Furthermore, the mechanisms of vascular formation, the process of 3D
bioprinting, and the current development of bioink properties were also discussed.
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1. Introduction

Treatment of large bone defects resulting from cancer, trauma, infection, congenital malformation,
or surgical resection is a challenge for clinical doctors [1]. Currently, the autologous bone grafts are the
gold treatment standard for large bone defects [2]. However, the amount of autologous bone grafts
is limited, and complications at the harvesting site, such as pain, infection, or bleeding, could result
in additional donor-site morbidity [3]. Bone grafts fabricated by the tissue-engineered methods are
rapidly becoming promising alternatives [4]. However, oxygen and metabolic needs are not met when
the thickness of the tissue-engineered bone constructs exceeds 150–200 µm, resulting in lacking tissue
integration with host tissue and core ischemia of tissue-engineered bone grafts [5,6]. Furthermore,
insufficient vascularization of tissue-engineered bone often results in poor bone regeneration [7].
Therefore, during the fabrication of tissue-engineered bone constructs, it is vital to construct functional
vascular networks, which could supply the exchange of nutrition, oxygen, and waste products between
bone grafts and host [8].

Bone, being a dynamic tissue, is not only a complex heterogeneous tissue with intricate hierarchical
architecture but also a highly ordered and vascularized tissue with vascular networks, which is
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connected to the blood system by transverse channels [9–11]. Traditional tissue-engineered methods
based on seeding cells into the scaffold could not precisely control the inner structure, cell distribution,
and exocellular microenvironment to meet the biomechanical functions and metabolic requirement of
bone tissue [12]. In addition, traditional tissue engineering methods cannot fabricate the biomimetic
tissue-engineered constructs with realistic cell microenvironment, which leads to over-simplified
tissue-engineered constructs [13,14]. Therefore, the limitations of traditional tissue engineering
technologies to recreate similarities and complexes from native bone tissues restrict their further
applications [15]. Nanomaterials with bone-mimicking characteristics can construct proper cell
microenvironments to enhance bone regeneration [16]. However, there are several challenges of
nanomaterials, such as failure to temporospatial administration of growth factors and cells, as well as
lack of integrative networks of new bone tissues and blood vessels [17].

Three-dimension (3D) printing technology, initially introduced in 1986, has been widely used to
fabricate objects with complex geometries and architecture [18]. Recently, 3D bioprinting technology
has emerged as a promising alternative to fabricate 3D functional tissue constructs with geometrically
defined structures, which are designed to replace or regenerate the damaged tissues or organs, such
as liver, bone, skin, liver, cartilage, nerve, and heart [19]. Three-dimensional (3D) bioprinting is the
use of a combination of 3D printing, tissue engineering, developmental biology, and regenerative
medicine to construct biomimetic tissues. Particularly, compared to conventional scaffold-based
approaches, 3D bioprinting technology could precisely control complex 3D architecture, multiple
compositions, and spatial distributions [13]. Both 3D printing and 3D bioprinting could utilize the
layer-by-layer manner to fabricate 3D anatomically shaped constructs from a computer-aided design
(CAD) model. However, 3D bioprinting technologies involve the utilization of cell-laden bioinks and
other bioactive molecules to fabricate biomimetic tissue constructs during the printing process, while
3D printing technologies do not involve the utilization of cells or other bioactive molecules [13,20].
In addition, 3D bioprinting technology can guide tissue formation for patient-specific therapy by
precise spatiotemporal control on the distribution of cells, growth factors, small molecules, drugs,
miRNA, and other bioactive substances [21,22]. Therefore, we conducted this review using EMBASE,
PubMed, Medline, and Web of Science for studies on the application of 3D bioprinting technology
in the vascularized tissue-engineered bone fabrication. This review discussed the current status and
unique challenges. Furthermore, the mechanisms of vascular formation, the process of 3D bioprinting,
and the current development of bioink properties were also discussed.

2. Mechanisms of Vascular Formation

New blood vessels are formed by two main fundamental processes, angiogenesis and
vasculogenesis [23]. Vasculogenesis is known as differentiation of endothelial progenitor cells (EPCs)
or angioblastic progenitor cells into endothelial cells (ECs) and the formation of a primitive vascular
network [24]. During the process of early embryo development, primitive capillary networks form
through recruitment and differentiation of angioblastic progenitor cells [25]. In adults, vasculogenesis
was often observed in the repair process of various damaged tissues and pathological states such
as atherosclerosis, ischemia, and tumor [26]. Angiogenesis is known as the growth process of new
capillaries from pre-existing blood vessels. Furthermore, the process of angiogenesis is tightly regulated
by related biological factors [27]. When the initial vascular network forms into more complex vascular
networks, vasculogenesis is followed by angiogenesis. Angiogenesis plays a vital role during the
process of tissue regeneration. Angiogenesis disorders are implicated in the pathogenesis of a variety
of diseases, including vascular retinopathy, rheumatoid arthritis, and tumor [28]. After the process
of angiogenesis, the vascular network expands and bridges with other capillary networks, which
is also called splitting angiogenesis. In the process of vessel maturation, smooth muscle cells and
differentiated pericytes stabilize vascular structures and suppress the growth of ECs [26]. The process
of vasculogenesis and angiogenesis is shown in Figure 1a.
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Figure 1. (a) The process of vasculogenesis and angiogenesis; (b) the schematic illustration of complex 
bone tissue with vascular structure. Reprinted with permission from References [29,30]. 

Bones are highly vascularized and receive around 10%–15% of resting cardiac output [31]. The 
microvasculature of bone tissue is consisted of three types of vessels, namely capillaries, arterioles, 
and venules [32]. The schematic illustration of complex bone tissue with vascular structure is shown 
in Figure 1b. Vasculature networks play an important role in the process of bone tissue formation. As 
a coordinated process, bone tissue regeneration involve the connection between bone cells and blood 
vessels [33]. The two general ways of bone tissue formation, intramembranous and endochondral 
ossification, are also regulated by the bone vasculature [34]. During the process of endochondral 
ossification, mesenchymal progenitor cells aggregate into dense clusters and differentiate into 
chondrocytes. The nonproliferative chondrocytes in the cartilage template secrete proangiogenic 
factors, which stimulate blood vessels to invade and, along with osteoclasts and osteoprogenitors, to 
form the primary ossification center [35]. As the vasculature expands, the cartilage is replaced with 
bone tissue, resulting in the growth of longitudinal bone [36]. Unlike endochondral ossification, 
intramembranous ossification is the development process of bone tissue from fibrous membranes. 
Microcapillary network growth extends into the mesenchymal region of periosteum, resulting in the 
differentiation of mesenchymal cells into osteoprogenitors and osteoblasts [37]. Currently, two 
strategies are used to construct the vascular network in engineered bone, including creating a major 
vessel with ECs and the formation of microcapillaries through self-assembly and biological processes 
[38,39]. Ideally, intramembranous and endochondral ossification should be combined to fabricate 
tissue-engineered bone with multiscale vasculatures. 

3. 3D Bioprinting 

3.1. The Procedure of 3D Bioprinting 

As an emerging multidisciplinary subject, 3D bioprinting consists of 3D printing technology, 
tissue engineering, developmental biology, regenerative medicine [32]. More specifically, 3D 
bioprinting technology is an additive manufacturing process of tissue-like structures by utilization 
of 3D printing-like techniques to combine biomaterials, cells, and growth factors [40]. The 3D 
bioprinting technology utilizes the layer-by-layer manner to deposit biomaterials, also known as 
bioinks, to fabricate tissue-like structures in tissue engineering fields [41]. Three-dimensional (3D) 
bioprinting technology can offer precise control on complex 3D architecture, spatial distributions, 
multiple compositions [42]. The first step of 3D bioprinting is to image the tomographic properties 

Figure 1. (a) The process of vasculogenesis and angiogenesis; (b) the schematic illustration of complex
bone tissue with vascular structure. Reprinted with permission from References [29,30].

Bones are highly vascularized and receive around 10%–15% of resting cardiac output [31].
The microvasculature of bone tissue is consisted of three types of vessels, namely capillaries, arterioles,
and venules [32]. The schematic illustration of complex bone tissue with vascular structure is
shown in Figure 1b. Vasculature networks play an important role in the process of bone tissue
formation. As a coordinated process, bone tissue regeneration involve the connection between bone
cells and blood vessels [33]. The two general ways of bone tissue formation, intramembranous and
endochondral ossification, are also regulated by the bone vasculature [34]. During the process of
endochondral ossification, mesenchymal progenitor cells aggregate into dense clusters and differentiate
into chondrocytes. The nonproliferative chondrocytes in the cartilage template secrete proangiogenic
factors, which stimulate blood vessels to invade and, along with osteoclasts and osteoprogenitors,
to form the primary ossification center [35]. As the vasculature expands, the cartilage is replaced
with bone tissue, resulting in the growth of longitudinal bone [36]. Unlike endochondral ossification,
intramembranous ossification is the development process of bone tissue from fibrous membranes.
Microcapillary network growth extends into the mesenchymal region of periosteum, resulting in
the differentiation of mesenchymal cells into osteoprogenitors and osteoblasts [37]. Currently, two
strategies are used to construct the vascular network in engineered bone, including creating a
major vessel with ECs and the formation of microcapillaries through self-assembly and biological
processes [38,39]. Ideally, intramembranous and endochondral ossification should be combined to
fabricate tissue-engineered bone with multiscale vasculatures.

3. 3D Bioprinting

3.1. The Procedure of 3D Bioprinting

As an emerging multidisciplinary subject, 3D bioprinting consists of 3D printing technology, tissue
engineering, developmental biology, regenerative medicine [32]. More specifically, 3D bioprinting
technology is an additive manufacturing process of tissue-like structures by utilization of 3D
printing-like techniques to combine biomaterials, cells, and growth factors [40]. The 3D bioprinting
technology utilizes the layer-by-layer manner to deposit biomaterials, also known as bioinks, to
fabricate tissue-like structures in tissue engineering fields [41]. Three-dimensional (3D) bioprinting
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technology can offer precise control on complex 3D architecture, spatial distributions, multiple
compositions [42]. The first step of 3D bioprinting is to image the tomographic properties and functions
of the target tissue by magnetic resonance imaging (MRI), computed tomography scanning (CT scan),
and ultrasound imaging techniques (UI) [43]. The second step is to design and reconstruct precisely 3D
functional tissues by a computer-aided design (CAD) model [44]. The next step is the tissue designs,
which includes material selection and cell selection. Biomaterials, also known as bioinks, mimic the
structure, shape, architecture, and function properties of the extracellular matrix of target tissues [45].
Additionally, bioinks play an essential role in supporting the adhesion, proliferation, and function of
encapsulated cells [46]. Following cells suspended in bioinks, the cell-laden bioinks are then utilized to
fabricate 3D biomimetic tissue constructs with geometrically defined structures by a bioprinter [47].
The last step of bioprinting procedure is the maturation phase of the engineered tissues or organs. The
perfusion bioreactors containing nutrient transport and physiological stimuli mimic the environment
and stimuli of natural tissue and promote the maturation of the engineered tissues [18]. During this
maturation phase, the printed structures aggregate to form bigger continuous structures and place
them precisely in the appropriate position [13]. Additionally, a 3D bioprinting tissue can be printed
in situ, in which case the human body acts as the bioreactor. Figure 2 shows the general step-wise
procedure for bioprinting 3D tissues.
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Reference [12].

3.2. 3D Bioprinting Methods in Fabrication of Vascular Networks

Briefly, according to their working mechanism, the typical procedures of 3D bioprinting
technologies can be broadly classified into laser-assisted bioprinting, inkjet bioprinting, and
extrusion-based bioprinting [48]. The simplified procedures of different kinds of 3D bioprinting
are shown in Figure 3. Each of these approaches has been summarized in Table 1.
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Reference [12].

Table 1. Comparison of different kinds of 3D bioprinting.

Bioprinting Type Inkjet Bioprinting Laser-Assisted
Bioprinting

Extrusion-Based
Bioprinting References

Working principle Propels droplets of
bioinks

Laser is fired to push cell
from pool of bioinks

Deposition of materials by
motor-driven extruder [19,49]

Fabrication speed Fast Medium Slow [50]
Printer cost Low High Medium [51]
Cell density Low<106 cells/ml Medium (<108 cells/ml) High, cell spheroids [12,52]
Cell viability >85% >95% 40%–90% [50,53]

Scalability Yes Limited Yes [54,55]
Resolution High High Medium [56]
Supported
viscosities 3.5 to 12 mPa/s 1 to 300 mPa/s 30 to 6×107 mPa/s [57,58]

Cell type MSCs,
chondrocytes,

Fibroblasts, HUVECs,
human breast cancer

cells, HaCaTs, Human
osteoprogenitor cells.

Chondrocytes, ASCs, MSCs,
HUVECs, Neural cells,

osteoblasts, Schwann cells.
[59–62]

Natural bioinks
Alginate,

fibrinogen,
hydroxyapatite

Alginate, collagen,
matrigel

Alginate, gelatin, hyaluronic
acid, agarose, chitosan,
excellularized matrix

[63–67]

Synthetic bioinks PCL, PEG, PVP - PCL, PEG, Pluronic, FG-HA [52,68–70]

Target tissue Vascular, cartilage,
bone, lung

Vascular, skin, bone,
adipose

Vascular, cartilage, bone,
liver, brain, osteochondral

tissue, cardiac tissue, nerve,
aorta,

[70–75]

3.2.1. Inkjet Bioprinting

Inkjet bioprinting is a rapid and large-scale fabrication technique that has been adapted from the
inkjet printing technology to print living cells by desktop inkjet printers [76] (Figure 3a). Currently,
many studies utilize inkjet bioprinting to construct various engineered tissues with different kinds
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of living cells [77–79]. In addition, inkjet bioprinting can rapidly fabricate tissue-like structures with
intricate hierarchical architectures by the utilization of the controlled dropwise deposition of cell-laden
bioinks [79]. As a non-contact printing technique, inkjet bioprinting could precisely deposit droplets of
cell-laden bioinks in the z-axis onto the surface of culture dish or hydrogel substrates [80]. According
to the droplet actuation mechanism, the inkjet bioprinting could be further classified into thermal inkjet
printing and piezoelectric inkjet printing [81]. Thermal inkjet printing dispensed the bioink droplet
by a thermal actuator with a voltage pulse to locally heat the bioink. In the process of piezoelectric
inkjet bioprinting, the piezoelectric actuator can be activated by variations in the electric impulse
and amplitude and used to control the stress to which the bioink is exposed [54]. As a nozzle-based
technique, inkjet bioprinting had advantaged of high printing speed, affordability, high resolution [5].
However, the inkjet bioprinting is limited by the fact that only low-viscosity bioinks can be used for
bioprinting; an additional crosslinking step in the process of inkjet bioprinting is needed to improve
the structural stability of 3D tissue constructs [82].

Currently, several studies utilize inkjet bioprinting to create customized tissue-engineered with
vascular networks. Xu et al. successfully used the 3D inkjet bioprinting system to fabricate 3D
complex tissue-engineered constructs with fibroblast-based tubes [83]. Lee et al. fabricated a perfused
vascular channel within thick collagen scaffold by inkjet bioprinting. Fully covered by ECs, the
functional vascular channel can not only support the viability of tissue up to 5mm in the distance
under the physiological flow condition but also presents a barrier for both plasma protein and
dextran molecule [84]. Besides, Lee et al. connected the multi-scale capillary network to the large
perfused vascular channels through a natural maturation process [85]. In another study, thermal inkjet
bioprinting was used to fabricated constructs with microvasculature by depositing bioink consisting of
human microvascular endothelial cells and fibrin [5].

3.2.2. Laser-Assisted Bioprinting

Laser-assisted bioprinting precisely deposit cell-laden bioinks in a 3D spatial arrangement by
an energy source of laser radiation, which is highly monochromatic, focused, and coherent [86].
The laser-bioprinting setup mainly consists of a laser source, a receiving substrate, and a ribbon
coated with cell-laden bioinks [87] (Figure 3b). During the procedure of laser-assisted bioprinting,
the ribbon is illuminated by a focused laser beam. As a consequence, cell-laden bioinks evaporate
and reach onto the surface of receiving substrate, which supports the adhesion and proliferation
of cells [88]. The lasers used in the laser-assisted bioprinting are mainly nanosecond lasers with
UV [89]. The procedure of laser-assisted bioprinting is contactless, resulting in high post-printing
cell viabilities. Additionally, laser-assisted bioprinting can not only print various living cells but
also peptides and DNA [90]. Currently, few studies apply laser-assisted bioprinting technology to
fabricate 3D vascularized tissue-engineered constructs. Wu et al. utilized laser-assisted bioprinting
technology to construct a branch/stem structure of umbilical vein smooth muscle cells and umbilical
vein endothelial cells (HUVECs) [91]. However, the branch/stem structure fabricated by laser-assisted
bioprinting is a very simplified structure and could not mimic the structure of human vascular networks.
Gruene et al. [92] utilized human adipose-derived stem cells (hASCs) to fabricate the 3D tissue grafts
by the laser-assisted bioprinting technology. In addition, they also demonstrated that the procedure
of laser-assisted bioprinting did not affected the proliferation ability and differentiation behavior of
the hASCs. In another study, ECs were bioprinted by laser-assisted bioprinting technology onto a
collagen hydrogel scaffold previously seeded with mesenchymal stem cells (MSCs) to fabricate a
microvascular network [93]. Kérourédan et al. utilized laser-assisted bioprinting to bioprint ECs in
situ into mouse calvarial bone defects prefilled with collagen scaffold containing MSCs and vascular
endothelial growth factor (VEGF) [94]. The results demonstrated that in vivo laser-assisted bioprinting
is a valuable approach to introduce in situ prevascularization with a defined architecture and enhance
bone tissue regeneration.
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3.2.3. Extrusion-Based Bioprinting

Among these bioprinting technologies, extrusion-based bioprinting is a widely used approach
of the material-dispensing technique used for bioprinting [95]. Extrusion-based bioprinting utilizes
extrusion of the bioinks through a microscale nozzle to fabricate tissue-engineered constructs onto a
stationary substrate [96] (Figure 3c). The extrusion is controlled using pneumatic pressure or mechanical
compressions. After the layer-by-layer application, extrusion-based bioprinting fabricates 3D patterns
and constructs [97]. Advantages of extrusion-based bioprinting are the direct incorporation of cells,
processing at room temperature, and homogenous distribution of cells. Additionally, extrusion-based
bioprinting has been utilized in the printing of cells and tissues with defined retention of activity [98].
Furthermore, tissue spheroids can also be loaded in pipettes of extrusion-based bioprinting to fabricate
artificial tissues and organs [99]. In contrast to laser-assisted bioprinting limited by scalability
and inkjet bioprinting limited by low viscosity, extrusion-based bioprinting can fabricate large,
scalable tissue-engineered constructs with a wide range of viscosities. Due to its ease of control,
cost-effectiveness, and the availability of shear-thinning bioinks, extrusion-based bioprinting is widely
used [100]. However, the extrusion-based bioprinting is limited by the fact that the printing speed is
relatively low [101].

Extrusion-based bioprinting technology has be proven a great promise in fabricating vascularized
constructs with multiple cell types by the incorporation of several extrusion nozzles [102]. Tan et al.
utilized the multi-nozzle extrusion-based technique to print vertically alginate-based tubular structures
with varying viscosity [103]. The results demonstrated the feasibility of extrusion-based bioprinting
to fabricate large diameter vascularized constructs. Extrusion-based bioprinting combined with
microfluidic techniques can construct sophisticated 3D architectures in complex, heterogeneous
constructs. Zhang et al. utilized chitosan and alginate hydrogels as bioinks to fabricate a printable
vessel-like microfluidic channels by extrusion-based bioprinting [104]. Dolati et al. printed an alginate
vascular conduit by a coaxial bioprinting process. In addition, the mechanical properties of the
vascular conduit were enhanced by multi-walled carbon nanotubes [105]. Researchers also utilized
this combined bioprinting technique to integrate micro-engineered vasculature and cellular layers
within the deposited extracellular matrix of target tissues [106]. Gao et al. also used a coaxial nozzle to
print vessel-like hollow filaments [98]. Colosi et al. utilized this combined bioprinting technique to
fabricate the tissue-engineered constructs with human umbilical vein endothelial cell–lined vasculature
by depositing different bioinks using a blend of alginate and gelatin methacrylate (GelMA) [107].

3.3. Bioinks

In the field of bioprinting, bioinks is another important part [100]. The bioink is either a solution
or a hydrogel of biomaterials encapsulating the desired cells and used for fabricating tissue-engineered
constructs. The bioinks provide stable 3D architecture to affect the development and maturation of
tissue [54] and mimic the tissue niche in situ. Therefore, bioink design plays a crucial role in the process
of 3D bioprinting. Currently, various natural and synthetic biomaterials with different physical and
chemical properties have been formulated and utilized as bioinks [108]. The 3D architecture of bioinks
affects the phenotype of encapsulated cells, resulting in the activation of various cellular signaling
pathways and the expression of various related genes [109]. Additionally, 3D bioprinting technology
can combine two or more bioinks of distinct materials to construct hybrid scaffolds. Therefore, the
development of bioinks still needs significant research to achieve better cell regulation function.
An ideal bioink should possess a range of properties as follow: (i) good printability withstanding forces
applied during the printing process; (ii) biocompatibility mimicking the natural microenvironment
of the target tissues; (iii) structural stability and biodegradation; (iv) mechanical properties; (v)
suitability for chemical modifications to meet tissue-specific needs. Furthermore, standardized bioink
formulations are also required in bioprinting to be applied in different kinds of tissue.

According to the different source, bioinks used in 3D bioprinting can be basically divided into two
types of hydrogels: nature-derived and synthetic bioinks [50,110]. Bioinks from various sources exhibit
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different biological characteristics during the process of 3D bioprinting [111–113]. Nature-derived
bioinks have been widely used to fabricate the tissue-engineering constructs, which could support the
attachment and proliferation of bioprinted cells [75]. Most of the nature-derived bioinks are derived
from the natural extracellular matrix of different tissue. Compared to synthetic bioinks, nature-derived
bioinks more closely resemble the native tissue and provide a better cell microenvironment. In addition,
nature-derived bioinks can provide tissue-specific nutrients for cells. Nature-derived bioinks commonly
used in the 3D bioprinting include silk, chitosan, decellularized extracellular matrix, hyaluronic acid,
fibrin, collagen, gelatin, hydroxyapatite, and alginate [50]. In contrast to nature-derived bioinks,
synthetic bioinks are fabricated by the process of chemical synthesis. They are more controllable than
nature-derived bioinks in terms of chemical and mechanical properties, such as alignment, porosity,
tensile strength, and elastic modulus. Synthetic bioinks commonly used in 3D bioprinting include
polyethylene glycol (PEG), polycaprolactone (PCL), pluronic acid [114,115]. The characteristics of
various bioinks commonly used in the bioprinting are shown in Table 2.

Table 2. Summary of various bioinks.

Bioinks Type Crosslinking Cell Type Target Tissue References

Silk Natural Enzymatic Fibroblasts, MSCs Bone, cartilage,
brain [111]

Chitosan Natural Ionic MSCs Cartilage [116]
Decellularized
extracellular

matrix
Natural Physical and

Enzymatic
ASCs, myoblasts,

hepatocytes
Liver, heart,

adipose [57,112]

Hyaluronic
acid Natural Covalent Osteoblasts,

chondrocytes, Bone, cartilage [75,113]

Fibrin Natural Enzymatic Chondrocytes, ECs Vascular,
cartilage [117,118]

Collagen Natural Thermal MSCs, HaCaTs,
fibroblasts,

Skin, vascular,
bone, cartilage,
thyroid gland

[84,85]

Gelatin Natural Thermal,
Ultraviolet MSCs, myoblasts

Aortic valve,
vascular,
cartilage

[119]

Alginate Natural Ionic
Cartilage progenitor

cells, ECs, ACSs, liver
cells, MG63 cells

Vascular, liver,
cartilage [118,120,121]

Agarose Natural Thermal MSCs Cartilage [122]

Gellan gum Natural Ionic MC3T3, MSCs, Neural
cells Brain, bone [113,123]

PEG Synthetic Ultraviolet HUVECs, MSCs Bone, vascular [40,114,124]
PCL Synthetic Thermal Chondrocytes Cartilage [115,121]

Pluronic acid Synthetic Thermal Chondrocytes Cartilage [40,112]

Among these various bioinks, gelatin methacrylate (GelMA) is the most widely used bioink to
fabricate the vascular network in engineered constructs [125,126]. Compared to ionically crosslinked
alginate, GelMA can form a chemically stable hydrogel scaffolds when exposed to ultraviolet [127].
GelMA is a photopolymerizable hydrogel and contains many natural cell binding-motifs which promote
cell adhesion and cell migration within the GelMA matrix [128]. The hydration and biomechanical
properties of GelMA can be regulated by changing the gel concentration and methacrylation degree.
In addition, osteogenic cells could be encapsulated into GelMA with microchannels lined with ECs to
fabricate vascularized tissue-engineered bone tissues [129,130]. GelMA can also be combined with
other biomaterials to form hybrid bioinks for the fabrication of vascularization. Jia et al. fabricated
perfused vascular structures by a 3D bioprinting technique based on cell-laden bioinks consisting of
sodium alginate and GelMA [63]. The blended bioink was crosslinked by calcium ions [63].
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3.4. Cells Used in Bioprinting

The choice of various cell types is another key element for 3D bioprinting. The cells and
biomaterials interact with each other. Additionally, to mimic the function of target tissue on a macro
scale, the cells used in bioprinting must have the ability to proliferate and mimic the physiological state
of cells in vivo and in vitro [131]. Currently, various types of mammalian cells, such as osteogenic,
as well as angiogenic cells, have been successfully used to fabricate vascularized tissue-engineered
constructs [44]. To date, among many various osteogenic cells, MSCs are the most likely used
cells in 3D bioprinting for the fabrication of tissue-engineered bone, owing to their differentiation
potential and self-renewing capability [19,132,133]. MSCs are widely found in cord blood, umbilical
cord, adipose tissue, and bone marrow [134]. Induced pluripotent stem cells (iPSCs) were first
found in 2007 and were generated directly from a somatic cell [135]. IPSCs have the advantages
of expandability, easy accessibility, and ability to differentiate into other cell types [136]. Moreover,
MSCs were recently derived from iPSCs, which could overcome the inadequate source of autologous
MSCs and cell aging [137]. Moreover, MSCs are highly sensitive to the microenvironment of bioinks,
including chemical, physical, and biological cues. Therefore, the function of encapsulated stem cells
can be regulated by changing the environment of bioinks [138]. Phillippi et al. engineered stem cell
microenvironments by 3D bioprinting technology. Through this approach, the researchers engineered
cell fate toward the osteogenic lineage [71]. During the procedure of bioprinting, cells could be
arranged as individually or dispersed or encapsulated in the hydrogel precursor. Additionally, cells
could be utilized to construct cell aggregates or microcarriers into bioinks [139].

Cell Viability

Currently, there are many kinds of cells used in the bioprinting process to fabricate
tissue-engineered bone constructs, such as MSCs and ECs [21,125]. There is still a challenge in
maintaining the viability of the cells encapsulated inside the bioinks The post-printing cell viability in
bioinks of laser-assisted bioprinting, inkjet bioprinting, and extrusion-based bioprinting is shown in
Table 2. Currently, most studies found the 3D bioprinted cells had high post-printing cell viability after
a few hours or days [13,95]. However, there are few long-term studies focusing on cell viability after
bioprinting. In addition, print pressure and print speed directly affect cell viability [22]. Shear and
thermal stress during the bioprinting process also affect cell viability [86]. In addition, if used too
frequently, piezoelectric technology could damage cell membrane, resulting in cell death [76]. Although
the bioinks can protect the cells from being damaged by the potentially high shear stress during the
bioprinting process, different kinds of bioinks exhibit differences in maintenance of the viability of
cells. In addition, some kinds monomers and photo-initiators, used in the process of crosslinking, can
also affects cell viability.

3.5. Multi-Materials Bioprinting

Bioinks, used in the process of bioprinting, are hydrophilic and high-molecular weight polymers
with high water content, which can be cross-linked to form a 3D bioprinted construct [140]. In addition,
most kinds of bioinks used in bioprinting are hydrogels, which have a certain drawback of weak
mechanical property [141]. Multi-materials bioprinting has been used to improve the biomechanical
property and structural integrity of 3D bioprinted constructs [142]. In addition, multi-materials
bioprinting can be utilized to fabricate biomimetic and heterogeneous constructs, such as vascularized
tissues [142]. The ability to deposit multi-materials materials in 3D bioprinting is consistent with
support strategies found in the process of 3D printing. During the bioprinting process, support
materials are utilized to enhance the structure integrity and mechanical property of 3D bioprinted
constructs. Currently, the approaches of multi-materials bioprinting mainly include multi-head systems,
core-shell needle systems, stereolithography, and multi-material microfluidic bioprinting [142,143].
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However, how to improve printing resolution and integrate different kinds of materials still need to be
solved in the application of multi-materials bioprinting.

4. 3D Bioprinting in the Fabrication of Vascularized Tissue-Engineered Bone

The vasculature in various tissues transports the required oxygen and nutrients and removes
waste products. Vascularization plays an essential role in successful engineering of tissue constructs.
Constructing vascular networks within 3D tissue-engineered bone constructs is a critical challenge
in maintaining the viability of bioprinted cells. Currently, many approaches have been utilized to
improve the growth of vascular networks within 3D tissue-engineered bone constructs. Currently,
many researchers incorporate growth factors into tissue constructs or encapsulated ECs and tissue
spheroids into biomaterials to fabricate complex 3D tissue structures with functionalized vasculature.

4.1. Cell-Based Approaches for Vascular Networks

The processes of vascular growth and remodeling involve ECs which line the interior of blood
vessels. Currently, many studies encapsulated ECs and other supporting cell types into bioinks
to fabricate vascularized tissue-engineered bone [29]. Cell-based approaches activate related cell
signaling pathways by strengthening cell-cell interactions to enhance the formation of vascular
networks in tissue-engineered constructs. Coculturing of different kinds of cells can achieve the goal
of the prevascularization of tissue-engineered constructs [144]. Kolesky et al. fabricated cell-laden,
heterogeneous, and vascularized tissue-engineered constructs by 3D Bioprinting [145]. In their study,
the embedded vasculature was filled by Pluronic F127, an aqueous fugitive bioink, which could be easily
printed and removed under mild conditions [146] (Figure 4a). The endothelialization of embedded
vasculature was conducted by the perfusion and incubation of HUVEC suspensions. Chen et al.
fabricated the polydopamine-modified calcium silicate (PDACS)/poly-caprolactone (PCL) constructs
with Wharton’s jelly MSCs combined with HUVEC-laden bioink [147]. The in vitro results showed
that HUVECs in the bioink expressed higher levels of angiogenic proteins [147] (Figure 4b). In another
study, Chiesa et al. constucted an in vitro vascularized bone model capillary-like network, using a
gelatin-nanohydroxyapatite 3D bioprinted scaffold combined with MSCs and HUVECs [148].

Currently, a lot of promising techniques enhancing vascularization are utilized to combine
bioprinting with vascularized bone formation. Some previous studies demonstrated that MSCs with
hypoxia pre-treatment could enhance vascularization and osteogenesis in vitro an in vivo [149–151].
Kuss et al. [133] fabricated a polycaprolactone/hydroxyapatite (PCL/HAp) and stromal vascular
fraction into tissue-engineered bone constructs, which were pre-treated in hypoxic conditions for
three weeks. The results showed that short-term hypoxic conditioning could enhance the microvessel
formation (Figure 4c). Non-viral gene delivery can facilitate the endogenous expression of desired
therapeutic proteins, which can provide a stimulus to cells, resulting in enhanced levels of matrix
production and tissue formation [152,153]. Cunniffe et al. [153] bioprinted a non-viral, and MSC-laden
gene activated construct. The gene activated bioinks were fabricated by RGD-γ-irradiated alginate
and nano-hydroxyapatite (nHA) complexed to plasmid DNA (pDNA) [153]. After implanted
subcutaneously in vivo, gene activated MSC-laden constructs could effectively improve mineralization
and vascularization.
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4.2. Tissue Spheroid-Based Approaches for Vascular Networks

Another approach for the formation of vascular networks involves multiple vascular cell types
aggregated as multicellular vascular tissue spheroids [154]. Unlike encapsulated cells which need time
to proliferate, spheroids can start with a considerably high density of cells [99]. Spheroids can also
mimic the functional and architectural characteristics of target tissue. The spheroidal microcapsules
permit intercellular contacts, cell aggregation, and 3D cell growth [155]. Several approaches have
been applied to fabricate spheroids for bioprinting purposes, including micromolding, cell sheets,
microfluidics, rotating wall vessel techniques, pellet culture, hanging drop, spinner culture, liquid
overlay, and external force [99]. Tissue spheroids can fuse and assemble into macrotissues through
the process of cell-to-cell adhesion. Norotte et al. [154] successfully utilized multicellular spheroids to
construct tubular vascular grafts by 3D bioprinter. The results showed that the closely placed vascular
tissue spheroids underwent self-assembly and tissue fusion into a branched vascular tree (Figure 5a).
In another study, Tan et al. [156] have successfully utilized 3D bioprinter to robotically place tissue
spheroids into the alginate mold to construct toroid-shaped vascular tissue in vitro by the fusion
process of tissue spheroids consisting of smooth muscle cells and ECs. In another study, Anada et
al. utilized 3D bioprinting to fabricate vascularized bone-mimetic hydrogel constructs, which consist
of a central GelMA ring to mimic the bone marrow space and a peripheral GelMA ring to mimic the
cortical shell, and [157]. The in vitro results demonstrated the formation of the capillary-like structures
originating from the HUVEC spheroids [158] (Figure 5b).
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4.3. Growth Factor-Based Approaches for Vascular Networks

The process of bone formation involves many influential growth factors, such as angiogenic and
osteogenic factors. An alternative strategy is to fabricate the vascular network in tissue-engineered
bone tissue by incorporating growth factors into 3D bioprinting constructs. There are many growth
factors involved in fabricating vascularized tissue-engineered bone constructs, including vascular
platelet-derived growth factor (PDGF), endothelial growth factor (VEGF), fibroblast growth factors
(FGFs), epidermal growth factor (EGF), erythropoietin (EPO), transforming growth factor (TGF),
hypoxia inducible factor (HIF)-1, BMP-2, and BMP-7 [144,158]. The information of growth factors used
to stimulate vasculogenesis is shown in Table 3. Among these growth factors, VEGF has been identified
as the most crucial signal protein to stimulate the formation of blood vessels. It is a crucial regulator
of physiological vessel formation during embryogenesis [159]. Additionally, VEGF promotes both
intramembranous and endochondral ossification by inducing neovascularization [160]. HIF-1 could
regulate angiogenesis and vascular remodeling and plays a vital protective role in the pathophysiology
of ischemic diseases [161]. EPO plays an important regulatory role in angiogenesis, especially under
pathological conditions, and constitutes a crosslink between angiogenesis and hematopoiesis [162].
FGFs, PDGF, and TGF-β could stabilize newly formed blood vessels by recruiting smooth muscle cells.
As bone inducers, BMPs induce transcription of numerous osteogenic genes and play a key role in the
transformation of mesenchymal cells into bone [163]. Besides, as members of the BMPs, BMP-7 and
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BMP-2 have been approved for clinical use by the FDA [164]. In addition, stromal-derived factor-1
(SDF-1) is known to act chemotactically on ECs and thereby to enhance the process of angiogenesis [165].

Table 3. Growth factors used to stimulate vasculogenesis.

Growth Factors Gene Location (Human) Receptor Function References

VEGF Chromosome 6 Flt-1, Flk-1, KDR Neovasculature
and angiogenesis [159]

FGF Chromosome 8, 11, 12 FGFR1b, FGFR2b,
FGFR3b, FGFR4

Embryonic
development and

angiogenesis
[166]

PDGF Chromosome 22 PDGFRα and β
Maturation of

vasculature [167]

TGF Chromosome 19 TGF receptor Vascular invasion [166]

Angiopoietin-1 Chromosome 8 Tie-2 receptor
Enhance

vasculature
stability

[168]

BMP Chromosome 12 BMPR1A, BMPR1B
Regulate

angiogenesis and
VEGF secretion

[169]

Growth factors have a short half-life and are rapidly eliminated, which leads to insufficient
amounts [170]. Therefore, a controlled long-term release of growth factors would be helpful in vessel
formation in bone tissue constructs [171]. Currently, many growth factor delivery systems have
been applied to achieve the goals of sustained release and targeted transport, such as layer-by-layer
technology, hydrogel-based delivery and direct adsorption [172–174]. Gelatin is a natural product that
is used in many kinds of FDA-approved devices. Poldervaart et al. have successfully encapsulated
VEGF into gelatin and improved the degree of vascularization [175]. Compared with the single
application of growth factors, recent applications also have tried to encapsulate multiple growth factors
to improve the osteogenic and angiogenic ability of 3D bioprinting tissue-engineered bone [125,126].
The strongly desired characteristics of advanced bone tissue scaffolds include their ability to regulate the
behavior of various cells and to mimic the structure of target tissue. Cui et al. utilized CAD to fabricate
a 3D bioprinting bone construct with fluid perfused microvascular structures, and constructed a smart
nanoscale release system of dual growth factors (VEGF and BMP-2) [126]. After cultured in co-cultured
dynamic fluid systems, the 3D bioprinting scaffolds with dual growth factors and sequential release
exhibited excellent bioactivity and vascularized bone forming potential (Figure 6a). In another study,
they fabricated a biomimetic vascularized bone construct with regional immobilization of BMP-2
and VEGF [125]. The intrinsic gradient of growth factors within the engineered constructs has been
proved to enhance the formation of microcapillaries [39] (Figure 6b). Byambaa et al. [30] utilized 3D
bioprinting to fabricate a complex bone-like 3D architectures with vasculogenic and osteogenic niches.
Moreover, to promote vascular spreading, chemically conjugated VEGF with gradient concentrations
were constructed around bone niches. (Figure 6c).
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4.4. Small Moleculers-Based Approaches for Vascular Networks

Distinct from growth factors, small molecules are low molecular weight molecules, such as
lipids, metabolites, and drugs [176]. Recently, many kinds of small molecules were synthesized to
enhance angiogenesis. Sildenafil, a phosphodiesterase type 5 inhibitor, not only enhances nitric oxide
metabolism but has been shown to improve vascular endothelial function [177]. Lithium was also
shown to have a concentration-dependent effect on early vascular development in the chick embryo
area vasculosa [178]. Delivery of FTY720, a selective agonist for the sphingosine 1-phosphate receptor,
has also been proven to enlarge existing arterioles and enhance the formation of new arterioles [166].

Functional peptides are much smaller than full-length growth factors, which are easier to synthesize
and cheaper [179]. The functional motif KLT (KLTWQELYQLKYKGI) is a VEGF mimetic peptide
and could combined to VEGF receptors and improve the migration, proliferation, and tubulogenesis
of ECs [180]. Lu et al. modified hyaluronic acid hydrogels with KLT and demonstrated that the
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HA-KLT hydrogel could improve the spreading, and proliferation of HUVECs in vitro and promoted
angiogenesis in vivo [181]. The glycine-histidine-lysine (GHK) peptide is a fragment of osteonectin,
and could promote the secretion of VEGF from MSCs in alginate hydrogels [182]. In addition, Klontzas
et al. demonstrated that the oxidized alginate hydrogels modified with GHK significantly improved
osteogenic differentiation of encapsulated MSCs in vitro [183]. Even though the use of peptides in
bioprinting is actual quite unexplored, they show great potency in the fabrication of vascularized 3D
tissue-engineered bone constructs.

5. The Application of 3D Vascularized Models

3D bioprinting technology could precisely control complex 3D architecture and spatial distribution
to fabricate 3D vascularized models, which could have great potential for the applications in drug
toxicology, drug screening, and potentially disease modeling [20]. Engineered blood vessels can be
integrated into 3D biomimetic tissue constructs by 3D bioprinting to mimic the drug administration
process in vivo. Massa et al. utilized 3D bioprinting technology to construct a vascularized
tissue-engineered model for mimicking physiological drug diffusion and drug toxicity testing [184].
The results demonstrated that the integration of vascularized tissue engineering constructs with
bioreactors can helps to fabricate a new, more realistic platform that bridge the gap between in vivo and
in vitro drug testing models [184]. Bhise et al. fabricated an organ-on-a-chip platform by combining
a 3D bioprinted tissue-engineered construct with a bioreactor [185]. The results demonstrated
organ-on-a-chip platform could be a valuable approach for drug toxicity analysis [185]. In addition,
Zhou et al. utilized 3D bioprinting technology to constuct a 3D bioprinted tissue-engineered bone
construct that facilitates the integration of MSCs, breast cancer (BrCa) cells, and osteoblasts [186].
BrCa cell morphology, migration, and interaction with MSCs and osteoblasts in this system were
studied. The results demonstrated that 3D bioprinted tissue-engineered bone construct could be an
effective disease model for investigating breast cancer bone invasion and metastasis.

6. Conclusions and Challenges

In recent years, 3D bioprinting has been an emerging and accurate technology to fabricate
vascularized tissue-engineered bone constructs layer by layer. Combined with clinical imaging
techniques, more complex biomimetic bone structures with multiple types of cells spatially arranged
could be bioprinted for clinical transplantation. Although there are several reviews on 3D bioprinting,
to our best knowledge, this review is the first review to examine the role of vascularization in bone
tissue fabrication during the process of 3D bioprinting. In our review, we recap the current status of 3D
bioprinting technology for the fabrication of vascularized tissue-engineered bone. Although successful
bioprinting of various vascularized tissue-engineered bone constructs has been reported, several
contemporary issues of bioprinting still require focused efforts. Firstly, there is no standard guideline
for the overall process of 3D bioprinting technology. Secondly, compared with avascular cartilage
tissue with a small number of chondrocytes, the structural complexity of bone tissue increases the
difficulty of fabrication. Additionally, different regions of bone tissue in the human body might have
different biomechanical properties and microenvironment architectures. Therefore, accurate acquisition
of imaging data, computational simulation, and mathematical models might help in designing the
structure of target tissue. Thirdly, unlike some tissues that contain only one type of cells, the fabrication
of vascularized tissue-engineered bone needs at least two types of cells. Therefore, how to maintain
cell viability throughout the process of bioprinting and ensure the exchange of nutrients and bioactive
factors between host and tissue-engineered constructs are important. In our opinion, more complex
and intelligent bioinks are required to sustain cell bioactivity and mimic the properties of nature tissues.
Additionally, long-term cell viability, the intercellular interactions, and cell-to-material interactions
after bioprinting should be monitored precisely. Fourthly, bone tissue is a hard tissue, which provides
structure and support for the body. In order to fabricate biomimetic tissue-engineered bone constructs,
good mechanical properties of scaffolds are necessary. In our opinion, bioinks should be modified
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to enhance its mechanical strength and the shape fidelity. In addition, when dealing with defects in
weight-bearing areas, acellular load bearing implants followed by bioprinting cell-laden bioinks (such
as [125]) might be a good solution. Finally, we believe that further developments in 3D bioprinting in
the near future will undoubtedly propel the field of bone regeneration to a new height by fabricating
biomimetic vascularized tissue-engineered bone constructs.
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