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ABSTRACT: Structural and biochemical studies of the severe
acute respiratory syndrome (SARS)-CoV-2 spike glycoproteins and
complexes with highly potent antibodies have revealed multiple
conformation-dependent epitopes highlighting conformational
plasticity of spike proteins and capacity for eliciting specific
binding and broad neutralization responses. In this study, we used
coevolutionary analysis, molecular simulations, and perturbation-
based hierarchical network modeling of the SARS-CoV-2 spike
protein complexes with a panel of antibodies targeting distinct
epitopes to explore molecular mechanisms underlying binding-
induced modulation of dynamics and allosteric signaling in the
spike proteins. Through coevolutionary analysis of the SARS-CoV-
2 spike proteins, we identified highly coevolving hotspots and
functional clusters that enable a functional cross-talk between distant allosteric regions in the SARS-CoV-2 spike complexes with
antibodies. Coarse-grained and all-atom molecular dynamics simulations combined with mutational sensitivity mapping and
perturbation-based profiling of the SARS-CoV-2 receptor-binding domain (RBD) complexes with CR3022 and CB6 antibodies
enabled a detailed validation of the proposed approach and an extensive quantitative comparison with the experimental structural
and deep mutagenesis scanning data. By combining in silico mutational scanning, perturbation-based modeling, and network analysis
of the SARS-CoV-2 spike trimer complexes with H014, S309, S2M11, and S2E12 antibodies, we demonstrated that antibodies can
incur specific and functionally relevant changes by modulating allosteric propensities and collective dynamics of the SARS-CoV-2
spike proteins. The results provide a novel insight into regulatory mechanisms of SARS-CoV-2 S proteins showing that antibody-
escaping mutations can preferentially target structurally adaptable energy hotspots and allosteric effector centers that control
functional movements and allosteric communication in the complexes.

■ INTRODUCTION
Severe acute respiratory syndrome (SARS)-CoV-2 infection is
transmitted when the viral spike (S) glycoprotein binds to the
host cell receptor leading to the entry of S protein into host
cells and membrane fusion.1−3 The full-length SARS-CoV-2 S
protein consists of two main domains, amino (N)-terminal S1
subunit and carboxyl (C)-terminal S2 subunit. The subunit S1
is involved in the interactions with the host receptor and
includes an N-terminal domain (NTD), the receptor-binding
domain (RBD), and two structurally conserved subdomains
(SD1 and SD2). Structural and biochemical studies have
revealed that spontaneous conformational transformations of
the SARS-CoV-2 S protein between a spectrum of closed and
receptor-accessible open forms are central to the mechanism of
binding with the host receptor angiotensin-converting enzyme
2 (ACE2) and virus transmission.4−6 The crystal structures of
the S-RBD in the complexes with human ACE2 revealed a
structurally conserved binding mode shared by the SARS-CoV
and SARS-CoV-2 proteins in which an extensive interaction
network is formed by the receptor-binding motif (RBM) of the
RBD region.7−11 The rapidly growing body of cryo-electron

microscopy (cryo-EM) structures of the SARS-CoV-2 S
proteins detailed distinct conformational arrangements of S
protein trimers in the prefusion form that are manifested by a
dynamic equilibrium between closed (“RBD-down”) and
receptor-accessible open (“RBD-up”) forms required for the
S protein fusion to the viral membrane.12−21 By combining
targeted mutagenesis and cryo-EM structure determination,
recent biophysical investigations engineered thermostable
SARS-CoV-2 S spike timers in which modifications in the
contact regions between the RBD and S2 domains and the
introduction of the interprotomer disulfide bonds can
preferentially shift the equilibrium toward the closed or open
form with enhanced binding propensities for the ACE2 host
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receptor.22−25 The cryo-EM high-resolution structure charac-
terization of SARS-CoV-2 S trimers in situ on the virion
surface26 and biophysical analysis of the SARS-CoV-2 S trimer
on virus particles27 revealed distinct conformational states for
the S protein and a sequence of conformational transitions
through an obligatory intermediate in which all three RBD
domains in the closed conformations are oriented toward the
viral particle membrane. Cryo-EM structural studies also
mapped a mechanism of conformational events associated with
ACE2 binding, showing that the compact closed form of the
SARS-CoV-2 S protein becomes weakened after furin cleavage
between the S1 and S2 domains, leading to the increased
population of partially open states and ACE2 recognition that
can accelerate transformation to a fully open and ACE2-bound
form primed for fusion activation.28 These investigations
confirmed a general mechanism of population shifts between
different functional states of the SARS-CoV-2 S trimers,
suggesting that RBD epitopes can become stochastically
exposed to the interactions with the host receptor ACE2.
Deep mutagenesis scanning studies have detailed SARS-CoV-2
interactions with the ACE2 host receptor and key energetic
hotspots of binding and stability showing that many mutations
of the RBD residues can be well tolerated with respect to both
RBD folding and binding.29,30 Functional studies characterized
the key amino acid residues of the RBD for binding with
human ACE2, revealing two groups of amino acid residues to
modulate binding, where the SARS-CoV-2-RBD mutations to
their SARS-CoV counterparts N439/R426, L452/K439,
T470/N457, E484/P470, Q498/Y484, and N501/T487 can
result in the enhanced binding affinity for ACE2.31

Computational modeling and molecular dynamics (MD)
simulations have been instrumental in predicting conforma-
tional and energetic mechanisms of SARS-CoV-2 func-
tions.32−37 One of the first reported all-atom MD simulations
of the SARS-CoV-2 S protein confirmed dynamic fluctuations
between open and closed spike states by constructing the free
energy landscapes and minimum energy pathways, also
revealing that RBD switches to the up position through an
obligatory semiopen intermediate that reduces the free energy
barrier between functional forms and could serve as a
prerequisite state for the host cell recognition.32 The
development of a fully glycosylated full-length SARS-CoV-2
S protein in a viral membrane provided the infrastructure for
more rigorous simulations of the SARS-CoV-2 S trimer
structures in a glycosylated environment.33 Microsecond, all-
atom MD simulations of the full-length SARS-CoV-2 S
glycoprotein embedded in the viral membrane, with a
complete glycosylation profile, were recently reported,
providing an unprecedented level of details about open and
closed structures.34 MD simulations of the SARS-CoV-2 spike
glycoprotein identified differences in flexibility of functional
regions that may be important for modulating the equilibrium
changes and binding to the ACE2 host receptor.35 A
comprehensive study employed MD simulations to reveal a
balance of hydrophobic interactions and elaborate hydrogen-
bonding network in the SARS-CoV-2-RBD interface.36

Computational studies of the SARS-CoV-2 S trimer inter-
actions with ACE2 using the recent crystal structures38−42 also
provided important insights into the key determinants of the
binding affinity and selectivity. Molecular mechanisms of the
SARS-CoV-2 binding with ACE2 were analyzed in our recent
study using coevolution and conformational dynamics.41 A
series of all-atom MD simulations totaling 16.5 μs of the

SARS-CoV-2 S-RBDS complex with ACE2 in the absence and
presence of external force examined the effects of alanine
substitutions and charge-reversal mutations of the RBD
residues, showing that the hydrophobic end of RBD serves
as the main energetic hotspot for ACE2 binding.42

The rapidly growing structural studies of SARS-CoV-2
antibodies have delineated molecular mechanisms underlying
binding competition with the ACE2 host receptor, showing
that the SARS-CoV-2 S protein features multiple distinct
antigenic sites, where efficient cross-neutralization can be
achieved through synergistic targeting of conserved and
variable SARS-CoV-2-RBD epitopes.43−47 A wide spectrum
of SARS-CoV-2 antibodies can be divided into several main
classes, of which class 1 and class 2 antibodies target epitopes
that overlap with the ACE2-binding site.44,45 The crystal
structure of a neutralizing Ab CR3022 in the complex with the
SARS-CoV-2 S-RBD revealed binding to a highly conserved
cryptic epitope located away from the ACE2-binding site that
can be accessed only when two RBDs adopt the “up”
conformation.48 Subsequent studies confirmed that CR3022
binds the RBD of SARS-CoV-2, displaying strong neutraliza-
tion by allosterically perturbing the interactions between the
RBD regions and the ACE2 receptor.49 Although the CR3022
cryptic site is not accessible when RBD is in the “down” state,
the intrinsic structural plasticity of the RBD capable of
adopting a variety of conformations might transiently expose
the spike surface to CR3022 recognition. Structural and
biochemical studies characterized binding epitopes and
binding mechanisms for a number of SARS-CoV-2 antibodies
targeting RBD regions including REGN10933 and
REGN10987,50 B38 and H14,51 P2B-2F6,52 CA1 and CB6,53

CC12.1 and CC12.3,54 C105,55 and BD-23.56

Cryo-EM characterization of the SARS-CoV-2 S trimer in
complex with the H014 Fab fragment revealed a new
conformational epitope that is accessible only when the RBD
is in the up conformation.57 Biochemical and virological
studies demonstrated that H014 prevents attachment of SARS-
CoV-2 to the host cell receptors and can exhibit broad cross-
neutralization activities by leveraging the conserved nature of
the RBD epitope and a partial overlap with the ACE2-binding
region. The recently reported S309 antibody potently
neutralizes both SARS-CoV-2 and SARS-CoV through binding
to a conserved RBD epitope, which is distinct from the RBM
region and accessible in both open and closed states, so that
there is no completion between S309 and ACE2 for binding to
the SARS-CoV-2 S protein.58 Two ultrapotent S2M11 and
S2E12 antibodies targeting the overlapping RBD epitopes were
recently reported, revealing Ab-specific modulation of protein
responses and adaptation of different functional states for the S
trimer.59 Cryo-EM structures showed that S2M11 can
recognize and stabilize S protein in the closed conformation
by binding to a quaternary epitope spanning two RBDs of the
adjacent protomers in the S trimer, while S2E12 binds to a
tertiary epitope contained within one S protomer and shifts the
conformational equilibrium toward a fully open S trimer
conformation.59 Functional mapping of mutations in the
SARS-CoV-2 S-RBD that escape antibody binding using
deep mutational scanning showed that the escape mutations
cluster in several RBD regions and have large effects on
antibody escape and a negligible negative impact on ACE2
binding and RBD folding.60 This illuminating study demon-
strated that escape sites from antibodies can be constrained
with respect to their effects on the expression of properly
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folded RBD and ACE2 binding, suggesting that escape-
resistant antibody cocktails can compete for binding to the
same RBD region but have different escape mutations. There is
growing evidence that properly designed cocktails of antibod-
ies can provide broad and efficient cross-neutralization effects
through synergistic targeting of conserved and more variable
SARS-CoV-2-RBD epitopes, thereby offering a robust strategy
to combat virus resistance. These studies also suggested that
some SARS-CoV-2 antibodies can allosterically interfere with
the host receptor binding and modulating conformational
changes that can obstruct other epitopes and block virus
infection without directly interfering with ACE2 recognition.
In this study, we employed an integrated biophysical strategy

that encompasses several synergistic computational approaches
to explore mechanisms of SARS-CoV-2 S binding and
allosteric interactions with a panel of antibodies including
CR3022, CB6, H014, S309, S2M11, and S2E12 that target
distinct epitopes in the RBD regions. By expanding our recent
studies,61,62 we propose that the SARS-CoV-2 spike protein
can function as an allosteric regulatory engine that fluctuates
between dynamically distinct functional states. Using coevolu-
tionary analysis, molecular simulations, and perturbation-based
hierarchical network modeling, we examined how binding can
incur antibody-specific modulation of dynamics, stability, and
allosteric interactions in the SARS-CoV-2 S complexes. The
results reveal structural topography of coevolutionary
couplings and network connectivity that may determine
mechanisms of allosteric signaling in the SARS-CoV-2 S
proteins. Coarse-grained (CG) and atomistic MD simulations
combined with mutational sensitivity mapping and perturba-
tion-based profiling of the SARS-CoV-2 S-RBD complexes
with CR3022 and CB6 antibodies enabled a detailed validation
of the proposed approach and quantitative comparison with
the experimental deep mutagenesis scanning. The results
provide support to a model in which antibody-escaping
mutations may preferentially target structurally adaptable
energy hotspots and allosteric effector centers that control
functional movements and allosteric communication in the
complexes. Through in silico mutational scanning and
perturbation-based network modeling of the SARS-CoV-2 S
trimer complexes with H014, S309, S2M11, and S2E12
antibodies, we examined how antibodies can differentially
modulate the allosteric potential of the spike residues and exert
control over long-range communications. The results provide a
novel insight into regulatory mechanisms of SARS-CoV-2 S
proteins, showing that antibody-escaping mutations can target
specific effector centers regulating global motions and allosteric
interactions in the complexes. This study suggests that the
SARS-CoV-2 spike protein may function as a functionally
adaptable allosteric machine exploiting the plasticity of
regulatory centers to fine-tune the response to antibody
binding, which may be useful for therapeutic intervention by
targeting specific hotspots of allosteric interactions.

■ MATERIALS AND METHODS
Sequence Conservation and Coevolutionary Anal-

yses. Sequences of spike glycoproteins corresponding to
NCBI GenBank accession ids MN908947 (human SARS-CoV-
2), MN996532 (bat coronavirus RaTG13), AY278741 (SARS
coronavirus Urbani), KY417146 (bat SARS-like coronavirus),
and MK211376 (coronavirus BtRs BetaCoV/YN2018B) were
previously used for the multiple sequence alignment (MSA) of
protein sequences using the MAFFT approach63 for coevolu-

tionary detection.64 In our study, the employed sequences
were initially collected from the Pfam database.65 MSA profiles
were then derived with the aid of hidden Markov models using
Pfam SARS-CoV-2 special release66 in which a full collection
of spike glycoprotein sequences was assembled and categorized
in different Pfam domains. Three Pfam domains were
considered for the S1 domain: the NTD (bCoV_S1_N,
betacoronavirus-like spike glycoprotein S1, N-terminal, Pfam:
PF16451, 50 sequences from 49 species, Uniprot SPI-
KE_CVHSA, Protein Data Bank (PDB) id 6CS0, residues
33−324), the RBD (bCoV_S1_RBD, betacoronavirus spike
glycoprotein S1, receptor binding, Pfam: PF09408, 50
sequences from 45 species, Uniprot SPIKE_CVHSA, PDB id
6CS0, residues 335−512), and the new C-terminal domain,
CTD (CoV_S1_C coronavirus spike glycoprotein S1, C-
terminal. Pfam: PF19209, 92 sequences from 92 species,
Uniprot SPIKE_CVHSA, PDB id 6CS0, residues 522−580).
The S2 domain is characterized in the family Pfam: PF01601,
which contains an additional S2′ cleavage site, a fusion peptide
(FP), an internal fusion peptide, heptad repeat (HR) 1/2
domains, and the transmembrane (TM) domain (TD) (99
sequences from 99 species, Uniprot SPIKE_CVHSA, PDB id
6CS0, residues 622−1120). The following Uniprot entries
were used for sequence−structure analysis and comparison:
P59594: SPIKE_SARS (previously SPIKE_CVHSA) (PDB id
6CS0) and P0DTC2: SPIKE_SARS2 (PDB id 6VXX, 6VYB).
All sequences in the full MSA score within curated

thresholds (E-value = 10−2 and a column-inclusion threshold
of 80%) are included in the sequence alignment. A statistically
significant and diverse number of spike glycoprotein sequences
in the Pfam SARS-CoV-2 special release (∼400 sequences
from Pfam domains) provided input for MSA and coevolu-
tionary computations. Through iterations of control experi-
ments in which the number of sequences from the Pfam SARS-
CoV-2 domains used for MSA was gradually reduced, we
determined that a lower bound of ∼150−170 sequences is
sufficient to yield robust MSA profiles and consistent and
statistically meaningful coevolutionary relationships. To
discriminate coevolutionary associations driven by functional
constraints from those determined by common ancestry, the
covariance metric was adjusted by the average product
correction (APC).67−69 To evaluate coevolutionary couplings
in the SARS-CoV-2 S glycoproteins, we used the MISTIC
approach,70−72 where sequence clustering is implemented to
reduce sequence redundancy and sequence clusters are defined
at a sequence identity threshold of 62%.
By employing the MISTIC approach,70−72 we computed the

Kullback−Leibler (KL) sequence conservation score KLCons-
Score according to the following formula

P i
Q i

KLConsScore ln
( )
( )i

i

N

1

∑=
= (1)

Here, P(i) is the frequency of amino acid i in that position and
Q(i) is the background frequency of the amino acid in nature
calculated using an amino acid background frequency
distribution obtained from the UniProt database.73 Coevolu-
tionary inter-residue couplings in the SARS-CoV-2 S
glycoproteins were computed in MISTIC with three different
direct coupling analysis (DCA) methods: mean field DCA
(mfDCA),74−76 pseudo-likelihood maximization DCA
(plmDCA),77,78 and multivariate Gaussian modeling DCA
(gaussianDCA).79,80 For each residue, we computed the
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cumulative covariation score (CScore) parameter, which
evaluates to what degree a given position participates in the
coevolutionary network. CScore is a derived score per position
that characterizes the extent of coevolutionary couplings
shared by a given residue. This score is calculated as the
sum of covariation scores above a certain threshold (typically
top 5% of the covariation scores) for every position pair where
the particular position appears.
Coarse-Grained Molecular Simulations. Coarse-grained

(CG) models are computationally effective approaches for
simulations of large systems over long time scales. In this study,
the CG-CABS model81−85 was used for simulations of the
cryo-EM structures of the SARS-CoV-2 S complexes with
CR3022, CB6, H014, S309, S2M11, and S2E12 antibodies. In
this model, the amino acid residues are represented by Cα, Cβ,
the center of mass of side chains, and another pseudoatom
placed in the center of the Cα−Cα pseudo-bond.81−83 The
position of Cα atoms is confined to a cubic lattice of a grid
equal to 0.61 Å. The position of the side chain is dependent on
the Cα−Cα−Cα angle of the main chain and the amino acid
type. We specifically opted for the CABS model as this is a
high-resolution knowledge-based coarse-grained force field that
is based on potentials of the mean force obtained from
statistical analysis of known protein structures and structural
correlations of solved protein structures.81−83 The appealing
advantage of the CG-CABS knowledge-based force field is that

residue−residue interactions are considered in a context-
dependent manner, where the potential depends on the mutual
orientations of the contacting side chains and by implicitly
taking into account multibody and solvent effects encoded in
mean force statistical parameters of the model.81−83

We employed the CABS-flex approach that efficiently
combines a high-resolution coarse-grained model and an
efficient search protocol capable of accurately reproducing all-
atom MD simulation trajectories and dynamic profiles of large
biomolecules on a long time scale.81−85 The sampling scheme
of the CABS model used in our study is based on Monte Carlo
replica-exchange dynamics and is modeled as a very long
random sequence of small local moves of individual amino
acids in the protein structure as well as moves of small
fragments consisting of two and three residues. The default
settings were used for CG-CABS simulations in which soft
nativelike restraints are imposed only on pairs of residues
where the distance between their Cα atoms is smaller than 8 Å
and both residues are part of the same secondary structure
elements. No additional custom-designed distance restraints
were applied to the simulation scheme. CABS-flex standalone
package dynamics implemented as a Python 2.7 object-
oriented package was used for fast simulations of protein
structures.85

A series of several 1000 independent CG-CABS replica-
exchange simulations were performed for each of the studied

Figure 1. Cryo-EM structures of the SARS-CoV-2 S protein trimer complexes with a panel of antibodies used in this study. (A) Cryo-EM structure
of the SARS-CoV-2 S protein trimer with two RBDs in the open state complexed with two H014 Fab fragments (PDB id 7CAI).45 (B) Cryo-EM
structure of the SARS-CoV-2 S protein trimer with three RBDs in the open state complexed with three H014 Fab fragments (PDB id 7CAK).45

(C) Cryo-EM structure of the SARS-CoV-2 S protein trimer with two RBDs in the closed form and one RBD in the open state bound with the two
S309 neutralizing Fab fragments (PDB id 6WPT).46 (D) Cryo-EM structure of the SARS-CoV-2 S protein trimer with all three RBDs in the closed
form bound with the three S309 neutralizing Fab fragments (PDB id 6WPS).46 (E) Cryo-EM structure of the SARS-CoV-2 S protein trimer with all
three RBDs in the closed-down form bound with the three S2M11 neutralizing Fab fragments (PDB id 7K43).47 (F) Cryo-EM structure of the
SARS-CoV-2 S protein trimer with all three RBDs in the open-up form bound with the three S2ME12 neutralizing Fab fragments (PDB id
7K4N).47 The SARS-CoV-2 S proteins are shown in surface representation, with protomer A in green, protomer B in cyan, and protomer C in
magenta. The Ab structures are shown in ribbons and colored in maroon. All structures are annotated, and open/closed (up/down) conformations
of S protomers are indicated.
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systems. In each simulation, the total number of cycles was set
to 10 000 and the number of cycles between trajectory frames
was 100. The cryo-EM structures of the SARS-CoV-2 S trimer
complexes with a panel of antibodies including H014, S309,
S2M11, and S2E12 were used in CG-CABS simulations
(Figures 1 and S1). These structures included the partially
open and fully open forms of the SARS-CoV-2 S trimer in the
complex with H014 (Figure 1A,B), the partially closed and
fully closed S trimer forms bound with S309 (Figure 1C,D),
the fully closed S trimer form complexed with S2M11 (Figure
1E), and the fully open S trimer form in the complex with
S2E12 (Figure 1F). In addition, we simulated structures of the
SARS-CoV-2 S-RBD complexes with CR3022 and CB6
antibodies using both CABS-CG and all-atom MD simulations.
Structure Preparation and Analysis. All structures were

obtained from the Protein Data Bank.86,87 Hydrogen atoms
and missing residues were initially added and assigned
according to the WHATIF program web interface.88,89 The
structures were further preprocessed through the Protein
Preparation Wizard (Schrödinger, LLC, New York, NY) and
included the check of bond order, assignment and adjustment
of ionization states, formation of disulfide bonds, removal of
crystallographic water molecules and cofactors, capping of the
termini, assignment of partial charges, and addition of possible
missing atoms and side chains that were not assigned in the
initial processing with the WHATIF program. The missing
loops in the cryo-EM structures were also reconstructed using
template-based loop prediction approaches ModLoop90 and
ArchPRED.91 The conformational ensembles were also
subjected to MODELLER-based all-atom reconstruction
including hydrogen atoms to produce atomistic models of
simulation trajectories.92,93 The side-chain rotamers were
refined and optimized by the SCWRL4 tool.94 The protein
structures were then optimized using atomic-level energy
minimization with composite physics and knowledge-based
force fields using the 3Drefine method.95 The shielding of the
receptor-binding sites by glycans is an important feature of
viral glycoproteins, and glycosylation on SARS-CoV proteins
can camouflage immunogenic protein epitopes.96,97

In addition to the experimentally resolved glycan residues
present in the crystallographic and cryo-EM structures of
studied SARS-CoV-2 S proteins, the reconstructed atomistic
samples from CG-CABS simulation trajectories were elabo-
rated by adding N-acetyl glycosamine (NAG) glycan residues
and optimized. The structure of glycans at particular glycosites
of the closed and open states of the SARS-CoV-2 S protein was
previously determined, and these glycans were incorporated in
atomistic modeling of the SARS-CoV-2 S protein complexes
with antibodies. The glycosylated microenvironment for
atomistic models of the simulation trajectories was mimicked
using the structurally resolved glycan conformations for 16 out
of 22 most occupied N-glycans in each protomer (N122,
N165, N234, N282, N331, N343, N603, N616, N657, N709,
N717, N801, N1074, N1098, N1134, N1158) as determined
in the cryo-EM structures of the SARS-CoV-2 spike S trimer in
the closed state (K986P/V987P) (PDB id 6VXX) and the
open state (PDB id 6VYB) and the cryo-EM structure SARS-
CoV-2 spike trimer (K986P/V987P) in the open state (PDB id
6VSB). The glycan-decorated atomistic models were sub-
sequently used for ensemble-based structural, energetic, and
network analyses of the SARS-CoV-2 S protein complexes with
a panel of antibodies.

MD Simulations of the SARS-CoV-2 S-RBD Complexes
with CR3022 and CB6 Antibodies. The crystal structures of
the SARS-CoV-2-RBD complexes were simulated in a box size
of 85 Å × 85 Å × 85 Å with a buffering distance of 12 Å.
Assuming normal charge states of ionizable groups correspond-
ing to pH = 7, sodium (Na+) and chloride (Cl−) counterions
were added to achieve charge neutrality and a salt
concentration of 0.15 M NaCl was maintained. All Na+ and
Cl− ions were placed at least 8 Å away from any protein atoms
and from each other. All-atom MD simulations were
performed for an N, P, T ensemble in the explicit solvent
using the NAMD 2.13 package98 with the CHARMM36 force
field.99 Long-range nonbonded van der Waals interactions
were computed using an atom-based cutoff of 12 Å with
switching van der Waals potential beginning at 10 Å. Long-
range electrostatic interactions were calculated using the
particle mesh Ewald method100 with a real-space cutoff of
1.0 nm and a fourth-order (cubic) interpolation. The SHAKE
method was used to constrain all bonds associated with
hydrogen atoms. Simulations were run using a leap-frog
integrator with a 2 fs integration time step. Energy
minimization after addition of solvent and ions was carried
out using the steepest descent method for 100 000 steps. All
atoms of the complex were first restrained at their crystal
structure positions with a force constant of 10 kcal mol−1 Å−2.
Equilibration was done in steps by gradually increasing the
system temperature in steps of 20 K starting from 10 K until
310 K, and at each step, 1 ns equilibration was done keeping a
restraint of 10 kcal mol−1 Å−2 on the protein Cα atoms. After
the restraints on the protein atoms were removed, the system
was equilibrated for an additional 10 ns. An NPT production
simulation was run on the equilibrated structures for 500 ns
keeping the temperature at 310 K and constant pressure (1
atm). In simulations, the Nose−́Hoover thermostat101 and the
isotropic Martyna−Tobias−Klein barostat102 were used to
maintain the temperature at 310 K and pressure at 1 atm,
respectively.

Protein Stability and Mutational Scanning Analysis.
To compute protein stability changes in the SARS-CoV-2
trimer mutants, we conducted a systematic alanine scanning of
protein residues in the SARS-CoV-2 trimer mutants. The
BeAtMuSiC approach was employed, which is based on
statistical potentials describing the pairwise inter-residue
distances, backbone torsion angles, and solvent accessibilities
and considers the effect of mutation on the strength of the
interactions at the interface and on the overall stability of the
complex.103−105 The binding free energy of the protein−
protein complex can be expressed as the difference in the
folding free energy of the complex and folding free energies of
the two protein-binding partners

G G G Gbind
com A BΔ = − − (2)

The change in the binding energy due to a mutation was then
calculated as follows

G G Gbind bind
mut

bind
wtΔΔ = Δ − Δ (3)

We leveraged rapid calculations based on statistical potentials
to compute the ensemble-averaged binding free energy
changes using equilibrium samples from MD trajectories.
The binding free energy changes were computed by averaging
the results over 1000 equilibrium samples for each of the
studied systems.
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Network Modeling of Residue Interactions. The
protein contact network is an undirected, unweighted graph
and is built on the basis of the distance matrix d, whose generic
element dij records the Euclidean distance between the ith and
the jth residue (measured between the corresponding α
carbons). A detailed description of the network construction
and significance of network descriptors was presented in our
previous studies.106−108 The active network links are defined
using a range of contacts between 4 and 8 Å. Once the network
is divided into a given number of clusters (powers of 2), we
define the participation coefficient as

P
k
k

1i
i

si

2

= −
i
k
jjjjj

y
{
zzzzz (4)

where ki is the overall node degree, while ksi is the node degree
including only links with nodes (residues) that belong to their
own cluster. The participation coefficient P describes the
propensity of residue nodes to participate in intercluster
communication. We designate as highly active communication

residues the nodes with P > 0.75. The proposed methodology
of network clustering was implemented as Cytoscape plugin.109

We also employed a graph-based representation of protein
structures110−112 with residues as network nodes and the inter-
residue edges as residue interactions to construct the residue
interaction networks using dynamic correlations112 and
coevolutionary residue couplings,113 as detailed in our previous
studies.113−115 The ensemble of shortest paths is determined
from the matrix of communication distances by the Floyd−
Warshall algorithm.116 Network graph calculations were
performed using the python package NetworkX.117 Using the
constructed protein structure networks, we computed the
residue-based betweenness parameter. The short path
betweenness centrality of residue i is defined to be the sum
of the fraction of shortest paths between all pairs of residues
that pass through residue i
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Figure 2. Sequence conservation analysis of the SARS-CoV-2 S protein. (Top panel) Schematic representation of domain organization and residue
range for the full-length SARS-CoV-2 S protein. Subunits S1 and S2 include NTD RBD, C-terminal domain 1 (CTD1), C-terminal domain 2
(CTD2), the S1/S2 cleavage site (S1/S2), the S2′ cleavage site (S2′), the fusion peptide (FP), the fusion peptide proximal region (FPPR), heptad
repeat 1 (HR1), the central helix (CH) region, the connector domain (CD), heptad repeat 2 (HR2), the transmembrane (TM) domain, and the
cytoplasmic tail (CT). (A) KL conservation score. High KL scores indicate highly conserved sites, and low scores correspond to more variable
positions. The KL scores for the S1-NTD residues are in green bars, for the S1-RBD regions in red bars, and for S2 residues in blue bars. The KL
conservation scores for the epitope residues are shown in filled maroon-colored circles. (B) A close-up view of KL conservation scores for RBD
regions of the SARS-CoV-2 S protein is shown in red bars. The KL scores are highlighted for the binding epitope residues of H014 (filled maroon-
colored circles), S309 (filled blue circles), and S2M11/S2E12 (filled green circles). (C) Subunit S1 regions are annotated as follows: NTD
(residues 14−306) in light blue; RBD (residues 331−528) in yellow; CTD1 (residues 528−591) in orange; CTD2 (residues 592−686) in wheat
color; upstream helix (UH) (residues 736−781) in red; HR1 (residues 910−985) in pink; CH (residues 986−1035) in hot pink; and core β-sheet
(residues 711−736, 1045−1076) in blue.
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where gjk denotes the number of shortest geodesics paths
connecting j and k and gjk(i) is the number of shortest paths
between residues j and k passing through the node ni.
The Girvan−Newman algorithm118,119 is used to identify

local communities. To characterize global bridges from a
community structure, we computed the intercommunity
bridgeness parameter. The algorithmic details have been
specified in our recent studies.108,120,121 The bridgeness
parameter uses community detection as the input

G i l( )
j J

IJ iJ∑ δ=
∈ (6)

where the sum is over communities J (different from the
community of node i, denoted I) and δiJ is equal to 1 if there is
a link between node i and community J and 0 otherwise. liJ
corresponds to the distance between community I and
community J and is measured by the inverse of the number
of links between them. The network parameters were evaluated
by the Cytoscape package for network analysis.122−124

Perturbation Response Scanning (PRS). The perturba-
tion response scanning (PRS) approach125,126 has successfully
identified hotspot residues driving allosteric mechanisms in
single protein domains and large multidomain assem-
blies.127−132 The implementation of this approach follows
the protocol originally proposed by Bahar and colleagues127,128

and was described in details in our previous study.62 In brief,
through monitoring the response to forces on the protein
residues, the PRS approach can quantify allosteric couplings
and determine the protein response in functional movements.
In this approach, the 3N × 3N Hessian matrix H, whose
elements represent second derivatives of the potential at the
local minimum, connects the perturbation forces to the residue
displacements. The 3N-dimensional vector ΔR of node
displacements in response to the 3N-dimensional perturbation
force follows Hooke’s law F = H × ΔR. A perturbation force is
applied to one residue at a time, and the response of the
protein system is measured by the displacement vector ΔR(i)
= H−1F(i), which is then translated into the N × N PRS matrix.
The second derivative matrix H is obtained from simulation
trajectories for each protein structure, with residues
represented by Cα atoms, and the deviation of each residue
from an average structure was calculated by ΔRj(t) = Rj(t) −
⟨Rj(t)⟩, and corresponding covariance matrix C was then
calculated by ΔRΔRT. We sequentially perturbed each residue
in the SARS-CoV-2 spike structures by applying a total of 250
random forces to each residue to mimic a sphere of randomly
selected directions.62 The displacement change, ΔRi, is a 3N-
dimensional vector describing the linear response of the
protein and deformation of all of the residues. Using the
residue displacements upon multiple external force perturba-
tions, we compute the magnitude of the response of residue k
as ⟨∥ΔRk

(i)∥2⟩ averaged over multiple perturbation forces F(i),
yielding the ikth element of the N × N PRS matrix. The
average effect of the perturbed effector site i on all other
residues is computed by averaging over all sensor (receiver)
residues j and can be expressed as ⟨(ΔRi)2⟩effector. The effector
profile determines the global influence of a given residue node
on the perturbations in other protein residues and can be used
as a proxy for detecting allosteric regulatory hotspots in the
interaction networks. In turn, the jth column of the PRS matrix
describes the sensitivity profile of sensor residue j in response
to perturbations of all residues, and its average is denoted
⟨(ΔRi)2⟩sensor. The sensor profile measures the ability of

residue j to serve as a receiver (or transmitter) of dynamic
changes in the system.

■ RESULTS AND DISCUSSION
Sequence Analysis and Coevolutionary Relationships

of the SARS-CoV-2 Proteins Reveal Conserved Regu-
latory Centers and Functional Role of the Epitope
Regions. To determine the evolutionary patterns in the
SARS-CoV S proteins and characterize the extent of
conservation and variability of the S1 and S2 subunits, we
utilized the KL sequence conservation score as implemented in
the MISTIC software package.70−72 Consistent with previous
studies,133−135 we found that S1-RBD is less conserved than
domains in the S2 subunit (Figure 2A,B). The S2 subunit
contains an N-terminal hydrophobic fusion peptide (FP), a
fusion peptide proximal region (FPPR), a heptad repeat 1
(HR1), a central helix (CH) region, a connector domain
(CD), a heptad repeat 2 (HR2), a transmembrane domain
(TD), and a cytoplasmic tail (CT). The results confirmed the
higher conservation of the S2 subunit, particularly highlighting
conservation of the HR1 (residues 910−985), CH (residues
986−1035), CD (residues 1068−1163), HR2 (residues 1163−
1211), and TD (residues 1211−1234) regions (Figure 2).
Among most conserved residues in the S2 subunit are

clusters of conserved cysteine residues forming disulfide
bridges that are crucial for stabilization of both prefusion
and postfusion SARS-CoV-2 spike protein conformation. The
S proteins can contain up to 40 cysteine residues, 36 of which
are conserved in the S proteins of various SARS-coronavi-
ruses.136 The conserved cysteine cluster in the TD region
1220-CCMTSCCSC-1228 displayed high conservation scores,
with C1121, M1222, and C1225 featuring the top 1% of the
conservation scores (Figure 2A). Indeed, mutagenesis of
cysteine cluster I (1220-CCMTS-24), located immediately
proximal to the TD, showed 55% reduction in S-mediated cell
fusion as compared to the wild-type S protein.137 The proximal
cysteine cluster 1225-CCSC-1228 is similarly important as
alanine mutations in this cluster resulted in 60% reduction of
S-mediated cell fusion.137 At the same time, the nearest
cysteine-rich cluster 1230-CSCGSCCK-1237 featured only
one highly conserved C1235. According to the experimental
data, mutations in this region caused only a moderate 15%
reduction in cell fusion,137 indicating that the functional role of
these clusters may be closely linked with the conservation level
of cysteine residues. Interestingly, the most conserved S2
positions included cysteine residues C720, C725, C731, C742,
C822, C822, C833, C1014, C1025, and C1064 (Figure 2A).
Consistent with these observations, a conserved region flanked
by C822 and C833 residues is critical for interactions with
components of the SARS-CoV S trimer to control the
activation of membrane fusion.138

Among highly conserved S protein regions are also six
clusters of cysteine residues in the S2 subunit forming disulfide
bridges crucial for stabilization of both prefusion and
postfusion SARS-CoV-2 spike protein conformations139,140

(Figure S2, Supporting Information). Some of these regions
include cysteine clusters formed by C720, C725, C731, and
C742 in the upstream helix (UH) regions. Another conserved
cysteine cluster of disulfide bonds is formed in the β-hairpin
(BH) region (residues 1045−1076) located downstream of the
CH region by residues C1014 and C1025 (C1032 and C1043,
respectively, in SPIKE_SARS2 sequence numbering) as well as
residues C1064 and C1108 (C1082 and C1126, respectively,
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in SPIKE_SARS2 sequence numbering) (Figure S2, Support-
ing Information). The RBD region includes eight conserved
cysteine residues, six of which form three disulfide linkages
(C336−C361, C379−C432, and C391−C525), which stabilize
the β-sheet RBD structure in the SARS-CoV-2 S protein.
Using the MISTIC approach,70−72 we determined coevolu-

tionary dependencies between S protein residues using the
plmDCA model (Figure 3). To identify critical nodes of this
coevolutionary network, we computed plmDCA-based CScore
profiles (Figure 3A) that measure the global influence of a
given position in a coevolutionary network. This score is
calculated as the sum of covariation scores above a certain
threshold (top 5% of the covariation scores) for every position
pair where the particular position appears. Using this approach,
we identified coevolutionary couplings for functionally
important regions and mapped high CScore positions onto
the binding epitopes for the studied SARS-CoV-2 complexes
(Figure 3B). First, the results revealed an appreciable density
of coevolving centers in the S1 subunit, in the RBD, and
especially in CTD1 regions. This pattern can be further

illustrated by a circular representation of the pairwise
coevolutionary scores (Figure S3, Supporting Information)
showing a greater concentration of coevolutionary links that
are anchored by the CTD1 regions (residues 528−591). The
distribution of CScores pointed to the higher density of
coevolutionary couplings in the S2 subunit (Figure 3A). The
residues with significant CScore values are distributed across
various S2 regions, including UH (residues 736−781), CH
(residues 986−1035), HR1 (residues 910−985), HR2
(residues 1163−1211), and β-hairpin (BH) (residues 1035−
1071) regions. A dense network of coevolutionary coupled
residues in the S2 regions is evident from a graphical
annotation of the pairwise coevolutionary scores (Figure S4,
Supporting Information). Interestingly, the distribution of
CScore values for the epitope residues showed that many
contact positions are aligned with highly coevolving residues
(Figure 3B).
Structural analysis of coevolutionary hotspots corresponding

to the local maxima of the distribution revealed clusters
situated in the functional regions (Figure S5, Supporting

Figure 3. Coevolutionary profiles of the SARS-CoV-2 S proteins. (A) plmDCA-based coevolutionary CScore profile for the SARS-CoV-2 S
proteins (P0DTC2: SPIKE_SARS2 sequence numbering). The CScore values are shown for the S1-NTD residues in green bars (Pfam: PF16451),
for the RBD in red bars (Pfam: PF09408), and for S2 regions in blue bars (Pfam: PF01601). (B) A close-up of the CSscore profile for the RBD
regions is shown in red bars. The CScores for the binding epitope residues of H014, S309, S2M11, and S2E12 are in filled green circles. (C)
Distribution of the inter-residue contacts in the S1-RBD regions (red bars) and S2 regions (blue bars). The highly coevolving centers in the RBD
regions are in maroon-colored filled circles, and the high CSscore residues in S2 regions are in orange-colored filled circles. (D) The distance
probability distribution of directly coupled residue pairs in the studied SARS-CoV-2 S complexes is shown in red filled bars.
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Information). We observed that coevolutionary centers could
be localized in the key regions of the SARS-CoV-2 S protein,
occupying the proximity of the SA1/S2 cleavage site, the HR1
and CH regions of the S2 subunit as well as RBD and CTD1
regions in the S1 domain (Figure S5, Supporting Information).
Interestingly, the coevolutionary signal can be significant for
the S2 positions involved in multiple interactions in the UH,
HR1, and CH regions. We also noticed that some of the
important clusters of coevolutionary centers in the CTD1
region and near-critical junctures UH/HR1/CH are located in
close proximity to the glycan attachment sites, suggesting the
important role of the glycan microenvironment for modulating
couplings between distant sites in the SARS-CoV-2 S trimer
structures. We also computed the average number of inter-
residue contacts for each residue and aligned this distribution
with the top CScore positions (Figure 3C). It appeared that
coevolutionary centers might have a significant number of
interacting contacts. In particular, coevolutionary hotspots in
the RBD regions are often aligned with the peaks of the
contact distribution, suggesting that the level of coevolution
may be greater in residues involved in multiple interactions.
These findings are consistent with the notion that the
increased structural and functional constraints for sites
involved in a large number of inter-residue contacts can
often imply higher coevolution values.141

The distance probability distribution of coevolving directly
coupled residue pairs in the studied SARS-CoV-2 S structures
showed several local maxima at 3.2 Å and 4.7 Å and a shallow
peak near 7−8 Å (Figure 3D). The first two peaks reflect
physical interactions between residues. Hence, direct coevolu-
tionary residue couplings in the SARS-CoV-2 S structures are

dominated by spatially proximal residue pairs, suggesting that
coevolutionary signals are stronger for locally interacting
residues than for residues involved in long-range interac-
tions.142 The distribution highlighted an intermediate range of
coevolutionary couplings at 7−8 Å, which may reflect
couplings between spatially proximal functional regions
(Figure 3D). This third distribution peak can correspond to
coevolutionary couplings anchored by CTD1 regions (residues
529−591) in the S1 subunit. A significant coevolutionary
signal between functional regions separated by medium-range
distances may facilitate a long-range cross-talk between distant
allosteric regions in the S1 and S2 subunits. Structural mapping
of coevolutionary centers highlighted global connectivity of the
coevolutionary network spanning from the epitope binding site
toward the CTD1 region and regions in the S2 subunit (Figure
4). Several high CScore residues W436, G413, F374, F377,
and C379 are involved in the interactions with H014. Multiple
favorable interactions are formed by F377 with Y105, T58,
S59, D60, and Y50 of H014 and by C379 with N55, T58, G56,
and G57 positions of H014 (Figure 4A). S309 interacts with
the highly conserved C336 and C361 positions, which also
correspond to coevolutionary hotspots (Figure 4B). S2M11
interacts with the conserved RBD sites F374 and W436, which
also displayed high CScore values (Figure 4C). A smaller patch
of coevolutionary centers is involved in contact with S2E12
(Figure 4D). Collectively, these clusters could form modules of
a coevolutionary network that may allow for efficient allosteric
interactions and communications in the SARS-CoV-2 S
proteins.

Conformational Dynamics of the SARS-CoV-2 Spike
Complexes with Antibodies Examined through CG-

Figure 4. Structural maps of coevolutionary centers in the epitope regions of the SARS-CoV-2 complexes with antibodies. (A) Structural map of
coevolutionary centers in the S complex with H014 (PDB id 7CAI/7CAK) projected onto a single “up” protomer shown in green ribbons. The
coevolutionary centers are in spheres, and high CScore hotspots from the binding epitope are in red spheres. A close-up of the H014 binding
epitope with the coevolving centers involved in direct contact with H014 is in red spheres and annotated. (B) Structural map and close-up of
coevolutionary centers in the S complex with S309 (PDB id 6WPT). The coevolving centers involved in direct contact with S309 are in red spheres
and annotated. (C, D) Structural map and close-up of coevolutionary centers in the S complex with S2M11 (PDB id 7K43) and S2E12 (PDB id
7K4N). The coevolving centers involved in direct contact with S2M11 and S2E12 are in red spheres and annotated.
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CABS and Atomistic MD Simulations. To test the
applicability of the CG-CABS approach for adequate
simulation of conformational dynamics of the SARS-CoV-2 S
trimers with a panel of neutralizing antibodies, we first
performed a validation study in which CG-CABS and all-
atom MD simulations were performed for the SARS-CoV-2 S-
RBD complexes with CR3022 and CB6 antibodies (Figure 5).
CABS trajectories were subjected to atomistic reconstruction
and refinement, thereby allowing for a direct comparative
analysis with MD simulations performed in an explicit solvent
environment. Through a detailed comparison with the
experimental structural and binding screening data available
for the SARS-CoV-2 S complexes with CR3022 and CB6
antibodies, we tested a hypothesis according to which sites
targeted by antibody escape mutations may correspond to key
regulatory control points and hinge centers that coordinate
functional dynamics and long-range allosteric couplings in the
systems. Using a comparison of CG-CABS and MD
simulations, we verified the reliability of the proposed
simulation model and examined how the SARS-CoV-2 spike
protein can exploit the plasticity of the RBD regions to
modulate specific dynamic responses to antibody binding.

First, we compared the RMSF profiles obtained from CABS-
based reconstructed trajectories and all-atom MD simulations,
revealing a generally highly similar mobility distribution for the
RBD residues in complexes with CR3022 (Figure 5A) and
CB6 (Figure 5B) antibodies. CG-CABS trajectories featured
slightly more stable profiles of the S-RBD complexes, while
MD simulations highlighted a more dynamic nature of the
RBD regions. Both simulation models accurately reproduced
stability of the conserved core of SARS-CoV-RBD consisting
of antiparallel β strands (β1 to β4 and β7) (residues 354−358,
376−380, 394−403, 431−438, 507−516) and a particularly
significant stabilization of β-sheets (β5 and β6) (residues 451−
454 and 492−495) that anchor the RBM region to the central
core (Figure 5). The observed similarities of the dynamic
profiles suggested that CG-CABS simulations accompanied by
atomistic reconstruction could provide a fairly accurate and
affordable simulation approach for quantifying flexibility of the
larger SARS-CoV-2 S trimer complexes with the panel of
antibodies.
We also characterized collective motions and determined the

hinge regions in the SARS-CoV-2 S-RBD complexes using
principal component analysis (PCA) of trajectories derived

Figure 5. Conformational dynamics and essential mobility profiles of the SARS-CoV-2 S-RBD complexes with CR3022 and CB6 antibodies. (A, B)
The root-mean-square fluctuations (RMSFs) obtained from CG-CABS simulations (in green lines) and all-atom MD simulations (in maroon lines)
for the S-RBD complex with CR3022 and CB6 antibodies. (C, D) The essential mobility profiles for the S-RBD complexes with CR3022 and CB6
antibodies averaged over the three lowest frequency modes are obtained using principal component analysis (PCA) of trajectories from CG-CABS
simulations (in green lines) and all-atom MD simulations (in maroon lines). The sites of escaping mutations for CR3022 and CB6 along the slow
mode profiles are indicated in filled blue circles. (E) The structure of the S-RBD complex with CR3022 (PDB id 6W41) is shown in ribbons. The
RBD is in green and CR3022 in blue. (F) The structure of the S-RBD complex with the CB6 antibody (PDB id 7C01) is shown in ribbons. The
RBD is in green and CB6 in cyan.
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from CG-CABS and MD simulations using the CARMA
package143 (Figure 5C,D). The functional dynamic profiles
showed a considerable overlap, indicating that both simulation
models can yield a consistent prediction of hinge sites and
collective motions. Using deep scanning mapping data of
escape mutations for SARS-CoV-2 S-RBD binding with the
CB6 antibody50 and CR3022,60 we projected sites of the
maximum escape on the essential mobility profiles (Figure
5C,D). The results showed that key antibody-escaping
mutations may often target regulatory hinge positions that
coordinate collective motions and allosteric interactions.
Encouraged by these validation experiments, we then

performed a series of multiple long CG-CABS simulations
followed by MODELLER-based atomistic reconstruction of
trajectories for the SARS-CoV-2 S trimer complexes with
H014, S309, S2M11, and S2E12 antibodies (Figure 6).
Molecular simulations of the SARS-CoV-2 S complexes
provided a quantitative picture of the differences in flexibility
of the S-protein-bound states and highlighted the effect of
binding on modulation of the spike protein mobility. The
inter-residue contact maps (Figure S6, Supporting Informa-
tion)144 and inter-residue distance maps (Figure S7,

Supporting Information)145 in the SARS-CoV-2 S complexes
indicated that the density of the interaction contacts is
significantly greater in the densely packed S2 domains.
The conformational dynamic profiles showed that H014

binding can induce dynamic changes by considerably reducing
thermal fluctuations in the S1 regions of the interacting open
protomers as compared to the unbound trimer form (Figure
6A,B). The H014 epitope is broadly distributed across RBD
regions (residues 368−386, 405−408, 411−413, 439, and
503), forming a cavity on one side of the RBD. Although most
of the contacts are formed with moderately conserved residues,
H014 maintains favorable interactions with the two most
highly conserved F377 and C379 positions in the RBD region
(Tables S1 and S2, Supporting Information). Of particular
importance are stable H014 contacts with S383 and G413
residues that are located at the interprotomer boundaries
(S383−D385) and (G413−V987) and function as regulatory
switches of the S protein equilibrium.25 We also observed small
thermal fluctuations with RMSF < 1.0 Å for the S1 epitope
positions (residues 368−386, 405−408, 411−413, 439, and
503), which were considerably rigidified in both H014
complexes (Figure 6A,B). These findings are consistent with

Figure 6. CABS-GG conformational dynamics of the SARS-CoV-2 S complexes. A schematic representation of domain organization and residue
range for the full-length SARS-CoV-2 S protein is shown above conformational dynamic profiles. (A, B) Root-mean-square fluctuation (RMSF)
profiles from simulations of the cryo-EM structures of the SARS-CoV-2 S trimer with H014. (C, D) RMSF profiles from simulations of the cryo-
EM structures of the SARS-CoV-2 S trimer with S309. (E) RMSF profiles from simulations of the cryo-EM structures of the SARS-CoV-2 S trimer
with all three RBDs in the closed form bound with S2M11. (F) RMSF profiles from simulations of the cryo-EM structure of the SARS-CoV-2 S
protein trimer with all three RBDs in the open-up form bound with S2E12. The profiles for protomer chains (A−C) are shown in green, red, and
blue bars, respectively. The RMSF profiles for the unbound forms of the S protein trimer are shown in light-gray bars.
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the experimental data suggesting that H014-induced changes
could trigger stabilization changes in both the RBD and NTD
regions.57

Conformational dynamics of the SARS-CoV-2 S protein
complex with S309 showed relatively moderate changes in the
flexibility induced by antibody binding (Figure 6C,D). In the
S309 complex with the closed form of the SARS-CoV-2 S
trimer, the thermal stability of the closed S protein is
particularly pronounced (Figure 6D). S309 engages an epitope
that is distinct from the highly mobile RBM region, making
multiple stable contacts in the course of simulations with the
two most conserved RBD positions C336 and C361 as well as
neighboring residues L335 and P337 (Tables S3 and S4,
Supporting Information). These residues form one of the
disulfide linkages Cys336−Cys361 that stabilize the β-sheet
RBD structure.
S2M11 functions by locking down the SARS-CoV-2 S trimer

in the closed state through binding to a quaternary epitope
comprising distinct regions of two neighboring RBDs within an
S trimer. Conformational dynamic profile of the S protein
complex with S2M11 in the closed form reflected this
mechanism by featuring an extremely stable SARS-CoV-2 S
conformation in which both S1 and S2 regions displayed only
very minor thermal fluctuations (Figure 6E). During
simulations, S2M11 maintains a network of interaction
contacts with highly conserved sites F374 and W436 from
the RBD of one protomer and F486 on the RBM motif of the
protomer (Table S5, Supporting Information) that collectively

anchor and stabilize the binding mode of the antibody. S2E12
binds to the more dynamic RBM motif of the open protomers
(Table S6, Supporting Information). A relatively small binding
epitope in the S2E12 complex with the fully open form of S
protein produced the dynamic profile where NTD and RBD
regions showed an appreciable degree of mobility (Figure 6F).
The important finding of the conformational analysis is that
H014, S309, and S2M11 can induce modulation of the
conformational dynamics, leading to stabilization of both S1
and S2 regions in the open protein forms, which may
effectively counteract the intrinsic flexibility of the receptor-
accessible, open spike conformations and thus induce potent
neutralization effects. The functional dynamic analysis revealed
hinge regions corresponding to sites S383, K386, D428, F518,
and V539 positions (Figure S8, Supporting Information) that
can regulate the interdomain movements of the NTD and
RBD with respect to the S2 subunit and are preserved in S
trimer structures.108 Several hinge sites in the closed and
partially open forms are located near L570, I572, Y855, I856,
and S591 residues forming the interprotomer and interdomain
interfaces and acting as regulatory switch centers governing the
population shifts between closed and open forms.23

Mutational Scanning Heatmaps Reveal Binding
Energy Hotspots in the SARS-CoV-2 Complexes with
Antibodies. To provide further comparison between the
computational and experimental data, we performed muta-
tional sensitivity analysis and constructed mutational heatmaps
for SARS-CoV-2 S-RBD binding with CR3022 and CB6

Figure 7. Mutational sensitivity heatmaps for the SARS-CoV-2 S-RBD complexes with CR3022 (A) and CB6 antibodies (C) show the effect of all
single mutations at the antibody-contact sites on the computed binding free energy changes. The squares on the heatmap are colored by mutational
effect in a three-colored scale from red to light blue, with red indicating the largest destabilization effect. The data bars correspond to the computed
binding free energy changes, where positive values (destabilizing mutations) are shown by bars toward the right end of the cell and negative values
(stabilizing mutations) are shown as bars oriented toward the left end. The length of the data bar represents the value in the square cell. (B)
Structure of the S-RBD complex with CR3022 (PDB id 6W41) with the RBD in green ribbons and CR3022 in the blue surface. (D) Structure of
the S-RBD complex with CR3022 (PDB id 6W41) with the RBD in green ribbons and CB6 in the cyan surface. The binding energy hotspots for
CR3022 binding (F377, C379, Y380, V382, S383, F392, and F515) and for CB6 binding (Y421, L455, F456, Y473, Y489, and F505)
corresponding to dark-red square cells with large data bars are shown in green spheres.
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antibodies (Figure 7). According to deep mutational scanning
studies,29,50,60 these antibodies target different epitopes and
have a different binding affinity and stability footprint. The
computed heatmap for S-RBD binding with CR3022 showed
that positions F377, C379, Y380, V382, S383, F392, and F515
from the RBD epitope corresponded to strong energetic
hotspots (Figure 7A,B). These results are in excellent
agreement with the deep mutational scanning analysis of
binding and stability.29,60 The computed mutational maps
reproduced the experimental data, highlighting the fact that
important epitope residues in the cryptic binding site of
CR3022 located in the RBD core can be constrained with
respect to stability.29,60 Furthermore, in silico mutational
scanning is consistent with complete mapping of antibody-
escaping RBD mutations, showing that CR3022 recognition
can be evaded by mutations of the RBD core residues F374,
G381, V382, S383, and F392.60 For further validation and
comparison with the experiment, we also computed the
mutational sensitivity map of S-RBD binding with the
neutralizing antibody CB6 (Figure 7C,D) that competes with
ACE2 by interacting with the RBM epitope and blocking
ACE2 binding.50 The heatmap revealed the binding energy
hotspots corresponding to Y421, L455, F456, Y473, Y489, and
F505 residues (Figure 7C,D), which is in good agreement with
deep mutational scanning data.50 Some of these residues L455,
F456, and Y489 are sites of CB6-escaping mutations,
suggesting that antibody recognition can be evaded through
modifications of structurally adaptable interacting sites and

allosteric centers, which may not be directly involved in the
binding interactions.
Equipped with this validation analysis, we used conforma-

tional ensembles generated in CG-CABS simulations to
perform a systematic profiling of the S protein residues in
complexes with H014, S309, S2M11, and S2E12 (Figures 8
and 9). Structural analysis indicated that H014 can sterically
compete with ACE2 for RBD binding although its epitope
does not overlap with the ACE2-binding site. The mutational
sensitivity heatmap revealed a wide range of important binding
hotspots in the SARS-CoV-2 S complexes with H014 (Figure
8A,B). In particular, in silico scanning showed a significant
contribution of conserved RBD residues F377, C379, Y380,
S383, P384, V503, and Y508 (Figure 8A). Among binding
energy hotspots, we also detected several coevolutionary
centers such as F374, F377, and C379 residues. We argue
that through interactions with major coevolutionary centers in
the conserved RBD epitope, H014 may exert its long-range
effect by propagating the binding signal through clusters of
proximal coevolutionary pairs in the RBD and CTD1 regions.
In agreement with the experimental evidence46 and owing to
the overlap in the binding epitopes of CR3022 and H014
antibodies, the mutational profiling revealed the role of
conserved F377, Y380, and S383 residues as consistent and
strong energetic hotspots for both CR3022 and H014
antibodies (Figure 8A,B). According to our analysis, H014
interactions with conserved positions F377, C379, and S383
located away from the RBM region could be important for
binding and modulation of the enhanced cross-neutralization

Figure 8. Mutational sensitivity heatmaps for the SARS-CoV-2 S trimer complexes with H014 (A) and S309 antibodies (C) show the effect of all
single mutations at the antibody-contact sites on the computed binding free energy changes. The squares on the heatmap are colored by mutational
effect in a three-colored scale from red to light blue, with red indicating the largest destabilization effect. The data bars correspond to the computed
binding free energy changes. (B) Structure of the SARS-CoV-2 S trimer bound with H014 in the closed form (PDB id 7CAK). Only the S-RBD
(green ribbons) is shown, and the H014 antibody is in the hot-pink-colored surface. (D) Structure of the SARS-CoV-2 S trimer with the S309
antibody in the closed form (PDB id 6WPS). The S-RBD (green ribbons) is shown, and S309 is in the hot-pink-colored surface. The binding
energy hotspots for H014 binding (F377, C379, Y380, S383, P384, V503, and Y508) and for S309 binding (N334, L335, P337, N343, T345, and
L441) are shown in green spheres.
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activities. These results are also in accordance with the recent
structure−functional investigation of the SARS-CoV-2 S
complex with H014 and P17 forming a two-antibody cocktail
with synergistic neutralization achieved by simultaneously
binding to distinct RBD epitopes, where H014 strongly binds
to a highly conserved patch across SARS-CoV and SARS-CoV-
2, while P17 targets a SARS-CoV-2-specific patch.146

According to this illuminating experimental study, H014
binding to conserved hotspots F377, C379, Y380, S383, and
P384 is critical to promote synergistic neutralization together
with the P17 antibody by acting as a shield of the S1 region
and blocking the SARS-CoV-2-RBD interactions with host
cellular receptors. In addition, a more detailed analysis of the
H014 heatmap showed a strong destabilization effect caused by
Y508 mutations, which is in line with the recent experimental
evidence showing that H014 was completely incapable of
neutralizing N234Q, Y508H, and D614G + A435S mutants.147

Another cross-neutralizing antibody S309 binds to the
proteoglycan site that involves an N-glycan at N343 and
involves 17 conserved RBD residues, which were implicated
for the observed cross-reactivity and neutralization.46 In
agreement with the experimental data, we identified the
binding hotspots in conserved positions N334, L335, P337,
N343, T345, and L441 (Figure 8C,D). At the same time, the
antibody interactions with R346, N354, R357, and K444 of

SARS-CoV-2-RBD that are semiconservatively substituted in
SARS-CoV RBD showed a considerable mutational tolerance
for S309 binding (Figure 8C,D). The preferential S309 binding
with conserved RBD sites may explain the lack of pronounced
antibody-escaping mutations as modifications in the flexible
region of the S309 epitope footprint can be readily tolerated
and have minimal effects on serum antibody binding.148 By
targeting evolutionary conserved RBD epitopes, H014 and
S309 can potentially better combat virus resistance and prevent
emergence of antibody-escaping mutations.
The binding energy hotspots in the S2M11 complex with

the S protein occupy two different regions, where one group
includes conserved RBD sites F374 and W436, which also
displayed high CScore values (Figure 9A,B). Another group of
binding energy hotspot positions includes moderately con-
served residues Y449, F456, F484, F486, Y489, and F490,
which form a critical patch of the RBM binding interface with
the host receptor. The mutational sensitivity heatmap clearly
pointed to the key hotpots Y449, Y489, and F490, where all
substitutions can lead to significant loss of binding affinity and
stability (Figure 9A,B).
These results are in excellent agreement with the binding

assay experiments, revealing that Y449N, E484K/Q, F490L,
and S494P RBD variants led to decreased S2M11 binding to
RBD.59 Notably, the strongest experimentally observed effect

Figure 9. Mutational sensitivity heatmaps for the SARS-CoV-2 S trimer complexes with S2M11 (A) and S2E12 antibodies (C) show the effect of
all single mutations at the contact sites on the computed binding free energy changes. The squares on the heatmap are colored in a three-colored
scale from red to light blue, with red indicating the largest destabilization effect. (B) Structure of the SARS-CoV-2 S trimer bound with S2M11 in
the closed form (PDB id 7K43). S2M11 binds to a quaternary epitope spanning two RBDs of the adjacent protomers in the S trimer. Only the S-
RBDs (green ribbons) are shown, and the S2M11 antibody is in the hot-pink-colored surface. (D) Structure of the SARS-CoV-2 S trimer with
S2E12 in the open form (PDB id 7K4N). The S-RBD (green ribbons) is shown, and S309 is in the hot-pink-colored surface. The binding energy
hotspots for S2M11 binding (F374, W436, Y449, F456, F484, F486, Y489, and F490) and for S2E12 binding (L455, T485, and F486) are shown in
green spheres.
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was seen for Y449N and F490L mutations.59 We examined in
more details the sensitivity profiles for these RBD positions in
the S protein complex with S2M11 and found that these
mutations induce the largest destabilization change on S2M11
binding with SARS-CoV-2 S-RBD binding (Figure S9,
Supporting Information). S2E12 recognizes an RBD epitope
overlapping with the RBM and can only interact with open
RBDs through electrostatic and van der Waals interactions
with residues L455, A475, G476, S477, T478, F484, T485,
F486, N487, and Q493. Consistent with the experimental
binding data,59 the computed heatmap clearly pointed to T485
and F486 positions as key binding energy hotspots (Figure
9C,D).
To summarize, the mutational sensitivity profiling of the

SARS-CoV-2 S protein binding with CR3022, CB6, H014,
S309, S2M11, and S2E12 demonstrated an excellent agree-
ment with the deep mutational scanning and binding assay
experiments. The diversity of binding energy hotspots in the
SARS-CoV-2 S protein complexes showed a significant
heterogeneity of mutational constraints and highlighted
plasticity of the RBD regions since many RBD interacting

sites can be tolerant of mutations, while only several hotspot
centers are strongly constrained to the wild-type amino acid.
These findings are particularly interesting in light of recent
functional studies60 showing that antibodies targeting the same
RBD region may often have distinct escape mutations and that
escape mutations target RBD positions that have significant
deleterious effects on antibody binding but little negative
impact on ACE2 binding and RBD folding. We propose that
escape mutations constrained by the requirements for
productive ACE2 binding and preservation of RBD stability
may often select structurally adaptable regulatory sites to
compromise antibody recognition allosterically through anti-
body-specific modulation of global motions and long-range
interactions.

Perturbation Response Scanning Identifies Regula-
tory Hotspots of Allosteric Interactions in the SARS-
CoV-2 S Complexes as Preferential Sites of Antibody-
Escaping Mutations. Using the PRS method,125−132 we
quantified the allosteric effect of each residue in the SARS-
CoV-2 complexes with a panel of studied antibodies in
response to external perturbations. The effector profiles

Figure 10. Analysis of the PRS effector profiles for the SARS-CoV-2 S-RBD complexes with CR3022 and CB6 antibodies. (A, D) The PRS effector
profiles for the S-RBD complex with CR3022 (PDB id 6W41) and CB6 (PDB id 7C01) are shown in maroon-colored lines. The sites featuring
significant total antibody escape are mapped onto the profiles and shown as orange-colored filled circles. The PRS effector profiles are
superimposed with the PRS effector distribution for the S-RBD complex with ACE2 shown in light gray (PDB id 6M0J). (B, E) Correlation
between the computed effector potential and the experimentally determined total escape for the S-RBD residues features escaping mutations for
CR3022 and CB6 antibodies, respectively. (C) Superposition of the S-RBD (in green) bound with ACE2 (in red) and CR3022 (in blue). The
CR3022 binding epitope has no overlap with the ACE2-binding site. (F) Superposition of the S-RBD (in green) bound with CB6 (in cyan) and
CR3022 (in blue).
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estimate the propensities of a given residue to influence
allosteric dynamic changes in other residues and are applied to
identify regulatory hotspots of allosteric interactions as the
local maxima along the profile. The central hypothesis tested in
the PRS analysis is that antibodies can incur specific and
functionally relevant changes by modulating the effector
profiles of the SARS-CoV-2 S protein complexes. We also
propose an allosteric mechanism according to which antibody-
escaping variations could preferentially target structurally
adaptable regulatory centers of collective movements and
allosteric communications in the SARS-CoV-2 S complexes.
To validate this hypothesis, we first performed PRS analysis of
the SARS-CoV-2 S-RBD complexes with CR3022 and CB6
antibodies (Figure 10) accompanied by a detailed comparison
with the experimental data. In this analysis, we leveraged the
results of deep mutational scanning of all-amino-acid
mutations in the RBD that affect CR3022 and CB6 antibody
binding,50,60 providing a direct comparison between computa-
tional perturbation-based scanning and complete mapping of
the RBD mutations that escape recognition of these two
antibodies. To highlight the specific antibody effect, we aligned
the PRS effector profiles for the SARS-CoV-2-RBD complexes

with antibodies and the ACE2 host receptor. By mapping sites
with the experimentally observed maximum escape onto the
PRS effector profiles (Figure 10A,B), we found that these
residues can be predominantly aligned with the effector peaks
and correspond to the regulatory centers of long-range
allosteric interactions in the complexes. According to the
experimental data,60 CR3022 binding can be escaped by
mutations in the core RBD with the maximum escape site
C361, V362, K378, V382, S383, F392, T430, I434, A435, and
V512 residues corresponding to the effector centers of the PRS
distribution (Figure 10A−C). Several of these escaping sites
(C361, I434, A435, and V512) are not involved in direct
intermolecular contacts with CR3022, and therefore muta-
tional changes in these positions may be linked with long-range
allosteric effects that are captured in the PRS effector profiles.
The Pearson correlation coefficient ρ = 0.6 between the
computed effector potential and the total escape parameters
experimentally determined for sites evading CR3022 binding
(Figure 10B) indicated a good agreement with the
experimental data.
Our results are also consistent with the notion that the

cryptic epitope targeted by CR3022 is important for stabilizing

Figure 11. PRS effector profiles for the SARS-CoV-2 S trimer complexes with a panel of antibodies. The effector distributions are shown for the
SARS-CoV-2 S complex with H014three RBD in the open state (A), SARS-CoV-2 S complex with S309three RBDs in the closed form (B),
SARS-CoV-2 S complex with S2M11three RBDs in the closed form (C), and SARS-CoV-2 S complex with S2E12three RBDs in the closed
form (D). The profiles are shown in maroon-colored lines. The sites of experimentally validated escape mutations are mapped onto the profiles and
shown as orange-colored filled circles. The PRS effector profiles are superimposed with the PRS effector distribution for the S-RBD complex with
ACE2 shown in light gray (PDB id 6M0J).
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the closed conformation of the prefusion trimer, reducing the
likelihood that resistance mutations would occur in this region.
The results also highlighted the antibody-specific effector
response as compared to the S-RBD complex with ACE2
(Figure 10A−C).
The effector profile for the S-RBD complex with the CB6

antibody targeting ACE2-binding site similarly revealed a
strong alignment between the distribution peaks and the
experimentally determined sites of maximum escape (Figure
10D−F). Among these functionally important positions are
D405, E406, T415, K417, D420, Y421, L455, F456, A475,
Q493, and N501 residues. Only a small fraction of these sites
corresponded to the binding energy hotspots (Y421, L455, and
F456). It should be pointed out that mutational sensitivity
maps for CB6 binding yielded only minor binding energy
changes upon substitutions in D405, E406, K417, D420, A475,
and N501 residues. Of particular interest are sites K417 and
N501 implicated in global circulating mutations and the E406
residue, which is the unique position where mutations can
escape the Food and Drug Administration (FDA)-approved
combination of REGN10933 and REGN10987 antibodies.50

The Pearson correlation coefficient ρ = 0.75 between the
residue effector potential and the total escape for sites evading
CB6 binding (Figure 10E) was fairly significant. This suggested
that functionally important regulatory RBD centers revealed
through the perturbation-based scanning approach can be
often targeted by antibody-escaping variants. Our results
support the hypothesis that the emergence of antibody-
escaping mutations in the key effector positions may be
attributed to their global regulatory role as control points of
global stability and functional dynamics. In this model,
modifications in these positions may not only weaken local
interactions and binding but also compromise long-range
allosteric couplings and coordinated movements of RBD to
scan for optimal intermolecular arrangements with the
antibody. Based on our findings, we suggest that escape
mutations constrained by the requirements for ACE2 binding
and preservation of RBD stability may often select structurally
adaptable allosteric centers to compromise antibody recog-
nition through modulation of allosteric interactions in the
complex.
Using PRS analysis of the SARS-CoV-2 S trimer structures

in the unbound forms and complexes with H014, S309,
S2M11, and S2E12 antibodies, we examined how binding at
different RBD epitopes may affect the stability and long-range
couplings by modulating the allosteric effector potential of
SARS-CoV-2 S residues (Figure S10, Supporting Information).
Through a comparative analysis of the unbound and bound
forms of the SARS-CoV-2 S trimer, we found that antibody
binding could typically induce the increased effector potential
of the RBD (residues 331−528) and CTD1 (residues 528−
591) regions while modulating and reducing the allosteric
potential of S2 regions (Figure S10, Supporting Information).
The effector profiles also indicated the density and clustering
of effector peaks distributed in UH (residues 736−781) and
CH (residues 986−1035) regions.
To compare the results of perturbation-based scanning with

the available experimental data, we focused on the effector
distributions for the SARS-CoV-2-RBD regions (Figure 11).
Although a general shape of the effector profile is fairly
conserved across all complexes, the distributions reflected
antibody-specific modulation of allosteric propensities for the
RBD residues (Figure 11). In the SARS-CoV-2 complex with

H014, the effector peak centers corresponded to RBD residues
S383, F377, K378, Y380, GV382, S383, and P384 involved in
direct interactions with the antibody (Figure 11A). The
distribution peaks are aligned with sites of H014-escaping
mutations including A435, N439, and Y508 residues.147

Notably, A435 and N439 residues are not involved in
interaction contacts with the antibody but nonetheless may
develop antibody-resistant mutations.
A similar alignment between effector peaks and sites of

escaping mutations was seen in the SARS-CoV-2 S complex
with S309 (Figure 11B). S2M11 binds a quaternary epitope
comprising distinct regions of two neighboring RBDs within an
S trimer and induced stabilization of SARS-CoV-2 S in the
closed conformational state. We found that S2M11 binding
can promote the increased effector potential of conserved and
structurally stable residues that are not directly involved in
binding contacts. Indeed, S2M11 can induce the increased
effector potential in the RBD regions, particularly residues
F374, F377, K378 C379, and Y380 (Figure 11C). In addition,
the effector peaks are closely aligned with sites of antibody-
escaping mutations Y449, L452, L455, and S494, where only
the Y449 position corresponds to the binding energy hotspot.
S2E12 recognizes an RBD epitope overlapping with the RBM
that is partially buried at the interface between protomers in
the closed S trimer and therefore S2E12 can only interact with
open RBDs. According to our results, S2E12 binding can cause
a similar redistribution of the allosteric effector potential in the
S1 regions and activate the effector capacity of the conserved
stretch of residues in the β-sheet of the RBD regions (Figure
11D).
The central result of the computational perturbation-based

screening is that antibody-escaping variations could emerge in
structurally adaptable regulatory centers of collective move-
ments and allosteric communications in the SARS-CoV-2 S
complexes. Our analysis suggested that these sites could act as
effector hubs in which dynamic perturbations could have a
measurable long-range effect on many residues. As a result,
mutations in these positions could modulate allosteric
communications rendering modifications that could potentially
compromise antibody recognition through long-range effects.
For instance, mutations in allosteric centers could modulate
functional motions and curtail the ability of RBD to adopt an
array of specific conformations, which may be required for
productive antibody recognition. Hence, the SARS-CoV-2 S
protein may function as a functionally adaptable regulatory
machine that exploits allosteric effector centers to generate
escape mutants in positions located outside of the antibody
footprint. In support of this mechanism, the recent landscape
analysis of the SARS-CoV-2 S escape variants identified spike
mutations that attenuate antibody neutralization and revealed
scenarios for both direct and indirect allosteric mechanisms of
resistance where escape mutations emerge in positions distant
from the antibody epitope through modulation of global
conformational changes that shield or restrict antibody access
to the spike protein.149

Network Modeling Links Sites of Antibody-Escaping
Mutations with the Intercommunity Bridges Mediating
Allosteric Communications in the SARS-CoV-2 S
Complexes. We applied a network modeling approach in
which residue interactions and network couplings are
described with the increasing level of atomistic details and
complexity. First, a protein contact network was implemented
to highlight the topological role of residues in the protein
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structure activity and identify residues mostly responsible for
signal transmission throughout the protein structure. In this
simplified model, the protein residues correspond to network
nodes and inter-residue contacts are considered as active links
based on distance criteria as described in our previous
studies.106−108 Based on the hierarchical clustering algorithm,
we computed the average participation coefficient P values that
measure the contribution of residue nodes in communication
between different clusters (functional domains). To focus
analysis on several prominent cases, we reported the
communicating residues in the SARS-CoV-2 structures
bound with H014 (Tables S7 and S8, Supporting Information)
and S309 (Tables S9 and S10, Supporting Information). The
results indicated that the majority of the intercluster
communicating sites are localized in the RBD and especially
CTD1 regions for SARS-CoV-2 S complexes with H014
(Tables S7 and S8, Supporting Information). The distribution
of communicating positions in the SARS-CoV-2 S complexes
with S309 (Tables S9 and S10, Supporting Information)
revealed an appreciably larger number of potential mediating
centers with significant communication propensities. More-
over, these positions corresponded to different regions,
including a significant number of mediating hubs in the UH,
CH, and HR1 regions of the S2 subunit as well as residues in

the CTD1 regions of S1. These preliminary findings suggested
that allosteric interaction networks in the SARS-CoV-2 S
complexes with S309 could be broadly distributed, which can
arguably reflect strengthening of allosteric couplings between
S1 and S2 subunits as S309 locks the downregulated form of
the S protein.
In the framework of the hierarchical approach, we also

explored a more detailed model of the residue interaction
networks using a graph-based representation with residues as
network nodes and the inter-residue edges defined by both
dynamic correlations112 and coevolutionary residue cou-
plings.113 The residue interaction networks were divided into
local interaction communities in which residues are densely
interconnected, whereas residues from different communities
may be weakly connected through the intermodular links.
Based on the community decomposition of the SARS-CoV-2 S
trimer complexes with antibodies, we computed the
intermodular bridgeness profiles (Figure 12). Our previous
network studies of protein systems suggested that this
parameter could be helpful in identifying mediating centers
of allosteric communications anchoring multiple commun-
ities.150 Moreover, it was suggested that the intercommunity
bridging sites may function as regulatory switch points that

Figure 12. Intercommunity bridgeness profiles in the SARS-CoV-2 S complexes with a panel of antibodies. The profile is shown for the SARS-
CoV-2 S complex with H014three RBD in the fully open state (A), SARS-CoV-2 S complex with S309three RBDs in the closed form (B),
SARS-CoV-2 S complex with S2M11three RBDs in the closed form (C), and SARS-CoV-2 S complex with S2E12three RBDs in the closed
form (D). The profiles for protomer chains (A−C) are shown in green, red, and blue bars, respectively. The spike protein sites targeted by
antibody-escaping mutations are shown in maroon-colored filled circles.
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determine the fidelity of allosteric interactions and signaling in
diverse protein systems.150

We hypothesized that allosteric regulatory sites revealed by
the perturbation-based residue scanning could be aligned with
strategic positions in the residue interaction networks. The
network analysis revealed a number of discrete sharp peaks of
the intercommunity bridgeness that span in both S1 and S2
regions (Figure 12). By mapping positions corresponding to
sites of antibody-escaping mutations, we noticed that these
residues were often aligned with the distribution peaks in the
RBD regions. In the SARS-CoV-2 S trimer complex with
H014, the distribution peaks matched almost precisely with
H014-escaping mutation site A435, N439, and Y508 residues
(Figure 12A). Similarly, for other SARS-CoV-2 S complexes
with S309, S2M11, and S2E12, the residues with high values of
the intercommunity bridgeness metric corresponded to sites of
antibody-escaping mutations (Figure 12B−D). Consistent with
the PRS analysis, these results indicated that the regulatory
control points could link together different local communities
serving as “stepping stones” for allosteric communication paths
in the system. This analysis provided an additional support to
the notion that escaping mutations could select vulnerable
allosteric hubs for targeting through amino acid modifications.
In network terms, even moderate perturbations in these
bridging positions could have a global effect on the
intercommunity communications and fidelity of the interaction
network, thereby compromising recognition with antibodies
through long-range changes.
The ensemble-averaged distributions of the betweenness

centrality were also computed for the SARS-CoV-2 S
complexes with H014, S309, S2M11, and S2E12 (Figure
S11, Supporting Information). We found that the high-
centrality residues can be assembled in tight interaction
clusters localized in the key functional regions of the S protein.
In the SARS-CoV-2 S protein complexes with H014, the
centrality profiles featured strong and dense peaks in the RBD
and CTD1 regions of S1 as well as another peak in the CH
region of S2 (residues 986−1035).
The centrality peaks also aligned well with the hinge centers

of S1 (residues 315−320, 569−572), indicating that these
dynamically important control points could also mediate
communication in the residue interaction networks. The
network centrality analysis also revealed clusters of distribution
peaks in the SARS-CoV-2 S complexes featuring the fully
closed conformation (Figure S11, Supporting Information). In
these structures, S309 and S2M11 induce a strong stabilization
effect and lock the S protein in the closed state. According to
our results, these structurally stable states can also feature a
broadly distributed allosteric network mediated by functional
sites in both S1 and S2 subunits, primarily CTD1 (residues
529−591), UH (residues 736−781), CH (residues 986−
1035), and β-hairpin (BH) (residues 1035−1071) regions.
The dominant clusters of centrality peaks located in the RBD
and CTD1 regions of S1 and the CH region of S2 can be seen
in the S complex with S2E12 (Figure S11, Supporting
Information). This showed that S2E12 binding may activate
the increased mediating capacity of CTD1 regions and
strengthen allosteric interactions between S1 and S2 regions.
Structural mapping of high-centrality sites highlighted

differences between network organizations in the SARS-CoV-
2 complexes (Figure S12, Supporting Information). In the
complexes with H014, the high-centrality sites are concen-
trated near CTD1 regions, which could strengthen couplings at

the interdomain boundaries between S1 and S2 (Figure S12,
Supporting Information). We argue that H014 binding may
increase the allosteric potential of the RBD and CTD1 regions
and activate communication between the RBD and S2 via
CTD1 regions. Of particular interest is a dense network of
mediating centers in the complexes with S309 and S2M11
showing that these antibodies may facilitate a broad allosteric
interaction network between S1 and S2 functional regions.

■ CONCLUSIONS
This study examined molecular mechanisms underlying SARS-
CoV-2 S protein binding with a panel of highly potent
antibodies through the lens of coevolutionary relationships and
ligand-induced modulation of allosteric interaction networks.
Through coevolutionary analysis of the SARS-CoV-2 spike
proteins, we identified highly coevolving hotspots and
functional clusters forming coevolutionary networks that
enable a functional cross-talk between distant allosteric regions
in the SARS-CoV-2 spike complexes with antibodies. Coarse-
grained and atomistic MD simulations combined with
mutational sensitivity mapping and perturbation-based profil-
ing of the SARS-CoV-2 S-RBD complexes with CR3022 and
CB6 antibodies enabled a detailed validation of the proposed
approach and quantitative comparison with the experimental
deep mutagenesis scanning. Mutational sensitivity profiling of
the SARS-CoV-2 S protein binding demonstrated a robust
agreement with the deep mutational scanning and binding
assay experiments. The diversity of binding energy hotspots in
the SARS-CoV-2 S protein complexes highlighted the plasticity
of the RBD regions since many RBD interacting sites can be
tolerant of mutations, while only several hotspot centers are
strongly constrained to the wild-type amino acid. By
integrating insights from the perturbation-based allosteric
profiling and network modeling of the SARS-CoV-2 S
structures, we found that antibody-specific escape mutations
may often select structurally adaptable regulatory sites to
compromise antibody recognition allosterically through anti-
body-specific modulation of global motions and long-range
interactions. The results of this study provide a novel insight
into allosteric regulatory mechanisms of SARS-CoV-2 S
proteins showing that antibodies can uniquely modulate signal
communication, providing a plausible strategy for therapeutic
intervention by targeting specific hotspots of allosteric
interactions in the SARS-CoV-2 proteins.
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