Hindawi Publishing Corporation
BioMed Research International

Volume 2014, Article ID 684014, 13 pages
http://dx.doi.org/10.1155/2014/684014

Research Article

Exact and Heuristic Methods for Network Completion for

Time-Varying Genetic Networks

Natsu Nakajima and Tatsuya Akutsu

Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan

Correspondence should be addressed to Tatsuya Akutsu; takutsu@kuicr.kyoto-u.ac.jp

Received 13 August 2013; Revised 9 January 2014; Accepted 22 January 2014; Published 9 March 2014

Academic Editor: Nasimul Noman

Copyright © 2014 N. Nakajima and T. Akutsu. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Robustness in biological networks can be regarded as an important feature of living systems. A system maintains its functions
against internal and external perturbations, leading to topological changes in the network with varying delays. To understand the
flexibility of biological networks, we propose a novel approach to analyze time-dependent networks, based on the framework of
network completion, which aims to make the minimum amount of modifications to a given network so that the resulting network
is most consistent with the observed data. We have developed a novel network completion method for time-varying networks
by extending our previous method for the completion of stationary networks. In particular, we introduce a double dynamic
programming technique to identify change time points and required modifications. Although this extended method allows us to
guarantee the optimality of the solution, this method has relatively low computational efficiency. In order to resolve this difficulty,
we developed a heuristic method for speeding up the calculation of minimum least squares errors. We demonstrate the effectiveness
of our proposed methods through computational experiments using synthetic data and real microarray gene expression data. The
results indicate that our methods exhibit good performance in terms of completing and inferring gene association networks with

time-varying structures.

1. Introduction

Computational analysis of gene regulatory networks is an
important topic in systems biology. A gene regulatory net-
work is a collection of genes and their correlations and
causal interactions. It is often represented as a directed
graph in which the nodes correspond to genes and the
edges correspond to regulatory relationships between two
genes. Gene regulatory networks play important roles in cells.
For example, gene regulatory networks maintain organisms
through protein production, response to the external envi-
ronment, and control of cell division processes. Therefore,
deciphering gene regulatory network structures is important
for understanding cellular systems, which might also be use-
tul for the prediction of adverse effects of new drugs and the
detection of target genes for the development of new drugs. In
order to infer gene regulatory networks, various kinds of data
have been used, such as gene expression profiles (particularly
mRNA expression profiles), CHromatin ImmunoPrecipita-
tion (ChIP)-chip data for transcription binding information,

DNA-protein interaction data, and protein-protein interac-
tion data [1-3]. However, many existing studies have focused
on the use of gene expression profiles, because expression
data from a large number of genes can be simultaneously
observed due to developments in DNA microarray technol-
ogy [1-3]. Various mathematical models and computational
methods have been applied and/or developed to infer gene
regulatory networks from gene expression profiles, which
include Boolean networks [4, 5], Bayesian networks [6, 7],
dynamic Bayesian networks [8], differential equations [9, 10],
and graphical Gaussian models [11]. In Boolean networks,
the state of each gene is simplified into 0 or 1 and the gene
regulation rules are given as Boolean functions, where 0 and
1 mean that a gene is active (in high expression) and inactive
(in low expression), respectively. In the most widely used
Boolean network model, it is assumed that the states of genes
change synchronously according to discrete time steps. In
Bayesian networks, the states of genes are usually classified
into discrete values and the gene regulation rules are given

http://dx.doi.org/10.1155/2014/684014

in the form of conditional probabilities. Although standard
Bayesian networks can only handle static data and acyclic
networks, dynamic Bayesian networks can handle time series
data and cyclic networks. In differential equation models, the
dynamics of gene expression are represented by a set of linear
or nonlinear equations (one equation per gene). In graphical
Gaussian models, partial correlations are used as a measure of
independence of any two genes, by which direct interactions
are distinguished from indirect interactions. For details of
these models and methods, see review/comparison papers
(1-3].

These network models assume that the topology of
the network does not change through time, whereas the
real gene regulatory network in the cell might dynamically
change its structure depending on time, the effects of certain
shocks, and so forth. Therefore, many reverse engineering
tools have recently been proposed, which can reconstruct
time-varying biological networks based on time-series gene
expression data. Yoshida et al. [12] developed a dynamic
linear model with Markov switching that represents change
points in regimes that evolve according to a first-order
Markov process. Fujita et al. [13] proposed a method based
on the dynamic autoregressive model. This model extends the
vector autoregression (VAR) model, which can be applied to
the inference of nonlinear time-dependent biological corre-
lations such as dynamic gene regulatory networks. Robinson
and Hartemink [14] proposed a model called a nonstationary
dynamic Bayesian network, based on dynamic Bayesian
networks, which allows inference from data generated by
nonstationary processes in a time-dependent manner. Lebre
et al. [15] also introduced the autoregressive time-varying
(ARTIVA) algorithm for the analysis of time-varying network
topologies from time course data, which is generated from
different processes. This model adopts a combination of
reversible jump Markov chain Monte Carlo (RIMCMC) and
dynamic Bayesian networks (DBN), in which RJIMCMC is
used for the identification of change time points and the
resulting networks, and DBN is used to represent causal
interactions among genes. Thorne and Stumpf [8] presented
amethod to model the regulatory network structure between
distinct segments with a set of hidden states by applying
the hierarchical Dirichlet process hidden Markov model
[16], including a potentially infinite number of states and a
Bayesian network model for estimating relationships between
genes. Rassol and Bouaynaya [17] presented a new method
based on constrained and smoothed Kalman filtering, which
is capable of estimating time-varying networks from time-
series data, including unobserved and noisy measurements.
The dynamics of genetic modules are represented as a linear-
state space equation and the observability of linear time-
varying systems is defined by imposing sparse constraints
in Kalman filters. Ahmed et al. [18] proposed an algorithm
called Tesla with machine learning, which can be cast in the
form of a convex optimization problem. The basic assumption
in this method is that networks at close time points do not
have significant topological differences but have common
edges with high probability; in contrast, networks at distant
time points are markedly different. The regulatory networks

BioMed Research International

are represented by Markov random fields at arbitrary time
intervals.

As mentioned above, there have been many studies
and attempts to analyze both time-independent and time-
dependent networks from time-series expression data; how-
ever, gene regulatory systems in living organisms are so
complicated that any mathematical model has limitations
and there is not yet a standard or established method for
inference, even for time-independent networks. One of the
possible reasons is that there exists an insufficient number of
high-quality time-series datasets to reconstruct the dynamic
behavior of the network. In other words, it is difficult to
reveal a correct or nearly correct network based on a small
amount of data that includes some noise. Hence, in our
recent study, we proposed a new approach for the analysis
of time-independent networks, called network completion
[19, 20], in which the minimum amount of modifications
are made to a given network so that the resulting network
is most consistent with the observed data. Similar concepts
have been independently proposed [21-24]. In addition,
network completion can be applied to inference of networks
by starting with the null network.

In this paper, we present two novel methods for the
completion and inference of time-varying networks using
dynamic programming and least squares fitting (DPLSQ):
DPLSQ-TV (DPLSQ-TV was presented in a preliminary ver-
sion of this paper [25]; however, in this paper, more detailed
computational experiments are performed and DPLSQ-HS is
newly introduced) and DPLSQ-HS, where TV and HS stand
for time varying and heuristics. DPLSQ-TV is an extension of
DPLSQ [20] such that it can identify the time points at which
the structure of the gene regulatory network changes. Since
the additions and deletions of edges are basic modifications
in network completion, we need to extend DPLSQ so that
these operations can be performed at several time points. In
DPLSQ-TV, these edges and time points are identified by a
novel double dynamic programming method in which the
inner loop is used to identify static network structures and the
outer loop is used to determine change points. It is to be noted
that a single dynamic programming (DP) method was used in
our previous work on the completion and inference of time-
independent networks [20], whereas a double DP method is
employed here in order to cope with time-varying networks.
Our proposed methods also allow us to find an optimal
solution in polynomial time if the maximum indegree (i.e.,
the maximum number of input genes to a gene) is bounded
by a constant. Although DPLSQ-TV is guaranteed to find
an optimal solution in polynomial time, the degree of the
polynomial is not low, which prevents the method from being
applied to the completion of large networks. Therefore, we
further propose a heuristic method, called DPLSQ-HS, to
speed up the calculation of the minimum least squares error
by applying restriction constraints that limit the number of
combinations of incoming nodes.

We evaluate the efficiency of our methods through com-
putational experiments using synthetic data and microarray
gene expression data from the life cycle of D. melanogaster
and the cell cycle of S. cerevisiae. We also demonstrate the

BioMed Research International

Expression

FIGURE 1: Inference (i.e., completion starting with the null network) of time varying structure of a genetic network. This example corresponds
to the case of N = 1, n = 3, B = 2, and m = 12. The change points are ¢, = 5and ¢, = 9.

effectiveness of the proposed methods by comparing our
results with those of ARTIVA [15].

2. Method

In this section, we present DPLSQ-TV, a DP-based method
for the completion of a time-varying network. We assume that
there exist m time points (1,2, ...,m), which are divided into
B+ lintervals: [1,...,¢ - 1], [¢),...r6 = 1], ..., [cgy - - > m],
where B indicates the number of change points. A different
network is associated with each interval. We assume that the
set of genes does not change; therefore, only the edge set
changes according to the time interval. Let V = {v,,...,v,}
be the set of genes. Let E be the initial set of directed
edges (i.e., initial set of gene regulation relationships), and let
E,, E,, ..., Eg be the sets of directed edges (i.e., the output),
where E; denotes the edge set for the ith interval.

Then, the problem is defined as follows: given an initial
network G(V; E) consisting of n genes, N time series datasets,
each of which consists of m time points for n genes and
the positive integers A, k, and B, infer B change points (i.e.,
>G5 ..>¢g) and complete the initial network G(V, E) by
adding k edges and deleting h edges in total such that the
total least-squares error is minimized. This results in the set of
edges E(, E, , ..., Ep at the corresponding time intervals (see
Figure 1). It is to be noted that if we start with an empty set of
edges (i.e., E = 0), the problem corresponds to the inference
of a time-varying network.

2.1. Model of Differential Equation and Estimation of Param-
eters. We assume that the dynamics of each node v; are
determined by the following differential equation:

dx; _ ; é i i b
—— =ayt ' ajxij + aj,kx-]_xk +bow, (1)

where x; corresponds to the expression value of node v;, w
denotes random noise, and v; , ..., v; are incoming nodes to

FIGURE 2: Dynamics model for a node.

v;. The second and third terms of the right-hand side of the
equation represent the linear and nonlinear effects to node

v;, respectively (see Figure 2), where a positive value for a;

or a;; corresponds to an activation effect, and a negative

value for aj. or aj.’k corresponds to an inhibition effect. This
model is an extension of the linear differential equation
model [3]. It is also a variant of the recurrent neural network
model [27], although the sigmoid function is replaced here
by an identify function and nonlinear terms representing
cooperating regulations are added instead.

In practice, we replace the derivative of (1) by the

difference and ignore the noise term as follows:

x; (t+1)

h
=x (0 + At ay+ Y aix () + Y ax (O)x, ()],
j=1 j<k
)

where At denotes the unit time. This kind of discretization
is also employed for linear and recurrent neural network
models [3, 27].

In our previous method DPLSQ [20], we assume that
time series data y;(t)s, which correspond to x;(t)s in (2), are
given for t = 0,1,...,m, where we distinguish an observed
expression value y;(f) from an expression value x;(t) in
the mathematical model equation (2). Then, the parameters
a}s and a’;s are estimated from these time series data by
minimizing the following objective function (i.e., the sum of
the least squares errors) for each node v;:

Mz

Y (t+1)

-
I
—_

2

— |y () + At (ao + Za i, ®) +Za1 ki, ®) y;, (f)>

j<k
(3)

It should be noted that y,(t) is the observed expression
value of gene v; at time ¢, and VisVijs-. o>V, are tentative
incoming nodes to node v;. Incoming nodes to each node
are determined so that the sum of these values for all nodes
is minimized under the constraint that the total number
of edges is equal to the specified number. In order to
minimize the sum of least squares errors for all genes along
with determining the incoming nodes and corresponding
parameters, DP is applied. Readers are referred to [20] for the
details of DPLSQ.

2.2. Completion by Addition of Edges. In this subsection, we
present our proposed method for network completion of
time-varying networks by the addition of edges and extend
this to a general case (i.e., network completion by the addition
and deletion of edges) in the following subsection. For
simplicity, we assume N = 1, where we can extend the
method to the case of N > 1 by changing the definition
ofS » 1[p>q] only.

j vy

We assurile that the set of nodes (i.e., the set of genes) V
and the set of initial edges E are given. Let the current set
of incoming nodes to v; be {v; ,...,v; }. We define the least
squares error for v; during the time period between p and g

as

gq-1
= min) |y (t+1)

1 1 1
A>3 t=p

— |y () + At

2

X (ao + Za]yl () +Za] kyl () Vi (t)> >
j<k

(4)

where y;(t) denotes the observed expression value of gene v;
attime t. The parameters (i.e., 4, a}, a})k) needed to attain this

BioMed Research International

minimum value can be computed by a standard least squares
fitting method.

Because network completion is considered to involve the
addition of edges, lete” (v;) = {v e de} be the set of initial
incoming nodes to v;. Let 0,;’ j[p»q] denote the minimum
least squares error when adding k; edges to the jth node
during the time from p to g, which is formally defined as

+ s J
o, :|p,gl= min 1§ s , 5

kJ’J [p q] jl'jZ"“’jk/- { € (Vj)u{vh’vjz """ kaj} [p q]} ()
where each v; must be selected from V — vi—e (v). In order
to avoid coml])matorlal explosion, we constram the maximum
k; to be a small constant, K, and let ij, ilp-q] = +oo, for
kj > Kor kj + |ef(vj)| >n.

Then, the problem is stated as

B
min min o , (6
€1 <6 <<cp ;)kl+k2+---+kn:kf ; k; f G~ 1] ©
KOk ot kB=k
wheregy =landcg,, —1=m
Here, we define D[k, i, p, q] as
i
DY [k, i, p, = min o . [p, . 7
[kipql = min ;hﬂpd @)

The entries of D[k, j, p,q] can be computed by the
following DP algorithm:

D" [k, 1, p.q] = o, [p-4]

D' [k,j+1,p,q] = min {D
[k.j+1pq)= min {

"K']+ i [P al}
(8)
It is to be noted that D" [k, n, p, q] is determined uniquely

regardless of the ordering of nodes in the network. The
correctness of this DP algorithm can be seen as follows:

n
. +
min Za :
ky+hy ek, =k st kj»j [P> q]

n—1
_ . +) +H)
= Y 2% () i, [prd)
= min {D"[K',n-1,p,9]+0/ [p,q|}.
min {D*[K',n 1, p.q] + o, [p.ql}
)
Next, we define E*[k, b, q] as
E" [k, b,q]
b n
= C1<gl<1.r.‘.l<cb ;kﬁkzr?»l-?kn:ki ZU]] Gyl —] >
Kokt eakb=k U7 J=1
(10)

BioMed Research International

where ¢,,; — 1 = q. E'[k,b,q] can be computed by the
following DP algorithm:
E'[k,0,q] = D" [k,n,1,q],
+
= min {D"[K',m p,q|+E" [K".b-1,p]|}.
min {D" [K,n p,q] + E" rl}
K+ =k

The introduction of E* [k, b, q] and the corresponding DP
procedure are the methodologically novel points of this work,
compared with our previous work [20].

The correctness of this DP algorithm can be seen as
follows:

b n
min Z min Yoy e —1]
<6 <<G okithytetk, =k =1)
k

KOkt et k=

b-1
= min min min
Gp-1<G €< <Gy i—okittk, =K
K +k" =k | KOtk =k

- ‘}?i!} {E* [k' -1, p] +D" [k" n, p,q]}
K'+k" =k

(12)

2.3. Completion by Addition and Deletion of Edges. The above
DP procedure can be modified for the deletion of edges and
for the addition and deletion of edges as in DPLSQ [20]. Since
the former case is a subcase of the latter one, we describe only
the latter one (addition and deletion of edges) here.

Let 0y, x ; [p>q] denote the minimum least squares error
for the time period between p and q when adding k; edges
to ef(vj) and deleting hj edges from ef(vj), where the added
and deleted edges must be disjointed. We constrain the
maximum k; and h; to the small constants K and H. We let
oy kJJ[P q]—+001fk > K,h. > Hk h +le”(v))| > n,

or k h +le” (v)| < 0 hold. Then, the problem is stated as

B
min Z min Z O, G — 1]
OC1<102<"'<§B =0 kytky ek, =K' |: J
;“:Ih(:::llzii hy+hy+ethy=h'

(13)

Here, we define DI[h, k, i, p,q] as

k1+k+ +k k{z Thykj [pq } (14)
hy+hy+- +h =h

D[h,k, j, p,q] can be

D[h ki p.q] =

As in the previous subsection,
computed by

D[h,k,1,p.q] = 0y, 1 ; [P-4]

D[hk, j+1,p.q] (15)

= min {D [h’,k',j, p,q] + O g v [P, ‘1]}
K+ =k
W +h"=h

Next, we define E[h, k, b, q] as

E[h,k,b,q]
b
= min Z min Zah s 1—1
€< <<G =0 kythy ek, =k J fir]
KO+ k= by g4ty =
hO+h!ethb=h

(16)

E[h, k,b,q] can be computed by the following DP algo-
rithm:

E[h,k,0,9] = D[hk,n1,q],
E[h,k,b,q]
= min {D[K,K',np.q] + E[H".K".b~1,p]}.
K +k" =k

W' +h"=h
(17)

2.4. Time Complexity Analysis. In this subsection, we analyze
the time complexity of DPLSQ-TV. Since completion by the
addition of edges and completion by the deletion of edges are
special cases of completion by the addition and deletion of
edges, we focus on completion by the addition and deletion
of edges.

First, we analyze the time complexity required per least
squares fitting. It is known that least squares fitting for a linear
system can be done in O(mp* + p°) time where m is the
number of data points and p is the number of parameters.
In our proposed method, we assume that the maximum
indegree is bounded by a constant, and the numbers of
addition and deletion edges in a given network are bounded
by the constants K and H, respectively. In this case, the time
complexity for least squares fitting can be estimated as O(m).

Next, we analyze the time complexity required for com-
puting o, 5 ; [p, q]. The total time required to compute Ok, j

is O(mn™*) |

Therefore, the time complexity for Oh ki [p,qlsis Om’n
because p and g are O(m).

Next, we analyze the time complexity required for com-
puting D[h, k, i, p, q]s. In this computation, we note that the

20], where we assume that & and k are O(n).
K+1
),

size of table DI[h, k, i, p,q] is O(m*n®). Furthermore, in order
to compute the minimum value for each entry in the DP
procedure, we need to examine (H + 1)(K + 1) combinations,
which is O(1). Hence, the time complexity for DI[h, k, i, p,q]s
is O(m*n’).

Finally, we analyze the time complexity required for com-
puting E[h, k, b, q]s. We note that the size of table E[h, k, b,]
is O(mn?), where we assume that B is a constant. Since the
number of combinations for computing the minimum value
using DP is O(mn) per entry, the computation time required
for computing E[h, k, b, g]s is O(m*n’). Hence, the total time
complexity is

6) (m3nK+1 + m2n3)) (18)

It is to be noted that if we use N time series datasets, each
of which consists of m points, the time complexity becomes
O(Nm*r* + m*n®). Although this complexity is not small,
it is allowable in practice if K < 2 and #n and m are not too
large. Indeed, as shown in Section 4.2, DPLSQ-TV works for
the completion and inference of time-varying networks with
a few tens of genes if K = 2.

3. Heuristic Method

Although our previous algorithm, DPLSQ-TYV, is guaranteed
to find an optimal solution in polynomial time, the degree
of the polynomial is not low, preventing the method from
being applied to the completion of large-scale networks.
Therefore, we propose a heuristic algorithm, DPLSQ-HS,
to significantly improve the computational efficiency by
relaxing the optimality condition. The reason why DPLSQ-
TV requires a large amount of CPU time is that the least
squares errors are calculated for each node by considering
all possible combinations of incoming nodes and taking the
minimum value of these. In order to significantly improve
the computational efficiency, we introduce an upper limit on
the number of combinations of incoming nodes. Although
DPLSQ-HS does not guarantee an optimal solution, it allows
us to speed up the calculation of the minimum least squares
in the case of adding edges. A schematic illustration of least
squares computation is given in Section 3.1. The DPLSQ-HS
algorithm is described in Section 3.2, and we analyze the time
complexity of DPLSQ-HS in Section 3.3.

3.1. Schematic Illustrations of DPLSQ-HS. Although DPLSQ-
HS can be applied to the addition and deletion of edges, we
consider only additions of edges as modification operations
in this subsection. We have developed DPLSQ-HS, which
contributes to reducing the time complexity, by imposing
restrictions on the number of combinations of incoming
nodes to each node. In Figure 3, the diagram indicates that,
for each node v;, we maintain M combinations of k incoming
nodes with M lowest errors at the kth step. Let Sf denote the
set of M combinations computed at the kth step. At the kth
step, for each combination {v; ,...,v; }¢€ StuS u---u Sf“l
where i, < i, <--- <i._,, we calculate the least squares error
for each v; such that j > i;_, is the kth incoming node to v;.

BioMed Research International

The calculated least squares errors are sorted in descending
order, the top M values are selected, and the corresponding

combinations are stored in Sf.

3.2. Algorithm. The following is the description of the algo-
rithm to compute o7 ;[p,q] in DPLSQ-HS, where o;;[p, 4]
does not necessarily mean the minimum value and the
meaning of “step” is different from that in Section 3.1.

Step 1. For each period [p, g], repeat Steps 2-6.

Step 2. Let S? ={@} foralli=1,...,n.

Step 3. Fori = 1tondo Steps 4-7.

Step 4. Repeat Steps 5-7 for node v; from k = 1 to k = K.

Step 5. For each combination {v;,...,v; } € StuSsHu

RNV Sf.‘_l and each node v; such that j > i, (j > 0if
k = 1), calculate the least squares error for the k edge set

105w (0 (o W)}

Step 6. Sort the obtained least squares errors in descending
order and select the top M combinations, which are stored in

sk,

Step 7. Let oy ,[p,q] be the minimum least squares error
among these top M combinations.

The other parts of the algorithm are the same as in DPLSQ-
TV.

3.3. Time Complexity Analysis. In this subsection, we analyze
the time complexity of DPLSQ-HS. Since DPLSQ-HS can be
applied to additions and deletions of edges, we consider the
time complexity of completion for adding and deleting edges.

In our proposed method, we assume that the numbers of
adding and deleting edges in a given network are, respectively,
bounded by constants K and H. In this case, the time
complexity for least squares fitting can be estimated as O(m).

As for the time complexity of computing Ok, j [p,ql, we
assume that the addition of edges is operated only in the case
of adding edges to the nodes with respect to the top M of the
sorted list. Therefore, the number of combinations of addition
of k : edges, which is bounded by a constant K, is O(M K). Itis
well known that the sorting of n data can be done in O(nlog n)
time. Based on such an assumption, the total time required
for the computation of Ok, j [p,q] is O(mnlogn) [20], since
the O(MX) factor can be regarded as a constant. Therefore,
the time complexity for Ok, j [p, q] is O(m’nlogn), because
p and g are O(m).

Furthermore, for the time complexity required for com-
puting D[h, k, i, p,q]s and El[h, k, b, g]s, the calculation pro-
cess is the same as that in DPLSQ-TV. Therefore, the com-
putation time for both D[h, k,i, p,q]s and E[h,k,b,q]s are

BioMed Research International

FIGURE 3: Schematic illustrations for definition of the top M combinations. This is an example for the cases of M = 3 and k < 3. Let Sff denote

the set of M combinations computed at the kth step. At the kth step, for each combination {v

Vi }eStUS? U---U S we calculate
1 i i i

TEEEE

the least squares error for each v; such that j > i,_; as a kth incoming node to v;.

O(m?*n®) as described in Section 2.4. Hence, the total time
complexity of DPLSQ-HS is

0] (m3nlogn + m2n3) . (19)

If we use N time series datasets, each of which consists of
m points, the time complexity becomes O(Nm log n+m*n’).
DPLSQ-HS requires less time complexity than DPLSQ-
TV, because O(m3nlog n) is much smaller than O(m*n**").
Indeed, as shown in Section 4.2, DPLSQ-HS is much faster
than DPLSQ-TV in practice.

4. Results

We performed computational experiments using both artifi-
cial data and real data. All experiments were performed on
a PC with an Intel Core(TM)2 Quad CPU (3.0 GHz). We
employed the liblsq library (http://www2.nict.go.jp/aeri/sts/
stmg/K5/VSSP/install 1sq.html) for the least squares fitting
method.

4.1. Completion Using Artificial Data. In order to evaluate
the potential effectiveness of DPLSQ-TV and DPLSQ-HS, we
begin with network completion for time-varying networks
using artificial data. We demonstrate that our proposed
methods can determine change time points quite accurately
when the network structure changes. We employed the
structure of the real biological network WNT5A (Figure 4)
[26] as the initial network G and those of three different
networks G;, G,, and G; generated by randomly adding and
deleting edges from the initial network. In this method, for
each node v; with h input nodes, we considered the following
model:

x; (t+1)

h
= x; () + At <a(', + Za}xiv + Za;)kxi_) x; (1) + b,w) ,
j=1 ! j<k !

(20)

where a’s and ai.’ks are constants selected uniformly at
random from [-0.5,0.5] and [‘—0.05, 0.05], respectively. The
reason why the domain of a;’ks is smaller than that for

ajs is that nonlinear terms are not considered as strong as
linear terms. It should also be noted that b,w is a stochastic
term, where b, is a constant (we used b, = 0.05) and w is
random noise taken uniformly at random from [-1, 1]. For
the artificial generation of the observed data y;(t), we used

y; () = x; (1) + 0'e, 1)

where o' is a constant denoting the level of observation errors
and € is random noise taken uniformly at random from
[0.05, -0.05].

As for the time series data, we generated an original
dataset with 30 time points including two change points ¢; =
10, ¢, = 20, which is generated by merging three datasets for
G, G,, and G;. Since the use of time series data beginning
from only one set of initial values easily resulted in numerical
calculation errors, we generated additional time series data
beginning from 200 sets of initial values that were obtained
by slightly perturbing the original data. Under the above
model, we conducted computational experiments by DPLSQ-
TV in which the initial network G was modified by randomly
adding k, edges and deleting , edges per node, resulting in
G,, G,, and Gj3; additionally, we also conducted DPLSQ-HS
experiments in which the initial network G was modified by
randomly adding k, edges per node, using the default values
of ky = hy = 1. We evaluated the performance of this method
by measuring the accuracy of modified edges, the time point
errors for time intervals, and the computational time for
completion (CPU time). Furthermore, in order to examine
how CPU time changes as the size of the network grows, we
generated networks with 20 genes, 30 genes, and 40 genes by
making 2, 3, and 4 copies of the original networks. We took
the average time point errors, accuracies, and CPU time over
10 random modifications with several o's. In addition, we
performed computational experiments on DPLSQ-TV and

http://www2.nict.go.jp/aeri/sts/stmg/K5/VSSP/install_lsq.html
http://www2.nict.go.jp/aeri/sts/stmg/K5/VSSP/install_lsq.html

BioMed Research International

e

FIGURE 4: Structure of WNT5A network [26].

TABLE 1: Result on completion with synthetic data.

(a) Using DPLSQ-TV

Observation error level

0.1 0.3 0.5 0.7
Time points error 0.00 0.00 0.00 1.60
n=10 Accuracy 0.830 0.685 0.554 0.433
CPU time (sec.) 53.974 58.574 50.499 61.189
Time points error 0.00 0.00 0.00 2.10
n=20 Accuracy 0.781 0.637 0.541 0.299
CPU time (sec.) 75.898 85.391 142.903 124.400
Time points error 0.00 0.00 0.35 4.00
n =30 Accuracy 0.539 0.524 0.418 0.310
CPU time (sec.) 264.190 244.480 234.377 276.081
Time points error 0.00 0.00 0.35 3.50
n =40 Accuracy 0.585 0.498 0.458 0.241
CPU time (sec.) 342.065 333.398 317.420 337.274

(b) Using DPLSQ-HS

Observation error level

0.1 0.3 0.5 0.7

Time points error 0.00 0.00 0.00 6.85

n=10 Accuracy 0.627 0.600 0.533 0.307
CPU time (sec.) 32.783 32.030 35.594 30.765

Time points error 0.00 0.00 0.00 8.70

n =20 Accuracy 0.488 0.473 0.413 0.153
CPU time (sec.) 52.129 51.348 56.723 44.699

time points error 0.00 0.00 4.25 8.80

n=30 Accuracy 0.469 0.386 0.286 0.097
CPU time (sec.) 76.852 86.844 76.313 74.653

Time points error 0.00 0.00 0.85 8.65

n =40 Accuracy 0.510 0.413 0.308 0.093
CPU time (sec.) 76.360 98.398 97.657 102.813

Time points error 0.00 0.00 0.00 0.75

n =60 Accuracy 0.411 0.375 0.382 0.355

CPU time (sec.) 371.635 395.596 372.192 391.110

BioMed Research International

DPLSQ-HS using 60 genes, where additional time series data
beginning from 100 sets (in place of 200 sets) of initial values
were used, and G, G,, and G; were obtained by addition and
deletion of edges. However, DPLSQ-TV took too long time
(more than 1000 sec. per execution) and thus the result could
not be included in Table 1.

The accuracy is defined as follows:

(22)

h+k+ Yo, (|EnE]|-|E])
h+k ’

where E; and Ej(i = 0,1,..., B) are, respectively, the sets of
edges in the original network and the completed network in
each time interval. This value is 1 if all the added and deleted
edges are correct and 0 if none of the added and deleted edges
are correct. If we regard a correctly (resp., incorrectly) added

or deleted edge as a true (resp., false) positive, Z£0(|Ei| -
|E; N E}|) corresponds to the number of false positives and

h+k+ ZiO(IEi n E:I — |E;|) corresponds to the number of
true positives. The time point error is the average difference
between the original and estimated values for change time
points and is defined as

1g)
EZ |ci - | , (23)
i-1

where ¢/ (i = 1,2,..., B) are the estimated change points. As
for the computation time, we show the average CPU time.

The results of the two methods are shown in Table 1.
It can be seen from this table that the change time point
errors are quite small regardless of the size of the network
with a low level of observation errors. In addition, it is also
seen that the time point errors with DPLSQ-TV are close to
those with DPLSQ-HS with the exception of high levels of
observation errors. We observe that CPU time using DPLSQ-
TV increases rapidly as the size of the network grows. On
the other hand, CPU time by DPLSQ-HS increases gradually
as the size of the network grows. It is also observed that
the DPLSQ-HS algorithm is about 4 times faster than the
DPLSQ-TV algorithm in case of 40 genes, while maintaining
good accuracy. Hence, these results suggest that DPLSQ-TV
and DPLSQ-HS can correctly identify the change time points
if the error levels are not very large and that it can complete
the initial network by modifying the edges with relatively
good accuracy if the observation error is small.

It is also observed that DPLSQ-HS worked reasonably
fast even for n = 60, although DPLSQ-TV took more than
1000 seconds per execution and thus the result could not be
included in Table 1. However, the accuracy on DPLSQ-HS
became around 0.4 even if the observation error level was low
(ie., o' = 0.1). Therefore, the applicability of DPLSQ-HS is
also limited in terms of the accuracy, although it may still be
useful for networks with n = 60 if the purpose is to identify
change time points.

Since DPLSQ-HS is a heuristic method, the results may
be greatly influenced by data. Therefore, we evaluated the
stability of DPLSQ-HS by comparing the variance of the
accuracy with that for DPLSQ-TV, where n = 20. The

variances for DPLSQ-TV were 0.00602 and 0.00446 for o =
0.3 and o' = 0.5, respectively. The variances for DPLSQ-
HS were 0.01188 and 0.00732 for o' = 0.3 and o' = 0.5,
respectively. This result suggests that DPLSQ-HS is less stable
than DPLSQ-TV. However, the variances of DPLSQ-HS were
less than twice those of DPLSQ-TV. Therefore, this result also
suggests that DPLSQ-HS has some stability.

In order to examine the effect of the number of change
points B and the maximum number of added and deleted
edges per nodes K and H on the least squares error, we
performed computational experiments with varying these
parameters (one experiment per parameter). Then, the result-
ing least squares errors (i.e., E[---]s) for DPLSQ-TV are
5.495, 7.016, 7.875, 3.886, and 3.799 for (B, K, H) = (2,1,1),
(3,1,1), (4,1,1), (2,2,2), and (2,4, 2), respectively. It is seen
that use of larger K, H resulted in smaller least squares errors.
It is reasonable that more parameters resulted in better least
squares fitting. However, use of larger B did not result in
smaller least squares errors. It may be because addition of
unnecessary change points increases the error if an enough
number of edges are not added. It is to be noted that although
the least squares errors are reduced, use of larger K, H is not
always appropriate because it needs much longer CPU time
and may cause overfitting.

We also compared our results with those obtained by
the ARTIVA algorithm [15]. It is to be noted that most of
the other tools for the inference of time-varying networks
are unavailable. This model is based on a combination of
DBN and RJMCMC sampling, where RIMCMC is used for
approximating the posterior distribution and DBN is used
for inferring simultaneously the change points and resulting
network structures. We applied ARTIVA to the synthetic
datasets that were generated in the same way as for our
proposed methods. We used the default parameter settings
for ARTIVA and evaluated the results by inferring the change
points. As the result of the comparative experiment, there are
two change time points in the synthetic datasets, but ARTIVA
can only infer one change point regardless of the observation
error level, as shown in Figure 5, where ARTIVA does not
uniquely determine change points but output probabilities of
change points.

4.2. Inference Using Real Data. We examined two types of
proposed methods for the inference of change time points
using gene expression microarray data and also compared
our results with those obtained using the ARTIVA algorithm.
We applied our methods to two real gene expression datasets,
measured during the life cycle of D. melanogaster and the cell
cycle of S. cerevisiae.

The first microarray dataset is the gene expression time
series collected by Spellman et al. [28]. We employed part
of the cell cycle network of S. cerevisiae extracted from the
KEGG database [29] shown in Figure 6. As for time series
data, we combined and employed four sets of time series data
(alpha, cdcl5, cdc28, and elu) in [28] that were obtained in
four different experiments. We adopted the datasets of 10
genes with 71 time points including three change time points.
Since there were several expression values that were far from

10
Observation error level = 0.1
0.25 T T T T T
jnd
2 02} 4
=
S 015 -
B
a,
g o1f -
3
3 0.05 | -
(=W
0 | I L1 1 1 1 1
5 10 15 20 25 30
Time point
(a)
Observation error level = 0.5
0.25 T T T T T
jnd
= o02f .
B
<
S 015 f .
-
o
g o1t} -
3
é 0.05 ‘ | R
0 | I L1 1 1 1 1
5 10 15 20 25 30
Time point

(©)

BioMed Research International

Observation error level = 0.3
0'25 T T T T T

0.2 - B

0.15 _

Posterior probability

0.05 B

0 |||||| 1 1 1
5 10 15 20 25 30

Time point
(®)

Observation error level = 0.7
0.25 T T T T T

0.15 - 1

0.1 _

Posterior probability

0.05 -

0 ‘||||II 1 1 1
5 10 15 20 25 30

Time point

(d)

FIGURE 5: Results on inference of change point using ARTIVA algorithm with synthetic data.

FIGURE 6: Structure of part of the yeast cell cycle network.

the average in the cdcl5 dataset, these values were discarded.
As a result, the alpha, cdcl5, cdc28, and elu datasets consist
of 18, 23, 17, and 13 time points of gene expression data,
respectively.

The second microarray dataset is the gene expression
time series from experiments by Arbeitman et al. [30]. This
data set includes the expression levels of 4028 genes with 67
time points spanning four distinct stages: embryonic (31 time
points), larval (10 time points), pupal (18 time points), and
adulthood (8 time points) in the D. melanogaster life cycle.

We used the expression datasets of 30 genes selected from
this microarray data with 67 time points, which include three
change time points.

In this computational analysis, with regard to applying the
two different types of microarray datasets, we generated 200
datasets that were obtained by slightly perturbing the original
data in order to avoid numerical calculation errors. Since
the correct time-varying networks are not known, we only
evaluated the time point errors and the average CPU time,
where K = 3 and H = 0 were used with the S. cerevisiae

BioMed Research International 11
TABLE 2: Result on inference of change points in S. cerevisiae data.
¢; (correct answer) ci' (DPLSQ-TV) ci' (DPLSQ-HS) ARTIVA
i=1 25 23 23 24
i=2 40 40 40 —
i=3 56 58 58 60
CPU time (sec.) 14147.18 908.80 —

TABLE 3: Result on inference of change points in D. melanogaster
data.

! !

G G fos
(correctlanswer) (DPLSIQ-TV) (DPLSIQ-HS)
i=1 31 19 19
i=2 41 31 31
i=3 60 42 42
CPU time (sec.) 121560.82 2620.96

dataset and K = 2 and H = 0 were used with the D.
melanogaster dataset.

The results are shown in Tables 2 and 3. ¢s are the
values of the change point in the original data and ¢/s are
the estimated values. In the experimental analysis with S.
cerevisiae data, as for the change time points, there seems to
be almost no difference between the results of DPLSQ-TV
and DPLSQ-HS, which can correctly identify the time points
where the network topology changes. It is also observed
from Table 2 that the CPU time required for DPLSQ-HS
is about 15 times faster than that needed for DPLSQ-TV.
In the experiments using data from D. melanogaster, it is
seen from Table 3 that both methods can determine exactly
the same three change points. At first glance, readers may
think that the errors are large at all change point positions.
However, both methods could precisely identify two time
points when topology of the network changes, excluding the
case of i = 3. From the point of view of computational
time, DPLSQ-HS performs significantly better than DPLSQ-
TV; DPLSQ-HS runs about 46 times faster than DPLSQ-TV.
Therefore, DPLSQ-HS allows us to significantly decrease the
computational time. These results suggest that, in many cases,
we can expect DPLSQ-HS to find a near-optimal solution,
at least for change time points, while also speeding up the
calculation.

Furthermore, for the ARTIVA analysis, we employed
both the above-mentioned S. cerevisiae and D. melanogaster
microarray datasets, which consist of 71 measurements of
10 genes and 67 measurements of 30 genes, respectively,
and tried to identify the change time points. Computational
experiments on ARTIVA were performed under the same
computational environment as that used in our methods.

The results from the yeast microarray data are shown in
Table 2. There are three change time points, as described in
this table. It is seen from this table that two of them, 24 and
60, can be determined precisely by ARTIVA, but the third is
not. In contrast, our proposed methods demonstrate good
performance for inferring the change points at which the
network topology changes. Lebre et al. [15] demonstrated the

TaBLE 4: Comparative experiment for inference of change points.

!

G ¢
(correctlanswer) (DPLSIQ—HS) ARTIVA
=1 - 19 18-19
=2 3 31 31-33
=3 40 42 41-43
=4 60 55 59-61

CPU time (sec.) 2606.40 —

number of identified change points with D. melanogaster data
using the ARTIVA algorithm. According to this validation,
it has been observed that the time intervals 18-19, 31-33, 41—
43, and 59-61 contain more than 40% of all change points. In
order to compare with the ARTIVA results, we attempted to
identify four change points using our proposed methods. The
results of the comparative experiment using D. melanogaster
microarray data are shown in Table 4. ¢;s are three change
time points in original data. Although DPLSQ-HS identified
change time points similar to those identified by ARTIVA, the
results of ARTIVA appear to be slightly better. This suggests
that the ARTIVA algorithm shows slightly better perfor-
mance with respect to the inference of change points than our
proposed methods. However, ARTIVA does not determine
change time positions but determines time intervals at which
the network topology might change. Therefore, DPLSQ-HS is
more suited for identifying change time positions at all-time
points. (Since the comparative experiment by DPLSQ-TV did
not finish within 3 weeks, the results of DPLSQ-TV are not
given in Table 4.)

5. Conclusion

In this paper, we have proposed two novel network com-
pletion methods for time-varying networks by extending
our previous method, DPLSQ [20]. In order to identify the
change time points and sets of modified edges in network
completion, we developed two different types of double
DP algorithms. The first algorithm, DPLSQ-TYV, is intended
to complete and precisely infer time-varying networks.
Although DPLSQ-TV allows us to guarantee the optimality
of its solution, it requires a large amount of computational
time as the size of the network grows.

To improve the computational efficiency of DPLSQ-TV,
we developed an effective heuristic method, DPLSQ-HS, by
speeding up the calculation of the minimum least squares
error by posing restrictions to the number of combinations
of incoming nodes. We showed that each of these two

12

methods works in polynomial time if the maximum indegree
is bounded by a constant.

The results of computational experiments reveal that
the two proposed methods can identify change time points
rather accurately and can infer edges to be deleted and
added with good accuracy. DPLSQ-TV provided a wide
range of applications, not only in network completion but
also in network inference, with good accuracy. Additionally,
DPLSQ-HS allowed us to identify change time points rather
precisely, while reducing the computational time for both
synthetic data and microarray data. This result suggests that,
in many cases, DPLSQ-HS can be expected to find near-
optimal solutions, while speeding up the calculation.

Although DPLSQ-HS is much faster than DPLSQ-TYV, it
has a drawback: the accuracy and time point error were worse
than those by DPLSQ-TYV, especially, when the observation
error level was large. Therefore, we need to improve the
accuracy of DPLSQ-HS without significantly undermining
its efficiency. In our experiments, we specified the number
of change time points and the number of edges to be
added and deleted. In real use, we may examine several
values and select the best one (e.g., the values with the
minimum least squares errors). However, as discussed in
Section 4.1, it may lead to overfitting. In order to avoid
overfitting, use of AIC (Akaike’s Information Criterion) or
other information criteria is useful as demonstrated in [27]
for network inference. However, since network completion is
more complex than network inference, the method in [27]
cannot be directly applied. Therefore, incorporation of an
appropriate information criterion into network completion
is important future work. Another issue to be tackled is
to take into account the relationship between G; and G, ;.
Although G; and G,,, are inferred independently from the
original network G by the proposed method, there should be
some strong relationship between them. Therefore, such an
extension is also important future work.

Conflict of Interests

The authors declare that they have no conflict of interests.

Acknowledgments

The authors would like to thank Professor Hideo Matsuda in
Osaka University and Takanori Hasegawa in Kyoto University
for helpful discussions. This work was partially supported by
JSPS, Japan, (Grants-in-Aid 22240009 and 22650045).

References

(1] K.-H. Cho, S.-M. Choo, S. H. Jung, J.-R. Kim, H.-S. Choi, and
J. Kim, “Reverse engineering of gene regulatory networks,” IET
Systems Biology, vol. 1, no. 3, pp. 149-163, 2007.

[2] H. Hache, H. Lehrach, and R. Herwig, “Reverse engineering of
gene regulatory networks: a comparative study;” Eurasip Journal
on Bioinformatics and Systems Biology, vol. 2009, Article ID
617281, 20009.

[3] M. Hecker, S. Lambecka, S. Toepferb, E. van Somerenc, and R.
Guthkea, “Gene regulatory network inference: data integration

=

=
=

(16]

(17

(18]

(20]

BioMed Research International

in dynamic models: a review;” BioSystems, vol. 96, pp. 86-103,
2009.

S.Liang, S. Fuhrman, and R. Somogyi, “Reveal, a general reverse
engineering algorithm for inference of genetic network archi-
tectures,” Proceedings of the Pacific Symposium on Biocomputing,
vol. 3, pp. 18-29, 1998.

T. Akutsu, S. Miyano, and S. Kuhara, “Inferring qualitative
relations in genetic networks and metabolic pathways,” Bioin-
formatics, vol. 16, no. 8, pp. 727-734, 2000.

N. Friedman, M. Linial, I. Nachman, and D. Peer, “Using
Bayesian networks to analyze expression data) Journal of
Computational Biology, vol. 7, no. 3-4, pp. 601-620, 2000.
S.Imoto, S. Kim, T. Goto et al., “Bayesian network and nonpara-
metric heteroscedastic regression for nonlinear modeling of
genetic network,” Journal of Bioinformatics and Computational
Biology, vol. 1, no. 2, pp. 231-252, 2003.

T. Thorne and M. P. H. Stumpf, “Inference of temporally varying
Bayesian networks,” Bioinformatics, vol. 28, pp. 3298-3305, 2012.
P. D’'Haeseleer, S. Liang, and R. Somogyi, “Genetic network
inference: from co-expression clustering to reverse engineer-
ing,” Bioinformatics, vol. 16, no. 8, pp. 707-726, 2000.

Y. Wang, T. Joshi, X. Zhang, D. Xu, and L. Chen, “Inferring
gene regulatory networks from multiple microarray datasets,”
Bioinformatics, vol. 22, no. 19, pp. 2413-2420, 2006.

H. Toh and K. Horimoto, “Inference of a genetic network by a
combined approach of cluster analysis and graphical Gaussian
modeling,” Bioinformatics, vol. 18, no. 2, pp. 287-297, 2002.

R. Yoshida, S. Imoto, and T. Higuchi, “Estimating time-
dependent gene networks from time series microarray data by
dynamic linear models with Markov switching,” in Proceedings
of the 2005 IEEE Computational Systems Bioinformatics Confer-
ence (CSB ’05), pp. 289-298, August 2005.

A. Fujita, J. R. Sato, H. M. Garay-Malpartida, P. A. Morettin,
M. C. Sogayar, and C. E. Ferreira, “Time-varying modeling of
gene expression regulatory networks using the wavelet dynamic
vector autoregressive method,” Bioinformatics, vol. 23, no. 13, pp.
1623-1630, 2007.

J. W. Robinson and A. J. Hartemink, “Non-stationary dynamic
Bayesian networks,” in Proceedings of the 22nd Annual Confer-
ence on Neural Information Processing Systems (NIPS "08), pp.
1369-1376, December 2008.

S. Lebre, J. Becq, F. Devaux, M. P. H. Stumpf, and G. Lelandais,
“Statistical inference of the time-varying structure of gene-
regulation networks,” BMC Systems Biology, vol. 4, p. 130, 2010.
Y. W. Teh and M. I Jordan, “Hierarchical Bayesian nonparamet-
ric models with applications,” in Bayesian Nonparametrics, pp.
158-207, Cambridge University Press, Cambridge, UK, 2010.

G. Rassol and N. Bouaynaya, “Inference of time-varying gene
networks using constrained and smoothed Kalman filtering,”
in Proceedings of the International Workshop on Genomic Signal
Processing and Statistics, pp. 172-175, 2012.

A. Ahmed, L. Song, and E. P. Xing, “Time-varying networks:
recovering temporally rewiring genetic networks during the lofe
cycle of drosophila,” SCS Technical Report Collection CMU-
ML-08-118, 2008.

T. Akutsu, T. Tamura, and K. Horimoto, “Completing networks
using observed data,” in Proceedings of the 20th International
Conference on Algorithmic Learning Theory, pp. 126-140, 2009.
N. Nakajima, T. Tamura, Y. Yamanishi, K. Hiromoto, and T.
Akutsu, “Network completion using dynamic programming
and least-squares fitting,” The Scientific World Journal, vol. 2012,
Article ID 957620, 8 pages, 2012.

BioMed Research International

(21]

(22]

(23]

(26]

(27]

(30]

A. Clauset, C. Moore, and M. E. J. Newman, “Hierarchical
structure and the prediction of missing links in networks,”
Nature, vol. 453, no. 7191, pp- 98-101, 2008.

R. Guimera and M. Sales-Pardo, “Missing and spurious interac-
tions and the reconstruction of complex networks,” Proceedings
of the National Academy of Sciences of the United States of
America, vol. 106, no. 52, pp. 22073-22078, 2009.

M. Kim and J. Leskovec, “The network completion problem:
inferring missing nodes and edges in networks,” in Proceedings
of the 2011 SIAM International Conference on Data Mining, pp.
47-58, 2011.

S. Hanneke and E. P. Xing, “Network completion and survey
sampling,” Journal of Machine Learning Research, vol. 5, pp.
209-215, 2009.

N. Nakajima and T. Akutsu, “Network completion for time-
varying genetic networks,” in Proceedings of the 7th Interna-
tional Conference on Complex, Intelligent, and Software Intensive
Systems, vol. 2013, pp- 553-558, 2013.

S.Kim, H. Li, E. R. Dougherty et al., “Can Markov chain models
mimic biological regulation?” Journal of Biological Systems, vol.
10, no. 4, pp. 337-357, 2002.

N. Noman, L. Palafox, and H. Iba, “On model selection criteria
in reverse engineering gene networks using RNN model,” in
Proceedings of International Conference on Convergence and
Hybrid Information Technology, pp. 155-164, 2012.

P. T. Spellman, G. Sherlock, M. Q. Zhang et al., “Comprehensive
identification of cell cycle-regulated genes of the yeast Sac-
charomyces cerevisiae by microarray hybridization,” Molecular
Biology of the Cell, vol. 9, no. 12, pp. 3273-3297,1998.

M. Kanehisa, S. Goto, M. Furumichi, M. Tanabe, and M.
Hirakawa, “KEGG for representation and analysis of molecular
networks involving diseases and drugs,” Nucleic Acids Research,
vol. 38, no. 1, Article ID gkp896, pp. D355-D360, 2009.

M. N. Arbeitman, E. E. M. Furlong, E Imam et al,, “Gene
expression during the life cycle of Drosophila melanogaster,”
Science, vol. 297, no. 5590, pp- 2270-2275, 2002.

13

