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Purpose. Systemic lupus erythematosus (SLE) is a systemic and multifactorial autoimmune disease, and its diverse clinical
manifestations affect molecular diagnosis and drug benefits. Our study was aimed at defining the SLE subtypes based on blood
transcriptome data, analyzing functional patterns, and elucidating drug benefits. Methods. Three data sets were used in this
paper that were collected from the Gene Expression Omnibus (GEO) database, which contained two published data sets of
pediatric and adult SLE patients (GSE65391, GSE49454) and public longitudinal data (GSE72754) from a cohort of SLE patients
treated with IFN-α Kinoid (IFN-K). Based on disease activity scores and gene expression data, we defined a global SLE signature
and merged three clustering algorithms to develop a single-sample subtype classifier (SSC). Systematic analysis of coexpression
networks based on modules revealed the molecular mechanism for each subtype. Results. We identified 92 genes as a signature
of the SLE subtypes and three intrinsic subsets (“IFN-high,” “NE-high,” and “mixed”), which varied in disease severity. We
speculated that IFN-high might be due to the overproduction of interferons (IFNs) caused by viral infection, leading to the
formation of autoantibodies. NE-high might primarily result from bacterial and fungal infections that stimulated neutrophils
(NE) to produce neutrophil extracellular traps (NETs) and induced individual autoimmune responses. The mixed type
contained both of these molecular mechanisms and showed an intrinsic connection. Conclusions. Our research results indicated
that identifying the molecular mechanism associated with different SLE subtypes would benefit the molecular diagnosis and
stratified therapy. Moreover, repositioning of IFN-K based on subtypes also revealed an improved therapeutic effect, providing a
new direction for disease treatment and drug development.

1. Introduction

Systemic lupus erythematosus (SLE) is a systemic multifacto-
rial autoimmune disease, with breaches of tolerance in both T
cells and B cells. Pathological T cell-B cell interactions and
the production of autoantibodies are hallmark features of
SLE [1]. The activation of B and T cell immunity (i.e., the
adaptive immune system) requires the support of the innate
immune system. A basic family required for recognition by
the innate immune system is the Toll-like receptor (TLR)
family. TLRs can quickly recognize a series of related molec-
ular patterns found on bacteria, viruses, and fungi. The rec-
ognition of these molecular patterns on pathogens can
trigger the production of proinflammatory cytokines of
patients [2]. Proinflammatory cytokines not only participate

in adaptive immunity and drive T cell activation but also can
stimulate extramedullary hematopoiesis leading to expansion
of innate immune cells. When autoantibodies are generated
in an inflammatory milieu, they will be transformed into
pathogenic isotypes. Excessive accumulation of autoanti-
bodies can cause tissue damage in SLE [3].

SLE involves complex molecular processes, many of
which are uncharacterized. Genetic interactions with infec-
tion, especially viral infection, might trigger the disease, lead-
ing to immune dysregulation [4]. Patients from non-
European populations, such as Hispanics, African Ameri-
cans, and Asians, are predisposed to develop the condition
and progress more rapidly [5, 6]. Currently, the etiology
and pathogenesis of SLE are unknown, and personalization
of treatment remains challenging.
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Recent identification of molecular disease subtypes based
on clinical symptoms, disease severity, and pathogenesis has
advanced our understanding of molecular processes in SLE
[7–9]. Lanata et al. identified three lupus clinical subtypes
defined by the ACR classification criteria that vary according
to disease severity. They also found that patterns of differen-
tial methylation are associated with the subtypes and showed
significant enrichment of genes associated with type I inter-
feron signaling, antiviral responses, and inflammatory path-
ways. Banchereau et al. grouped patients by integrating
gene expression information into functional modules. The
functional modules showed IFN and neutrophil elastase
(NE) characteristics. These works provide a framework for
further study and have potential implications for the clinical
therapy of SLE. However, even though different studies have
shown similarities in subtypes, they have not reached a con-
sistent conclusion, which emphasizes that we should conduct
further research on its characteristics and mechanisms.

Patients show unique transcriptional characteristics
linked to IFN and NE [10]. Cells use pathogen recognition
receptors (PRR) such as TLRs to recognize pathogen-
associated molecular patterns (PAMPs), and their activation
initiates the release of IFN. This in turn leads to the release of
proinflammatory cytokines, which can lead to autoimmunity
[11]. A specific form of neutrophil cell death is called NETo-
sis, which causes the release of neutrophil extracellular traps
(NETs). NETs with potential immunogenicity cause autoim-
munity via multiple pathways [12].

SLE is primarily treated with hydroxychloroquine (HC),
corticosteroids (CSs), and immunosuppressive agents such
as mycophenolate mofetil (MMF) and cyclophosphamide
[13]. CSs are one of the most effective treatments for imme-
diate relief of inflammation. However, long-term use of CSs
may cause serious side effects. There are now data supporting
a central role for the plasmacytoid dendritic cell-derived type
I IFN pathway in SLE, and a number of antitype I IFN ther-
apeutics have undergone evaluation in clinical trials. How-
ever, as with other therapeutics, there are some patients
who do not apparently respond [14]. These reports on ther-
apy of SLE suggested that response to drugs varies according
to subtype [15], and stratified treatments guided accordingly
may provide better outcomes.

Although researchers have developed these new therapies
for SLE in the past ten years, they still lag behind other auto-
immune diseases such as rheumatoid arthritis and Crohn’s
disease [16]. Data mining based on big data will transform
our understanding of SLE and help develop new therapies.
There have been many studies [7–9]. They have used differ-
ent bioinformatics methods to mine the potential informa-
tion in big data sets. Furthermore, if these large data sets
are integrated for restudy, data can be fully utilized, thereby
improving clinical practice [17]. However, this method also
has limitations. First, the limitations of the data itself make
it difficult for us to obtain the ideal data. Second, the genera-
tion of data-driven hypotheses needs to be verified again.
Third, it is difficult to find a new perspective to explain the
data, and there are limitations in timeliness. Therefore, it will
be a challenge to select the appropriate data and combine the
methods for in-depth information mining.

In this study, we aimed to identify an SLE global signa-
ture based on transcriptome analysis of two large published
patient cohorts and develop a single-sample typing method.
We aimed to reveal the molecular mechanism of each sub-
type through building a coexpression network of biological
functions and provide a rationale for the stratified therapy
of patients and drug development.

2. Method

2.1. Patient Populations. We used two unique data sets of
pediatric and adult SLE patients traced over time. Both sets
of samples were based on platform GPL10558 (Illumina
HumanHT-12 V4.0 expression beadchip, San Diego, CA,
USA), and clinical variables and genome-wide gene expres-
sion levels were measured at different time points for every
patient. Gene expression data were downloaded from NCBI
GEO (GSE65391, GSE49454). The GSE65391 data set is
follow-up data of 158 pediatric patients, including 996 sam-
ples of which 72 are healthy samples and 924 are SLE sam-
ples. The data set includes the patient’s age, gender, race,
current treatment, time of illness, number of follow-ups,
follow-up interval, SLEDAI score, and its 24 components at
all time points. The GSE49454 data set is follow-up data of
62 adult patients, including 177 samples of which 20 are
healthy samples and 157 are SLE samples. Clinical assess-
ment, current treatment, laboratory results, and SLEDAI
score were collected at each visit. In order to study the impact
of different treatments on patients, we categorized drugs as
immunosuppressive agents, CSs, and HC. For validation,
patients were divided into discovery and test sets, using a
ratio of 2 : 1. To obtain reliable genes related to disease activ-
ity and better evaluate drug benefits, patients with missing
clinical data or who had drugs were changed during the test
or SLEDAI [18] scores that remained stable over time were
not included in the final analysis. In fact, only four patients
(SLE-105, SLE-136, SLE-326, and SLE-59) whose SLEDAI
scores remained stable over time were excluded, which would
have had minimal effects on the results. A total of 405 sam-
ples (112 patients) were selected for further analysis, each
one with a variable number of visits, continuous and categor-
ical clinical variables, and gene expression data. The two
cohorts did not have significant differences in distributions
of race, gender, or treatment. Characteristics of the cohorts
are summarized in Supplementary Table 1.

2.2. Processing of the Data. Quantile standardization is used
to integrate transcripts shared by two sets of data. Transcripts
with standard deviation below 0.1 across samples were
removed. The reserved transcripts were annotated as gene
symbols. Duplicated genes were merged assigning them their
mean expression value. 405 samples and 203 samples were
selected as the training set and the test set, respectively.

2.3. Screening of Blood SLE Signature. For each patient, we
obtained gene expression data across a number of visits, as
well as related SLEDAI scores and clinical variables measured
in each visit. The blood SLE signature in the discovery set was
determined as follows:
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(1) Screening of the SLE differential genes based on an
ANOVA model: using an ANOVA model, the differ-
ence distribution was calculated to identify differen-
tially expressed genes (DEGs) between SLE patients
and healthy controls.

(2) Further screening of the genes related to disease activ-
ity scores: based on the differential genes, we calcu-
lated the correlation between disease activity scores
and longitudinal gene expression information. Tak-
ing into account the imbalance of the data (repeated
measurements and missing records), we evaluated
the weight of each patient. The DEGs were ranked
by absolute correlation values, and the sum of all
patients was calculated to obtain a unique score value
for each DEG. We get the DEGs related to disease
activity as the SLE global signature.

(3) Validating the signature of SLE: first, we verified the
correlation values between disease activity score and
gene expression. By changing the rows and columns
of gene expression matrices 1,000 times randomly,
the correlation values were recalculated to conduct
a permutation analysis. In addition, the SLE signature
was also verified by relative literatures.

2.4. Discovery of the Single-Sample Classifier. Based on the
SLE signature, we developed a single-sample subtype classi-
fier (SSC) to predict consensus subtypes. The unsupervised
clustering approaches (NbClust [19], PAM [20], and Vegan
[21]) were used to determine the optimal number of subtypes
and assign a category label for each sample. After calculating
the gene expression pattern of the consensus class, an itera-
tive algorithm was preformed to correct subtypes until con-
vergence. Compared with the samples before correction, the
SSC and subtype expression patterns were tested. We then
calculated the SLEDAI level of each subtype before and after
correction and compared the difference between subtypes.

2.5. Functional Analysis of the Subtype. To explain the sub-
types functionally, we performed functional enrichment
analysis of Gene Ontology terms in the expression of the sig-
nature in different subtypes. We used the gene expression
deviation (GED) method [22] to measure the activity of
terms. By identifying the differential genes between subtypes
and healthy controls, we analyzed the pathway activity and
functional patterns of different subtypes. To reveal the mech-
anism of subtypes, we chose to further analyze the regulation
mechanism of subtypes in the mixed type.

2.6. Analysis of Treatment Effects. To assess whether the sub-
types benefited from different treatments, we analyzed the
changes in SLEDAI before and after each patient took differ-
ent drugs in different subtypes. Because patients are almost
always treated by combination medication, we only consider
the changes in SLEDAI between patients who take a certain
drug and those who do not take a certain drug and compare
the changes in three subtypes.

2.7. Repositioning of Targeted Drug within Subtypes. Because
subtypes show different core-driven patterns, we tried to

explore whether new targeted core drugs showed different
therapeutic effects in different subtypes. We used the public
longitudinal data from Ducreux et al. [23]. The study
included twenty-eight patients with SLE, according to the
ACR criteria for SLE. Patients were randomized to receive
three or four injections of placebo (n = 7) or 30μg (n = 3),
60μg (n = 6), 120μg (n = 6), or 240μg (n = 6) of IFN-α
Kinoid (IFN-K). Gene expression data are taken from the
GSE72754 download. We use SSC to classify patients and
compare the benefits of different subtypes to IFN-K.

3. Results

3.1. The Global SLE Signature.We used disease activity scores
and gene expression data to identify the global SLE signature.
First, we defined DEGs in the discovery set by comparing all
patient samples with healthy controls. Using an ANOVA
model, we identified 113 DEGs (FDR < 0:05). Next, we ana-
lyzed the patient cohort longitudinally and obtained the cor-
relation score between the gene and SLEDAI. To verify the
correlation score, a permutation analysis was conducted by
changing the rows and columns and testing the difference
with the original score. Figure 1(a) displays the density of dif-
ferent p values in 1000 tests. This analysis revealed that the
score between genes and disease activity is reliable (p < 0:05
). We randomly selected 113 nondifferent genes to calculate
the score and compare it with the score of DEGs for compar-
ison. In 1000 comparisons, the average score of DEGs was
always higher than that of randomly selected genes and
showed statistical significance (p = 0:008), indicating that
genes related to disease activity levels are consistent with dif-
ferential genes as a whole. Finally, we further screened genes
by correlation score and difference distribution (FDR < 0:05,
score > 0:6), and 92 genes were used as an overall SLE signa-
ture. These signature genes are not only differential genes
between health and patients but also significantly related to
the severity of patients.

Of these 92 genes, 72 (78%) have been verified as associ-
ated with SLE, mostly confirmed by multiple studies and
experimental approaches. For example, real-time expression
levels of IFIT2 are associated with SLE disease activity [24].
Genes that have not been verified in the literature are also
related to autoimmune diseases. For example, TDRD7 is
proven to be a key gene for Sjogren syndrome [25].

We perform hierarchical clustering and functional
enrichment of the discovery set samples according to the
expression values of signature genes (Figure 1(b)). Patients
and healthy controls showed significant differences. Genes
were significantly enriched in viral infections, excessive IFN
activation, bacterial and fungal infections, and immune dis-
orders (FDR < 0:01), implicating infection and IFN as pivotal
factors in the induction of autoimmunity. We also found 30
(33%) prevalent IFN signature genes, indicating that IFN
plays an important role in SLE.

3.2. Single-Sample Classifier to Predict SLE Subtypes. A single
sample model was trained to predict subtypes using all SLE
samples in the discovery set. The consensus category is deter-
mined by three algorithms based on different measures
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(Figure S1), and the model is further corrected by
determining subtype characteristics. We calculated the
expression value of the subtype signature genes and the
distance from the samples to the expression value and
reclassified the subtypes according to the distance. After
several iterations of correction, it was found that the model
converged when only a few samples were changed.

Compared with the consensus classes, the corrected result
was more discriminatory in assigning individual patients to
a definitive subtype (Figure 2(a)), and the patient’s heat
map showed clearer results. The single-sample subtype
classifier (SSC) finally selected 92 signature genes to
produce the feature values for the prediction of three
subtypes (Supplementary Table 2). The distance from the
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Figure 1: Analysis of signature in discovery set. (a) Correlation score permutation analysis. Null distribution generated by randomly
permuting the expression profile 1000 times and identifying the number of p values for differences that were also significant (p < 0:05).
The red line indicates the number of p values for significant differences in 1000 tests. (b) Heat map of signature in discovery set. 405
samples composing the SLE cohort were clustered using 92 genes. The column annotations across the top provide the distribution of the
two queues (Group, State), and rows are fixed by biologically relevant gene sets. The heat map shows that samples from one data site are
not clustered together, indicating limited batch effects.
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sample to the subtype feature value indicated the likelihood
of the sample belonging to each of the three subtypes.

To further explore the relationship between subtypes and
severity, a comprehensive comparison of SLEDAI was per-
formed on the subtypes. To increase the accuracy of the
results, we performed outlier detection on the patients’ SLE-
DAI and intercepted the data according to the density distri-
bution. Before the correction, we observed that the SLEDAI
was different among the three clusters (Kruskal–Wallis p =
0:006, Figure S2c), with cluster III being the least severe
and cluster I the most severe. However, there was no
significant difference between subtypes II and III (p = 0:061
). After correction, the difference between the severity of
subtypes was more pronounced (Kruskal–Wallis p = 0:006,
pII vs:III = 0:022; Figure 2(b)), further confirming the SSC
accuracy. The clustering of patients and healthy controls
revealed that before and after correction, subtype III tended
to cluster with healthy patients, indicating that subtype III
likely represented mild patients (Figure S2a, b).

SSC was validated using a validation set of 203 SLE
patients. We used the subtype characteristics to classify
the sample and recalculate the accuracy for the subtype

category. The results show that the characteristics of our
subtypes are accurate (FDR < 0:05). To validate the three
subtypes, we compared the SLEDAI of the samples in
the validation set and again found that the three subtypes
vary according to disease severity (Kruskal–Wallis p <
0:001; Figure 2(c)). Thus far, we identified three subtypes
of SLE related to severity and their characteristics, which
showed strong robustness.

3.3. Subtypes Express Different Functional Modes. The 36
terms enriched by SLE signature genes could be summarized
into four main functional modules: virus infection, bacterial
infection, fungal infection, and immune disorder. At the
same time, due to the important role of interferon in SLE,
we listed IFN separately as a functional module and analyzed
it simultaneously [26]. We compared different subtypes
within the same module and found that in all modules, sub-
type I was the most severe, consistent with our previous con-
clusions. Interestingly, subtype II was more dysregulated in
the virus-related modules than type III, and subtype III was
more dysregulated in the bacteria-related modules
(Figure S3). Combined with our previous conclusion that
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Figure 2: Molecular subtypes in SLE samples in the discovery set. (a) The model was trained to predict three classes. NbClust, PAM
(partitioning around medoids), and Vegan reveal that the optimal number of subtypes is three. Calling these three algorithms to classify
patient samples, the results showed strong consistency. After further correction based on the consensus category, we got a more accurate
result. (b) SLEDAI in the subtypes after correction. There are differences in the mean values of the three subtypes of SLEDAI, and the
differences of overall and between subtypes are significant, reflecting the accurate allocation of samples after correction. (c) SLEDAI in the
subtypes in the validation set.
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subtype II was more serious than subtype III, we speculated
that viral infections were more serious in SLE patients.

Next, we compared the different functional modes of the
subtypes (Figure 3). To further verify our hypothesis, we rede-
termined the DEGs between subtypes and healthy controls
and performed a functional analysis of each subtype. We
found that subtype I was dysregulated in IFN and viral, bacte-
rial, and fungal infections. Considering our previous conclu-

sion that subtype I had the most serious dysregulation, we
thought that subtype I was a mixed type of patient, affected
by viral, bacterial, and fungal infections. We named this type
“mixed.” Subtype II was only enriched in the viral infection
and IFN dysregulation modules and showed a virus
infection-related pattern with IFN as the core, which we
named “IFN-high.” Subtype III was enriched in bacterial and
fungal infection modules. It showed a bacterial and fungal
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Figure 3: (a) Analysis of subtypes in functional modules. The function of disorders was divided into five modules: viral infection, bacterial
infection, fungal infection, IFN disorder, and immune disorder. Each group of entries in the module represents BPs (biological processes),
the height of the bars represents the degree of dysfunction, and the higher it is, the more serious the dysfunction. (b) Analysis of
functional modules in subtypes. The middle circle represents the proportion of dysregulated functions in subtype, outer bars represent
dysregulated functions, and the height of the bars represents the degree of dysregulation.
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infection-related pattern with NE as the core, which we named
“NE-high.” In addition, it was observed that NE in NE-high
was significantly higher (Wilcox test, p < 0:001) in both the
child and adult groups, which supported our conclusion.

In functional modules gathered by the SLE signature, we
found that the virus infection occupied a more important
position, and in the separate analysis of subtypes, we again
found that virus infection was more important. IFN-high
was more severe compared to NE-high, which further sup-
ported the hypothesis that viral infections were more serious.
In conclusion, we proposed that SLE subtypes were divided
into three types: mixed, IFN-high, and NE-high, which were
expressed in two patterns—one is a virus infection-related
pattern with IFN as the core and the other is a bacterial and
fungal infection-related pattern with NE as the core. Bacterial
and fungal infections exhibited related patterns, and viral
infections played a more important role in SLE [27].

3.4. Mechanisms of Immune Dysfunction and Their
Connection. To further reveal themechanisms of immune dys-
function, we constructed a BP-based coexpression network for
the mixed type. The network was constructed based on the
similarity of the functional terms, which was calculated based
on the activity of the functional items in different patients
(see the supplementary file). We also plotted a correlation coef-
ficient graph (Figure S4). The coexpression network revealed
two modules whose internal nodes were tightly connected to
each other (Figure 4(a)), revealing that there are two different
pathogenic mechanisms associated with the mixed type. After
consulting the related literature, we determined that the items
inside the modules showed functional connections. The two
modules in the network were composed of IFN-related terms
and NE-related terms, respectively, which represented two
mechanisms in the mixed type, and were consistent with our
expected results. Combined with the related literature and
our research on subtype-specific functional modules, we have
further connected these two mechanisms.

Through analysis of the community and consideration of
the comprehensive background, we inferred two types of
pathogenesis of SLE in the mixed type (Figure 4(b)). First,
pathogen-associated molecular patterns (PAMPs) of the
virus are recognized by the Toll-like receptors (TLRs) on
the cell surface or in the endosome and the retinoic acid-
inducible gene 1- (RIG-I-) like receptors (RLRs) in the cyto-
plasm, stimulating IFN production. Excessive accumulation
of IFN leads to the transformation of almost all components
of the immune system to pathological functions of tissue
damage and disease development [28–30]. ISG15 is induced
by type I interferon and acts as a bridge between it and type
II and III interferon [31]. Both type I and type II interferons
stimulate myeloid DCs (mDCs) to activate T and B cells, pro-
ducing a variety of proinflammatory cytokines and autoanti-
bodies. The increased production of IFN-α and IFN-γ by
monocytes may trigger an inflammatory response, as well
as the increased production of IL-10, leading to the secretion
of autoantibodies by B cells in human SLE [32, 33]. Although
type III interferon is functionally an interferon, its structure
is similar to members of the IL-10 family and plays a protec-
tive role in viral infections [34].

In the second type of pathogenesis, bacteria and fungi are
recognized by TLRs and promote the expression of the proin-
flammatory cytokine IL-8 [35]. The antimicrobial peptide
(AMP) interacts with the lipopolysaccharide (LPS) to destroy
the membrane structure and acts as an immune effect factor
to initiate and regulate the autonomous immune system [36].
IL-8, AMP, and LPS, along with Gram-positive and Gram-
negative bacteria and fungi, stimulate neutrophils to form extra-
cellular structures called NETs to kill bacteria and fungi [37, 38].
NETs expose autoantigens, such as nucleic acids and proteins,
in an inflammatory milieu that can stimulate an autoimmune
response in a susceptible individual [39]. In addition, SLE NETs
can activate pDC to produce high levels of IFN-α [40]. Similarly,
IFNs act as priming factors on mature neutrophils, allowing the
formation of extracellular traps upon subsequent stimulation
with other factors [41]. We have verified two SLE model mech-
anisms within the IFN-high and NE-high groups.

3.5. Research on Age, Gender, and Race within Subtypes. To
study the differences between child and adult patients, we
grouped the samples according to age. We found that child
patients were more inclined to be IFN-high and adult
patients were more inclined to be mixed (Fisher’s exact test,
p = 0:028). Compared to adults, child exposure to viruses
was significantly higher than adult exposure. This might be
because the peripheral blood mononuclear cells (PBMC)
from pediatric SLE patients are more sensitive to stimulation
by transfection with viral RNA from the influenza virus [42].
This indicates that viral infection might play a more impor-
tant role in the pathogenesis of SLE in children.

To study differences associated with gender, we grouped
patients according to gender. We found that female patients
were more inclined to be IFN-high and male patients were
more inclined to be mixed (Fisher’s exact test, p = 0:034).
There was almost no deviation between the viral and bacterial
types among men, but women were more likely to be affected
by viruses. This might be due to the influence of estrogen on
SLE disease activity. For a long time, it was believed that estro-
gen played a vital role in the occurrence and development of
SLE [43], and women of childbearing age were more likely
to develop SLE. Relevant studies have proven that overactiva-
tion of estrogen receptor-α (ERα) exacerbates lupus disease
[44]. Further studies have determined that under the stimula-
tion of TLR7 or TLR9, estrogen/ERα can promote pDC to
secrete IFN-α [45]. This could explain why female patients
are more inclined to be IFN-high and show more severe
responses. Some studies also have reported that estrogen
reduces the concentration of IL-8 in females [37], whichmight
reduce the risk of the NE model of illness.

We divided the patients into black and white groups to
assess racial differences. We found that white patients were
more inclined to be mixed, and black patients were more
inclined to be IFN-high (Fisher’s exact test, p = 0:021). White
patients showed almost no deviations between viruses and
bacteria, while black patients were more likely to be affected
by viruses and their disease was more severe. The influence
of race on the clinical severity of SLE has been clearly
described, with black patients usually having more severe dis-
ease manifestations than white patients [46].
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3.6. Drug Treatment within Subtypes. Our study found that
HC had the greatest effect on decreasing SLEDAI in the
IFN-high subtype, followed by CSs and immunosuppressive
agents. In the NE-high subtype, CSs had the greatest effect,
followed by HC and immunosuppressive agents. In the
mixed type, CSs had the greatest effect, followed by HC and
immunosuppressive agents. Immunosuppressant agents
exhibited a specific effect, which was consistent with previous
studies [47]. However, it appeared that the effects of CSs were
more distinct for some time periods. We found that molecu-
lar subtyping might have an impact on the benefit experi-
enced from drug treatment. For example, HC has shown
better effects in IFN-related subtypes, which has a specific
promotion effect on the benefits of drug treatment, and its
mechanism is worth further research. The latest research
shows that CSs and HC might treat SLE through blockade
of IFN [7, 48], which is consistent with our research. Subtype
analysis revealed the benefits of different drugs and should be
integrated into clinical studies as soon as possible.

We found that CSs continued to be the first line of treat-
ment option for SLE. Due to their extensive anti-
inflammatory and immunosuppressive effects, CSs play an
irreplaceable role in SLE treatment. However, the required
dose is high enough to have adverse effects, indicating that
it is necessary to develop new drugs for the treatment of SLE.

3.7. Repositioning of IFN-K within Subtypes. To identify the
therapeutic response of IFN-K to the three subtypes, we per-
formed subtype relocation of IFN-K. IFN-K is a therapeutic
vaccine that induces a polyclonal antibody (Ab) response
that neutralizes all 13 human IFN-α subtypes. In patients
who are IFN-signature positive, IFN-K significantly
decreases the IFN gene signature. However, IFN-K failed to
reach the primary clinical endpoint and did not show benefi-
cial effect for some patients [23]. To relocate IFN-K within
subtypes, we downloaded the data of GSE72754, which
included the blood transcriptome data of 28 SLE patients.
Extended follow-up data were collected in six of the 21
IFN-K-treated patients. We used 36 samples of these six
patients for longitudinal analysis. After the cross-platform
conversion of the sample expression data, SSC was used to
classify the samples, and the degree of change in SLEDAI
per unit time was calculated for the different subtypes.
Among the 36 samples of 6 patients, 15 were of mixed type,
8 were of IFN-high type, and 13 were of NE-high type. The
results showed that IFN-high received the greatest therapeu-
tic effect (-0.333/month), followed by mixed (-0.120/month),
while NE-high showed almost no therapeutic effect
(-0.038/month). This was consistent with our expected con-
clusions and indicated that the repositioning of IFN-K within
subtypes might have clinical benefits for patients.

4. Discussion

SLE is a highly heterogeneous autoimmune disease charac-
terized by diverse clinical manifestations and varying degrees
of severity. In this study, we developed an SSC based on a
large integrated patient cohort and identified three subtypes
of SLE that vary according to the severity of the disease.

The molecular features of the subtypes reflected different
functional mechanisms affecting patients. As the most seri-
ous subtype, the “mixed” was associated with two functional
mechanisms which showed an inherent connection. IFN-
high was a subtype with IFN as the core, characterized by a
positive immune response caused by overexpression of IFN.
The mildest subtype, NE-high was characterized by the gen-
eration of NETs induced by NE, leading to autoimmune
responses due to autoantigen exposure. Another important
finding of our analysis was that subtypes benefited from dif-
ferent drugs, which represents a major advancement in
understanding the underlying molecular mechanisms and
their potential clinical ramifications.

The latest molecular characterization of SLE, including
the subtype description based on gene expression, provides
a framework for further research of this common autoim-
mune disease. It also provides potential biological insights
for the different clinical phenotypes [49, 50]. For example,
in the original study of the pediatric patient data set, the
researchers also identified IFN as an important marker of
SLE and divided patients into seven subgroups. However, in
that study, more attention was given to the identification of
subgroup markers. We speculated on the different pathogen-
esis of each subtype and attempted to explain the subtype
functionally. In the original study of the adult patient data
set, the researchers reported complex IFN markers for SLE,
which were not limited to the previous IFN-α markers but
also involved IFN-β and IFN-γ, which was consistent with
our findings. However, their study was more focused on
patients with IFN abnormalities. In our study, we also paid
attention to patients who did not show abnormal IFN and
attributed them to “NE-high”.

As a key factor related to autoimmune responses (espe-
cially SLE), infection has been implicated numerous times
as the primary trigger of these two mechanisms [51]. Viruses
stimulate T cells to produce more IFN by binding to recep-
tors. IFNs are key proinflammatory cytokines thought to be
involved in the pathogenesis of SLE. Bacteria and fungi bind
to TLRs on T and B cells and activate immune cells to pro-
duce the proinflammatory cytokine IL-8, which leads to
autoimmunity by inducing NETs. Moreover, there is a close
connection between IFN and NETs. Compared with bacterial
and fungal infections, viral infections with IFN at the core
exhibit a more important role in the occurrence and develop-
ment of SLE.

In this study, we required that the data set used should
have a larger sample size and detailed clinical follow-up data
(including gender, age, race, SLEDAI, and blood transcrip-
tional profiles). Finally, we selected two large patient cohorts
based on the same platform, one of which was an adult
patient data set and the other a child patient data set. We
comprehensively analyzed the effects of age, gender, and race
on patients and found that there are significant differences in
the distribution of subtypes among people of different gen-
der, age, and race. When considering age, children showed
increased susceptibility to viral infections and had more
severe disease than adult patients. Compared to males,
female SLE patients are more inclined to belong to the IFN-
high subtype of SLE. Interestingly, studies have found that
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under the stimulation of TLR7 or TLR9, estrogen/ERα can
promote pDC to secrete IFN-α, which was associated with
increased severity. As for race, black patients showed higher
levels of IFN.

An important finding of our research was that distinct
subtypes benefited from different drugs. CSs had the greatest
effect on decreasing SLEDAI in the NE-high and mixed sub-
types. IFN-high patients benefited from all drugs irrespective
of treatment strategies, while HC showed the best effect.
Immunosuppressant agents exhibited specific effects, which
is consistent with previous studies. However, it appeared that
the effect of CSs was more pronounced for some time
periods. Thus, for patients’ medication, physicians should
include subtyping within the treatment selection as soon as
possible.

Presently, novel targeted drugs have attracted widespread
attention, but because some patients do not benefit from new
therapies, many drugs’ clinical development has been termi-
nated [52]. Although IFN-K is a therapeutic vaccine that
modulates the type I IFN pathway and has shown therapeutic
effects in SLE patients, it has not reached the main clinical
endpoint. In this study, we tried to reposition IFN-K within
subtypes and revealed that the drug has the most therapeutic
effect in IFN-high patients but almost no therapeutic effect in
NE-high patients. This provides an important development
for drug therapy: new targeted drugs should be rationally
repositioned into stratified treatments. This may rejuvenate
the use of existing targeted drugs and result in increased
patient benefit.

This study exhibited some limitations. First, to study
genes related to disease severity, we excluded patients whose
SLEDAI scores remained stable over time. However, only
four such patients were excluded, which would have had
minimal impact on the results. Second, due to limitations of
the data and since most patients in our study experienced
combined treatment, the evaluation of drug treatment might
have been affected to a certain extent. Also, when analyzing
the therapeutic effect of IFN-K on each subtype, we could
not accurately exclude the influence of dose and other con-
founding factors on the results due to data limitations. Subse-
quent assessments will further test our findings, improve our
methods, and integrate multiple omics data to establish a
more complete model mechanism that can be accurately
applied in clinical trials.

In summary, we have defined three different clinical sub-
types of SLE, which have different functional features. For the
first time, we have fully revealed the functional mechanisms
of SLE subtypes and determined their potential interaction-
mediated roles. In addition, we have demonstrated that
patients with distinct SLE subtypes benefit from different
drugs, which will guide the choice of therapeutic drugs more
rationally, accelerate the development of new drugs for par-
ticular subtypes, and reposition targeted drugs within
subtypes.
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