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Abstract 

Background:  Accumulating studies indicates that microRNAs (miRNAs) play vital roles in the process of develop‑
ment and progression of many human complex diseases. However, traditional biochemical experimental methods for 
identifying disease-related miRNAs cost large amount of time, manpower, material and financial resources.

Methods:  In this study, we developed a framework named hybrid collaborative filtering for miRNA-disease associa‑
tion prediction (HCFMDA) by integrating heterogeneous data, e.g., miRNA functional similarity, disease semantic simi‑
larity, known miRNA-disease association networks, and Gaussian kernel similarity of miRNAs and diseases. To capture 
the intrinsic interaction patterns embedded in the sparse association matrix, we prioritized the predictive score by 
fusing three types of information: similar disease associations, similar miRNA associations, and similar disease-miRNA 
associations. Meanwhile, singular value decomposition was adopted to reduce the impact of noise and accelerate 
predictive speed.

Results:  We then validated HCFMDA with leave-one-out cross-validation (LOOCV) and two types of case stud‑
ies. In the LOOCV, we achieved 0.8379 of AUC (area under the curve). To evaluate the performance of HCFMDA on 
real diseases, we further implemented the first type of case validation over three important human diseases: Colon 
Neoplasms, Esophageal Neoplasms and Prostate Neoplasms. As a result, 44, 46 and 44 out of the top 50 predicted 
disease-related miRNAs were confirmed by experimental evidence. Moreover, the second type of case validation on 
Breast Neoplasms indicates that HCFMDA could also be applied to predict potential miRNAs towards those diseases 
without any known associated miRNA.

Conclusions:  The satisfactory prediction performance demonstrates that our model could serve as a reliable tool to 
guide the following research for identifying candidate miRNAs associated with human diseases.
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Introduction
MicroRNAs (miRNAs) are endogenous small noncod-
ing RNAs (19–22 nucleotides) that could regulate gene 
expression by base-pairing to partially complementary 
mRNAs [1]. Since the first miRNA, lin-4, was discov-
ered by Lee et al. in 1993 [2], more than 38,000 miRNA 
sequences from 271 organisms have been accumulated to 
date [3]. Plenty of evidence indicates that miRNAs play 
critical roles in many fundamental and important biolog-
ical processes, such as immune response, transcription, 
proliferation and differentiation [4]. The mutation and 
dysregulated expression of miRNAs may be connected 
with the development and progression of many diseases 
[5, 6]. For instance, miR-155 downregulated target gene 
TP53INP1 whose expression was strongly reduced in 
pancreatic ductal adenocarcinoma development [7]. 
Besides, induction of endogenous miR‐340 expression 
was capable to suppress tumor cell migration and inva-
sion, whereas miR‐340 knockdown led to breast cancer 
cell migration and invasion [8]. Moreover, three most up-
regulated miRNAs (miR-221, 222, and 146) distinguished 
unequivocally between papillary thyroid carcinoma and 
normal thyroid [9]. Therefore, exploring the relationships 
between miRNAs and diseases could not only provide 
novel insights into disease pathogenesis at the molecu-
lar level, but also benefit the design of specific molecular 
tools for disease diagnosis, treatment and prevention [10, 
11].

However, traditional in  vivo or biochemical experi-
ment for identifying disease-related miRNA candi-
dates have multiple bottlenecks, such as long operation 
time, extremely high cost and false positive results [12, 
13]. Consequently, quickly and automatically identify-
ing these associations with in silico methods is a useful 
supplement for future experimental validation and could 
substantially reduce the cost and effort [14–16]. Actu-
ally, based on the generally accepted assumption that 
functionally similar miRNAs are likely to be associated 
with phenotypically similar diseases and vice versa, a 
large number of computational models have been pro-
posed for identifying potential disease-related miRNAs 
in recent years. For example, Jiang et al. [17] explored a 
network-based computational model through hypergeo-
metric distribution to prioritize disease-related miRNAs. 
Shi et  al. [18] focused on the functional connections 
between miRNA targets and disease genes in protein–
protein interaction (PPI) networks and presented a novel 

method to identify disease-related miRNAs. Xu et al. [19] 
introduced an approach based on MTDN for prioritizing 
putative miRNAs associated with diseases by combin-
ing paired miRNA and mRNA expression data. In addi-
tion, Chen et  al. [20] constructed HGIMDA framework 
to identify potential disease-related miRNAs by combing 
multiple source information, e.g., experimentally vali-
dated miRNA-disease relationship, disease semantic sim-
ilarity, miRNA functional similarity, Gaussian interaction 
profile kernel similarity. Based on the same multiple 
source data, Chen et  al. [21] also presented PRMDA to 
infer potential disease-related miRNAs by personalized 
recommendation-based algorithm. Although HGIMDA 
and PRMDA could be applied to those diseases without 
experimentally validated miRNA, the predictive accu-
racy needs to be further enhanced. In addition, Marissa 
et al. [22] presented an in-silico method named MAP for 
predicting putative miRNA-disease associations through 
network diffusion on multi-omics biological data includ-
ing miRNA-gene associations, protein–protein interac-
tions, and gene-disease associations, and so on. Yu et al. 
[23] proposed TCRWMDA for miRNA-disease associa-
tion prediction through three-layer heterogeneous net-
work combined with unbalanced random walk. The case 
study results indicate that TCRWMDA is an effective 
tool to predict the potential miRNA-disease associations. 
Li et  al. [24]. developed a novel method named NIM-
CGCN which employs graph convolutional networks to 
extract feature representations and a neural inductive 
matrix completion model to generate association matrix 
completion. Experimental results indicate this method 
could be used for predicting those diseases without any 
known related miRNAs.

Collaborative filtering aims at predicting the user 
interest for a given item based on a collection of user 
profiles and there are already some basic applications 
in miRNA-disease associations (MDAs) prediction 
[25–27]. However, these approaches generally fail to 
achieve satisfactory results. In this work, we developed 
a computational approach named hybrid collaborative 
filtering for predicting miRNA-disease associations 
(HCFMDA) to infer putative associations between 
diseases and miRNAs. By fusing experimentally veri-
fied MDAs, disease similarity, and miRNA functional 
similarity to mine intrinsic discriminative information 
embedded in the correlations between diseases and 
miRNAs, HCFMDA could be applied for identifying 
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potential miRNAs for those diseases without any 
known related miRNA. In the leave-one-out cross-
validation (LOOCV), HCFMDA achieved AUC (area 
under the curve) value of 0.8379 and demonstrated reli-
able predictive performance. In addition, we also used 
HCFMDA to carry out two types of case validation on 
four important human complex diseases (Colon Neo-
plasms, Esophageal Neoplasms, Prostate Neoplasms 
and Breast Neoplasms). As a result, 88%, 92%, 88% and 
92% out of the top 50 putative miRNAs for those 4 dis-
eases were confirmed by experiment evidence. All the 
results indicate HCFMDA is effective and reliable for 
the prediction of MDAs.

Materials and methods
Human miRNA‑disease associations
The experimentally verified human miRNA-disease 
associations for HCFMDA were retrieved from HMDD 
v2.0 database [28]. After the data preprocessing and 
verification, we obtained altogether 5430 experimen-
tally validated associations between 383 diseases and 
495 miRNAs. Then, we constructed an adjacency matrix 
X ∈ RNd×Nm to represent the corresponding associations, 
where Nd and Nm are the number of the diseases and 

miRNAs, respectively. Here, element Xij in the matrix is 
1 or 0, with 1 representing a known association between 
disease di and miRNA mj , and 0 denoting an unknown 
one. Correspondingly, the matrix X could be decom-
posed into row vectors:

where T  denotes transpose operation and row vec-
tor ri represents the interaction profile of disease di . As 
described below, this representation was mainly used for 
disease-based collaborative filtering. Alternatively, the 
matrix X could also be decomposed into column vectors:

where column vector cj corresponds to miRNA mj . 
Likewise, this representation could be used for miRNA-
based collaborative filtering.

(1)
X =

[

r1, . . . , rNd

]T
, ri =

[

ri,1, . . . , ri,Nm

]

, i = 1, . . . ,Nd

(2)
X =

[

c1, . . . , cNm

]

, cj =
[

cj,1, . . . , cj,Nd

]T
, j = 1, . . . ,Nm

MiRNA functional similarity
Based on the hypothesis that miRNAs with similar func-
tions tend to be related to similar disease phenotypes, 
Wang et  al. pioneered the human miRNA functional 
similarity which is available at http://​www.​cuilab.​cn/​files/​
images/​cuilab/​misim.​zip [29]. We herein constructed 
matrix FM to express their functional similarity scores, 
where the entity FMij denotes the similarity of miRNA 
pair 

〈

mi,mj

〉

.

Disease semantic similarity
According to previous study [30], we introduced directed 
acyclic graph (DAG) to express disease based on the 
Medical Subject Headings (MeSH) descriptors of cat-
egory C from http://​www.​nlm.​nih.​gov/. Disease di could 
be denoted as DAG(di) = (V (di),E(di)) , where V (di) is 
a set consisting all ancestral nodes of di and di itself and 
E(di) represents all directed edges from parent nodes to 
their respective children. The semantic value of disease di 
is defined by

where Ddi

(

dj
)

 , as the semantic contribution value of 
disease dj to di , could be calculated as

where ρ is a contribution factor. The semantic contri-
bution value of disease dj to di is inversely proportional to 
the distance between them in the DAG.

Based on the idea that two diseases will be more simi-
lar if their DAGs overlaps more nodes, we constructed 
semantic similarly matrix SD for those diseases. Each ele-
ment of SD denotes the semantic similarly of disease pair 
〈

dk , dl
〉

 , which could be calculated as following:

Gaussian kernel similarity for diseases and miRNAs
Gaussian kernel similarity comes from the topologi-
cal distribution of the experimentally verified MDAs. 
Herein, we introduced binary vector BV (di) as the inter-
action profile for disease di , which is the ith row of the 
adjacent matrix X . Hence, Gaussian kernel similarity of 
disease pair < di, dj > could be expressed by

(3)DSV(di) =
∑

dj∈V (di)

Ddi

(

dj
)

(4)Ddi

(

dj
)

=

{

1, if dj = di

max
{

ρ ∗ Ddi

(

d
′

j

)

|d
′

j ∈ children of dj

}

, otherwise

(5)SD(dk , dl) =

∑

t∈V (dk )∩V (dl)

(

Ddk (t)+ Ddl (t)
)

DSV(dk)+ DSV(dl)

http://www.cuilab.cn/files/images/cuilab/misim.zip
http://www.cuilab.cn/files/images/cuilab/misim.zip
http://www.nlm.nih.gov/
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where δd is a parameter for adjusting kernel bandwidth, 
which could be generated through averaging the interac-
tion profiles of all diseases.

In the same manner, Gaussian kernel similarity between 
miRNA pair 

〈

mi,mj

〉

 could be defined as follows:

where BV (mi) is the interaction profile for miRNA mi 
and δm is used to control kernel bandwidth.

Integrated similarities for miRNAs and diseases
Following the previous steps, the miRNA functional sim-
ilarity, disease semantic similarity and Gaussian kernel 
similarity were generated separately. To cope with data 
sparsity and effectively utilize all kinds of similarities and 
correlations, we further constructed an integrated simi-
larity matrix ID for diseases and IM for miRNAs respec-
tively, which could be expressed as follows:

To ensure the equal importance, each similarity value 
should be normalized to the same interval before inte-
gration. The specific approach is to subtract the mean 
value and divide it by the standard deviation of the cor-
responding matrix.

HCFMDA
In this work, by integrating heterogeneous data includ-
ing the miRNA functional similarity, disease seman-
tic similarity, known MDA networks, Gaussian kernel 
similarity of miRNAs and diseases, we proposed a pipe-
line named improved hybrid collaborative filtering 
to predict miRNA-disease associations (HCFMDA). 
Figure  1 illustrates the flowchart of the entire pro-
cess of HCFMDA. In order to fully exploit highly 

(6)GD
(

di, dj
)

= exp
(

−δdBV (di)− BV
(

dj
))

(7)δd =
δ
′

d

1
Nd

∑Nd
i=1 BV (di)

(8)GM
(

mi,mj

)

= exp
(

−δmBV (mi)− BV
(

mj

))

(9)δm =
δ
′

m

1
Nm

∑Nm
i=1 BV (mi)

(10)ID
(

di, dj
)

=

{

SD
(

di, dj
)

, if SSD
(

di, dj
)

> 0

GD
(

di, dj
)

, otherwise

(11)

IM
(

mi,mj

)

=

{

FM
(

mi,mj

)

, if FSM
(

mi,mj

)

> 0

GM
(

mi,mj

)

, otherwise

discriminative feature information embedded in the 
sparse MDAs, we incorporated and fused three differ-
ent association sources: different diseases associated 
with the same miRNA, different miRNAs associated 
with the same disease, and ‘not-so-similar’ diseases or 
miRNAs, which could make the model more robust to 
data sparsity.

Disease-based collaborative filtering predicted the 
score x̂i,j of a test miRNA mj for a disease di based on 
top-N  most similar diseases towards di . Consequently, 
the corresponding recommended score x̂i,j could be 
represented by

where Td(di) and sd(di, du) represent a set of top-N  
most similar diseases towards disease di and the inte-
grated similarity value of disease pair 

〈

di, du
〉

 , respec-
tively. It could be seen from Fig. 2a that this method only 
exploits the known associations between the test miRNA 
and similar diseases of di , which accounts for only a small 
part in the matrix. We denoted this predictive source as 
the set of similar disease associations (SDA):

Similarly, the predictive score x̂i,j of test pair 
〈

di,mj

〉

 of 
miRNA-based collaborative filtering could also be cal-
culated by averaging the associations of similar miRNAs 
related to the same disease di.

where Tm

(

mj

)

 and sm
(

mj ,mv

)

 denote a set of top-N  
most similar miRNAs towards miRNA mj and the inte-
grated similarity between miRNA mj and mv , respec-
tively. As illustrated in Fig. 2b, Eq. (15) only exploits the 
known similar miRNAs associated with the test disease 
for prediction. We refer to these predictive sources as the 
set of similar miRNA associations (SMA):

In practice, solely relying on such SDA or SMA is 
undesirable, particularly when the association adjacent 
matrix X is very sparse. The predictive accuracy could 
be improved by incorporating more associations from 
those ‘not-so-similar’ diseases or miRNAs. As illustrated 
in Fig.  2c, those associations from ‘not-so-similar’ dis-
eases or miRNAs could provide additional information 
to improve the prediction. In this work, we refer to this 

(12)x̂i,j =
1

N

∑

du∈Td(di)

sd(di, du)Xu,j , |Td(di))| = N

(13)SDAi,j =
{

Xu,j|du ∈ Td(di)
}

(14)

x̂i,j =
1

N

∑

mv∈Tm(mj)

sm
(

mj ,mv

)

Xi,v , |Tm

(

mj

)

)| = N

(15)SMAi,j =
{

Xi,v|mv ∈ Tm

(

mj

)}
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predictive source as similar disease-miRNA associations 
(SDMA):

where Td,m

(

Xi,j

)

 denotes a set of top-K  most simi-
lar miRNA-disease pairs. Here, we constructed 
sd,m

(

Xi,j ,Xu,v

)

 as the similarity between entity Xi,j and 
Xu,v.

(16)
SDMAi,j =

{

Xu,v|du ∈ Td(di),mv ∈ Tm

(

mj

)

,u �= i, v �= j
}

(17)

x̂i,j =
1

K

∑

Xu,v∈Td,m(Xi,j)

sd,m
(

Xi,j ,Xu,v

)

Xu,v , |Td,m

(

Xi,j

)

)| = K

Each element of the matrix X was employed as a sep-
arate predictor, whose confidence could be calculated 
according to its similarity towards the test association. 
We then predicted the expected value of the test associ-
ation by averaging the individual predictions weighted 
by their confidence.

Finally, we calculated the expected value of the 
unknown test association Xi,j by the following equation:

(18)

sd,m
(

Xi,j ,Xu,v

)

=
1

√

(1/sd(di, du))
2 +

(

1/sm
(

mj ,mv

))2

Fig. 1  Flowchart of miRNA-disease association prediction based on HCFMDA. (1) Construct integrated similarities by incorporating the miRNA 
functional similarity, disease semantic similarity, Gaussian kernel similarity and experimentally verified MDA; (2) Calculate and fuse three different 
association sources: similar disease associations (SDA), similar miRNA associations (SMA), and similar disease-miRNA associations (SDMA); (3) Apply 
the proposed model to calculate the recommend score for test associations. Then, the predicted disease-related miRNAs could be further analyzed 
and experimentally validated
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where P(Xi,j|SDA, SMA, SDMA) denotes the estimat-
ing conditional probability depending on the predictors 
coming from the pool of SDA , SMA and SDMA . Likewise, 
P(Xi,j|SDA) , P(Xi,j|SMA) , P(Xi,j|SDMA) represent the 
pool of SDA , SMA and SDMA predictors, respectively. 
α and β were used to control the selection (sampling) 
of data from those three different sources. If β is equal 
1, HCFMDA only uses SDMA recommend score to pre-
dict potential miRNAs for given diseases. In addition, to 
remove noise and accelerate the operation speed, singu-
lar value decomposition (SVD) technique was applied in 
HCFMDA.

Performance evaluation
In practice, there are only 5430 experimentally 
verified MDAs (i.e., known associations) from 
HMDD V2.0 [28] and therefore most elements 
( 383∗495− 5430 = 184155 ) in adjacent matrix X are 
zeros, which indicates that X is very sparse and so it 
is not feasible to adopt multi-fold cross-validation to 
test the performance of our method. As demonstrated 
in a series of studies [31–37], leave-one-out cross-val-
idation (LOOCV) is more rigorous and objective than 
independent dataset test and K-fold cross-validation. 
Therefore, we implemented LOOCV to validate the 
performance of HCFMDA. In the LOOCV, for a des-
ignated disease di , each known di-related associa-
tion was left out in turn as a test sample and all other 

(19)

x̂i,j =
∑

P(Xi,j|SDA, SMA, SDMA)

=
∑

P
(

Xi,j|SDA
)

α(1− β)

+
∑

P
(

Xi,j|SMA
)

(1− α)(1− β)

+
∑

P
(

Xi,j|SDMA
)

β

known associations (in total 5429) were used to train 
the model. Therefore, other miRNAs irrelevant to the 
disease di along with the test miRNA were treated as 
candidate miRNAs. Then, we sorted all candidate miR-
NAs by the predictive scores derived from our model 
in descending order. If the rank of the test association 
exceeded a given threshold, we could view it as a suc-
cessful identification. Receiver-operating characteris-
tics (ROC) curve is a fundamental evaluation tool to 
illustrate diagnostic ability of a binary classifier. The 
ROC curve is generated by plotting true positive rate 
(TPR) against false positive rate (FPR) at different cut-
off points. The corresponding formulas are as follows:

where TP , FN  , FP and TN  represents true positive, false 
negative, false positive and true negative, respectively. 
More specifically, TP represents the number of known 
MDAs (positive samples) predicted correctly, and FN  is 
the number of positive samples that are falsely predicted 
to unknown MDAs (negative samples). Similarly, FP 
denotes the number of negative samples incorrectly pre-
dicted to positive samples while TN  stands for the num-
ber of negative samples predicted correctly.

In addition, we calculated AUC to evaluate the predic-
tive performance of HCFMDA. The AUC is equivalent to 
the probability that a classifier will rank a randomly cho-
sen positive sample higher than a randomly chosen nega-
tive one. Specifically, AUC = 1 represents a perfect test, 
while AUC = 0.5 means a worthless test.

(20)TPR =
TP

TP + FN

(21)FPR =
FP

FP + TN

Fig. 2  Three different prediction methods based on SDA, SMA and SDMA



Page 7 of 13Nie et al. BMC Med Inform Decis Mak          (2021) 21:254 	

Results
Experimental results performed by HCFMDA
To verify the performance of HCFMDA to identify dis-
ease-related miRNAs, LOOCV was employed as testing 
strategy based on HMDD V2.0 dataset. For parameters 
α and β , we adopted grid search strategy to search their 
optimal values ( α = 0.3, β = 0.1 ). Figure 3 illustrates the 
AUC values performed by HCFMDA on HMDD 2.0 by 

varying α from 0.1 to 1.0 with the step of 0.2, where β is 
set to 0.1. It indicates that the fusion of multi-similarity 
measurement could enhance the prediction performance 
of HCFMDA model.

Then, we compared HCFMDA with other five state-
of-the-art computational approaches: HGIMDA [20], 
WBSMDA [38], EGBMMDA [39], PRMDA [21] and 
DRMDA [40]. Figure  4 illustrates the AUC values com-
parison of those prediction models in the same frame-
work of LOOCV. Our model achieved AUC of 0.8379, 
while the AUC values from HGIMDA, WBSMDA, 
EGBMMDA, PRMDA and DRMDA were 0.8077, 
0.8031, 0.8221, 0.8315 and 0.8339, respectively. Because 
HCFMDA could capture high discriminative informa-
tion embedded in the correlations between miRNAs and 
diseases, it achieved the superior predictive performance 
compared with the other five methods. Besides, the 
ROC curve of HCFMDA is smoother than those of other 
methods, which reflects HCFMDA is more robust and 
accurate. In addition, the time complexity of our model 
is obvious lower than the other methods. We attribute it 
to the introduction of SVD matrix decomposition that 
could reduce the impact of noise and improve the predic-
tive speed. In conclusion, HCFMDA demonstrates reli-
able performance for predicting MDAs.

Case validation 1: for diseases with known associated 
miRNAs
Apart from the validation of LOOCV, we also carried 
out case studies for several important human diseases 
to further verify the performance of HCFMDA. Predic-
tive results of HCFMDA were confirmed by matching 
experimentally verified MDAs (i.e., known associations) 
from two other independent databases: miR2Disease [41] 
and dbDEMC [42]. Herein, we adopted two types of case 
validations. At first, we applied HCFMDA over three dif-
ferent diseases, i.e. Colon Neoplasms (CN), Esophageal 
Neoplasms (EN), and Prostate Neoplasms (PN). For a 
given disease, each time a known association in HMDD 
v2.0 was left out as a test sample and all unknown asso-
ciations were taken as the candidate miRNAs, while all 
other known associations were used for training samples. 
In the second type of case validation for Breast Neo-
plasms (BN), we removed all known associations related 
to BN in HMDD v2.0 and then employed HCFMDA to 
predict potential BN-related miRNAs. The key point of 
this type of case validation is to ensure that the prioriti-
zation of putative miRNAs related to BN only makes use 
of the correlations of other phenotypic diseases similar to 
BN. Therefore, it could be used to demonstrate whether 
our model is applicable to those isolated diseases without 
any known related miRNAs.

Fig. 3  Optimal search for proportion factor α performed by HCFMDA 
on HMDD v2.0 with β = 0.1

Fig. 4  AUC values of HCFMDA and five other disease-miRNA 
prediction models
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As the most common type of gastrointestinal cancer, 
CN is the second-leading cause of cancer-related deaths 
in the USA. It was estimated that about 140,250 people 
was diagnosed with CN, and 50,630 died from the dis-
ease in 2018 [43]. Since patients in early stage of CN have 
only mild symptoms and are hard to be detected, there 
is an urgent demand of novel diagnostic biomarkers for 
its early detection. Fortunately, a significant number of 
CN-related miRNAs have been successfully identified in 
the past decades. For instance, Ma et  al. [44] reported 
that the up-regulated miRNAs in CN including miR-
182, miR-17, miR-106a, miR-93, miR-200c, miR-92a, 
let-7a and miR-20a (FDR value < 5%), while the down-
regulated miRNAs were miR-l195, miR-143 and miR-145 
(FDR value < 5%). Moreover, Marta et  al. [45] identi-
fied and validated a signature of 6 miRNAs (miRNA19a, 
miRNA19b, miRNA15b, miRNA29a, miRNA335, and 
miRNA18a) as biomarkers that could differentiate sig-
nificantly CN patients from those healthy people. In 
the case validation for CN, we adopted HCFMDA to 
prioritize the top 50 miRNAs from candidate miRNAs 
(Table  1). We found that 9 out of the top 10 candidate 
miRNAs could be supported to be associated with CN 
by the experimental evidence. Besides, 88% of top 50 pri-
oritized miRNAs were validated to be involved with CN. 
For example, many experiments [46] reported that the 
expression level of has-mir-20a (ranked No.1 in Table 1) 
was significantly higher in CN tissue than those in the 
normal adjacent mucosa and suggests that it can be taken 
as a novel prognostic marker and therapeutic target for 
CN. Also, miR-18a (ranked No.2 in Table  1) was also 
confirmed by experiments and could play an important 
role in CN pathogenesis [47]. Actually, some of the rest 
unconfirmed miRNAs in Table 1 were also confirmed by 
recent studies. For example, hsa-mir-92 directly targeted 
the anti-apoptotic molecule BCL-2-interacting media-
tor of cell death (BIM) in colon cancer tissues and was 
recently proposed as a key oncogenic component of miR-
17–92 cluster through targeting and down-regulating the 
proapoptotic protein Bim in CN [48]. In addition, Anto-
nio et al. [49] reported that has-miR-101 expression was 
differentially impaired in CN specimens and it might 
function as a tumor suppressor in CN and that its phar-
macological restoration might hamper the aggressive 
behavior of CRC in vivo.

Esophageal neoplasms (EN), or esophageal cancer, 
occupies the sixth position among malignant tumors 
worldwide with regard to mortality and ranks fourth 
in China [50]. Due to lack of effective clinical diagno-
sis approaches for EN, it is often diagnosed at a more 
advanced stage and its overall 5-year survival rate is only 
about 25% [51]. Therefore, investigating the mechanism 
of EN is seriously essential to improve its diagnosis, 

treatment and prognosis. Numerous recent studies have 
indicated that aberrant expression of miRNAs is involved 
in EN. For instance, Hu et al. [50] identified that miR‑375 
was downregulated in tumor tissue and cell line EC109 
of EN samples when compared with normal tissues and 
cells. Experiments confirmed that as a tumor suppressor 

Table 1  Predictive results of the top 50 prioritized miRNAs 
related to CN based on experimentally verified associations in 
HMDD v2.0 database

The column 1 and 3 list the top 1–25 and top 26–50 CN-related miRNAs, 
respectively

miRNA Evidence miRNA Evidence

hsa-mir-20a dbDEMC, miR2D‑
isease

hsa-mir-92a Unconfirmed

hsa-mir-18a dbDEMC, miR2D‑
isease

hsa-mir-141 dbDEMC, 
miR2Disease

hsa-mir-19b dbDEMC, miR2D‑
isease

hsa-mir-214 dbDEMC

hsa-mir-191 dbDEMC, miR2D‑
isease

hsa-mir-30c dbDEMC, 
miR2Disease

hsa-mir-143 dbDEMC, miR2D‑
isease

hsa-mir-93 dbDEMC, 
miR2Disease

hsa-mir-132 miR2Disease hsa-mir-34c miR2Disease

hsa-mir-29b dbDEMC, miR2D‑
isease

hsa-mir-21 dbDEMC, 
miR2Disease

hsa-mir-19a dbDEMC, miR2D‑
isease

hsa-mir-25 dbDEMC, 
miR2Disease

hsa-mir-34a dbDEMC, miR2D‑
isease

hsa-mir-194 dbDEMC, 
miR2Disease

hsa-mir-101 Unconfirmed hsa-mir-32 dbDEMC, 
miR2Disease

hsa-let-7e dbDEMC hsa-mir-92b Unconfirmed

hsa-let-7d dbDEMC hsa-mir-205 dbDEMC

hsa-let-7a dbDEMC, miR2D‑
isease

hsa-let-7 g dbDEMC, 
miR2Disease

hsa-mir-200b dbDEMC hsa-mir-222 dbDEMC

hsa-mir-127 dbDEMC, miR2D‑
isease

hsa-mir-203 dbDEMC, 
miR2Disease

hsa-mir-125b dbDEMC hsa-mir-146a dbDEMC

hsa-mir-199a Unconfirmed hsa-mir-34b dbDEMC, 
miR2Disease

hsa-mir-223 dbDEMC, miR2D‑
isease

hsa-mir-16 dbDEMC

hsa-let-7b dbDEMC, miR2D‑
isease

hsa-mir-429 dbDEMC

hsa-mir-125a dbDEMC, miR2D‑
isease

hsa-mir-221 dbDEMC, 
miR2Disease

hsa-mir-155 dbDEMC, miR2D‑
isease

hsa-mir-200a Unconfirmed

hsa-let-7c dbDEMC hsa-mir-146b Unconfirmed

hsa-mir-106b dbDEMC, miR2D‑
isease

hsa-mir-29a dbDEMC, 
miR2Disease

hsa-let-7f dbDEMC, miR2D‑
isease

hsa-mir-95 dbDEMC, 
miR2Disease

hsa-let-7i dbDEMC hsa-mir-373 dbDEMC
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in EN cells, miR-375 inhibited cell proliferation and 
invasion by repressing the expression of its direct target 
MTDH, an oncogene associated with tumorigenesis in 
EN. Herein, we took EN as a case validation and prior-
itized the candidate miRNAs of the disease. As illustrated 
in Table  2, all the top 10 predicted miRNAs associated 
with EN were successfully verified by experimental evi-
dence collected from the two independent databases. 
Meanwhile, 46 out of the top 50 predicted miRNAs were 
also validated to be related to EN. For example, recent 
studies indicated that miR-195 was down-regulated 
in EN tissues compared with normal esophageal tis-
sues ( P = 0.05) and experimental results indicated that 
Cdc42 protein was reduced after miR-195 mimics trans-
fected ( P = 0.01 ) [52]. In addition, Zhang et al. [53] first 
presented that tanshinone IIA inhibited human EN cell 
growth through miR-122-mediated Pyruvate kinase M2 
(PKM2) down-regulation pathway.

Prostate neoplasms (PN) is the most common malig-
nancy and the third leading cancer-related cause of death 

among men in the western world. Although the 5-year 
survival rate of PN is higher in early-stage after treatment 
with surgical resection or androgen deprivation therapy, 
one-third of treated PN patients will experience disease 
recurrence and progress into castration-resistant PN, a 
more aggressive disease [54]. Therefore, an impressing 
need exists to identify novel miRNAs as tools or bio-
markers for the prediction of aggressive PN. In the case 
validation for PN by HCFMDA, 8 of top 10 miRNAs 
and 44 out of top 50 candidate PN-associated miRNAs 
were validated by the two independent databases (see 
Table 3). Moreover, 4 of the rest 6 unsupported miRNAs 

Table 2  Predictive results of the top 50 predicted miRNAs 
related to EN based on known associations in HMDD v2.0 
database

The column 1 and 3 list the top 1–25 and top 26–50 EN-related miRNAs, 
respectively

miRNA Evidence miRNA Evidence

hsa-mir-17 dbDEMC hsa-mir-24 dbDEMC

hsa-mir-18a dbDEMC hsa-mir-10b dbDEMC

hsa-mir-19b dbDEMC hsa-mir-30c dbDEMC

hsa-mir-125b dbDEMC hsa-mir-30a dbDEMC

hsa-mir-221 dbDEMC hsa-mir-181a dbDEMC

hsa-mir-16 dbDEMC hsa-mir-15b dbDEMC

hsa-mir-29a dbDEMC hsa-mir-93 dbDEMC

hsa-mir-200b dbDEMC hsa-mir-106a dbDEMC

hsa-mir-106b dbDEMC hsa-mir-18b dbDEMC

hsa-let-7d dbDEMC hsa-mir-132 dbDEMC

hsa-mir-1 dbDEMC hsa-mir-23b dbDEMC

hsa-let-7i dbDEMC hsa-mir-122 unconfirmed

hsa-let-7f unconfirmed hsa-mir-194 dbDEMC,miR2Disease

hsa-let-7e dbDEMC hsa-mir-7 dbDEMC

hsa-mir-222 dbDEMC hsa-mir-218 unconfirmed

hsa-mir-29b dbDEMC hsa-mir-127 dbDEMC

hsa-mir-429 dbDEMC hsa-mir-302c dbDEMC

hsa-mir-181b dbDEMC hsa-mir-199b dbDEMC

hsa-mir-142 dbDEMC hsa-mir-135a dbDEMC

hsa-mir-125a dbDEMC hsa-mir-193b dbDEMC

hsa-mir-182 dbDEMC hsa-mir-20b dbDEMC

hsa-let-7g dbDEMC hsa-mir-302b dbDEMC

hsa-mir-195 dbDEMC hsa-mir-107 dbDEMC,miR2Disease

hsa-mir-146b dbDEMC hsa-mir-204 unconfirmed

hsa-mir-9 dbDEMC hsa-mir-23a dbDEMC

Table 3  Predictive results of the top 50 prioritized miRNAs 
related to PN based on known associations in HMDD v2.0 
database

The column 1 and 3 list the top 1–25 and top 26–50 PN-related miRNAs, 
respectively. The evidences for the associations are either database studies or 
PMIDs of other experimental literatures

miRNA Evidence miRNA Evidence

hsa-mir-21 dbDEMC,miR2Disease hsa-mir-
200a

dbDEMC

hsa-mir-155 dbDEMC hsa-mir-23a dbDEMC,miR2Disease

hsa-let-7a dbDEMC,miR2Disease hsa-mir-
106b

dbDEMC

hsa-mir-
146a

miR2Disease hsa-mir-19b dbDEMC,miR2Disease

hsa-mir-17 miR2Disease hsa-mir-24 dbDEMC,miR2Disease

hsa-mir-20a miR2Disease hsa-let-7b dbDEMC,miR2Disease

hsa-mir-143 dbDEMC,miR2Disease hsa-mir-223 dbDEMC,miR2Disease

hsa-mir-18a 24752237 hsa-mir-34a dbDEMC,miR2Disease

hsa-let-7c dbDEMC,miR2Disease hsa-mir-15a dbDEMC,miR2Disease

hsa-mir-92a 29568403 hsa-let-7i dbDEMC

hsa-mir-
181b

dbDEMC,miR2Disease hsa-mir-
200b

24391862

hsa-let-7f dbDEMC,miR2Disease hsa-mir-25 dbDEMC,miR2Disease

hsa-mir-19a dbDEMC hsa-mir-142 unconfirmed

hsa-mir-1 dbDEMC hsa-mir-141 miR2Disease

hsa-mir-9 dbDEMC hsa-mir-222 dbDEMC,miR2Disease

hsa-mir-126 dbDEMC,miR2Disease hsa-let-7g dbDEMC,miR2Disease

hsa-let-7e dbDEMC hsa-mir-29c dbDEMC

hsa-mir-221 dbDEMC,miR2Disease hsa-mir-
125a

dbDEMC,miR2Disease

hsa-let-7d dbDEMC,miR2Disease hsa-mir-203 21159887

hsa-mir-16 dbDEMC,miR2Disease hsa-mir-
106a

dbDEMC,miR2Disease

hsa-mir-150 dbDEMC hsa-mir-
133a

dbDEMC

hsa-mir-29a dbDEMC,miR2Disease hsa-mir-34b dbDEMC

hsa-mir-93 26124181 hsa-mir-34c dbDEMC

hsa-mir-210 miR2Disease hsa-mir-27a dbDEMC,miR2Disease

hsa-mir-
200c

dbDEMC hsa-mir-15b dbDEMC
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were verified by recent studies. For example, Williams 
et al. [55] identified miR-200b as a downstream target of 
androgen receptor and linked its expression to decreased 
tumorigenicity and metastatic capacity of the prostate 
cancer cells. In addition, as an "antimetastatic" miRNA 
in PN, miR-203 expression is specifically attenuated in 
bone metastatic prostate cancer suggesting a fundamen-
tal antimetastatic role for this miRNA [56].

Besides, we further made the comparison between 
HCFMDA and other five aforementioned MDA predic-
tion models in terms of the case studies of diseases CN, 
EN and PN. It could be seen from Table 4 that HCFMDA 

ranks second best among all predictive models for those 
three diseases. The predictive hit rate of HCFMDA is 
only lower than that of PRMDA in the case study of CN 
and EN, and that of EGBMMDA in the case study of PN, 
which fully demonstrates that HCFMDA could be used 
as a reliable tool for predicting disease-related miRNAs.

Case validation 2: for diseases without known associated 
miRNAs
To further validate the predictive performance of 
HCFMDA for those diseases without any known 
related miRNA, we also implemented another type of 

Table 4  Comparison results of the first case study by HCFMDA and other five state-of-the art predictive models

NULL denotes the corresponding model did not performed the case study for the designated disease

Disease HGIMDA WBSMDA EGBMMDA PRMDA DRMDA HCFMDA

Colon neoplasms 45 45 43 46 44 44

Esophageal neoplasms 44 NULL NULL 47 NULL 46

Prostate neoplasms 44 40 45 43 43 44

Table 5  Predictive results of the top 50 prioritized miRNAs related to BN through removing all known BN-related miRNAs in HMDD 
V2.0 database

The column 1 and 3 list the top 1–25 and top 26–50 BN-related miRNAs, respectively

miRNA Evidence miRNA Evidence

hsa-mir-367 dbDEMC,HMDD hsa-mir-608 dbDEMC,HMDD

hsa-mir-302c dbDEMC,HMDD hsa-mir-638 dbDEMC,HMDD

hsa-mir-302a dbDEMC,HMDD hsa-mir-518b unconfirmed

hsa-mir-302b dbDEMC,HMDD hsa-mir-602 dbDEMC

hsa-mir-488 HMDD hsa-mir-612 dbDEMC

hsa-mir-215 dbDEMC,HMDD hsa-mir-615 dbDEMC

hsa-mir-302d dbDEMC,HMDD hsa-mir-637 dbDEMC

hsa-mir-218 dbDEMC,HMDD hsa-mir-657 dbDEMC

hsa-mir-383 dbDEMC,HMDD hsa-mir-185 dbDEMC

hsa-let-7d dbDEMC,miR2Disease,HMDD hsa-mir-518c dbDEMC

hsa-let-7f dbDEMC,miR2Disease,HMDD hsa-mir-622 dbDEMC

hsa-let-7c dbDEMC,HMDD hsa-mir-583 dbDEMC

hsa-mir-19a dbDEMC,HMDD hsa-mir-557 dbDEMC

hsa-mir-153 dbDEMC,HMDD hsa-mir-600 dbDEMC

hsa-let-7b dbDEMC,HMDD hsa-mir-601 dbDEMC

hsa-let-7i dbDEMC,miR2Disease,HMDD hsa-mir-611 unconfirmed

hsa-mir-296 dbDEMC,HMDD hsa-mir-654 dbDEMC

hsa-let-7e dbDEMC,HMDD hsa-mir-662 dbDEMC

hsa-let-7a dbDEMC,miR2Disease,HMDD hsa-mir-769 unconfirmed

hsa-mir-429 dbDEMC,miR2Disease,HMDD hsa-mir-18a dbDEMC,miR2Disease,HMDD

hsa-mir-338 dbDEMC,HMDD hsa-mir-486 dbDEMC,HMDD

hsa-let-7g dbDEMC,HMDD hsa-mir-629 dbDEMC,HMDD

hsa-mir-20a miR2Disease,HMDD hsa-mir-596 unconfirmed

hsa-mir-19b dbDEMC,HMDD hsa-mir-17 miR2Disease,HMDD

hsa-mir-324 HMDD hsa-mir-339 dbDEMC,HMDD
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case validation for Breast Neoplasms (BN) by removing 
all the known BN-related associations in HMDD v2.0. 
That is to say, we only utilized the known associations 
of other diseases except BN and adopted the indirect 
way to predict BN-related miRNAs. We then ranked all 
the 495 candidate miRNAs by their predictive scores 
and verified the top 50 ones according to the databases 
of dbDEMC, miR2Disease and HMDD v2.0. The pre-
dictive results (Table 5) indicated that all top 10 and 46 
out of the top 50 prioritized miRNAs were confirmed 
by those databases. The achieved results indicate that 
HCFMDA could also be applied to predict novel miR-
NAs for those isolated diseases.

Discussion
Identification of novel disease-related miRNAs is ben-
eficial for understanding disease pathogenesis at the 
molecular level, and developing effective disease diag-
nostic biomarkers and therapeutic tools. In this work, 
we proposed an efficient computational framework, 
HCFMDA, to improve the predictive performance 
of MDAs by integrating heterogeneous information: 
miRNA functional similarity, disease semantic similar-
ity, known MDA networks, Gaussian kernel similarity 
of miRNAs and diseases. HCFMDA employs not only 
traditional disease-based and miRNA-based associa-
tions, but also associations from other ‘not-so-simi-
lar’ diseases and miRNAs to smooth the predictions. 
We then implemented LOOCV and two types of case 
validations over four important human cancers. The 
achieved results demonstrate that HCFMDA is indeed 
robust against data sparsity, which is better than other 
five state-of-the-art models, i.e., HGIMDA, WBSMDA, 
EGBMMDA, PRMDA, and DRMDA.

Conclusions
The excellent performance of HCFMDA mainly attrib-
utes to the following aspects. First, many kinds of 
heterogeneous data including miRNA functional simi-
larity, disease semantic similarity, and known MDAs 
were integrated into our model, which contains highly 
discriminative information. Second, by fusing three 
kinds of similar associations including disease-based 
associations, miRNA-based associations, and other 
‘not-so-similar’ diseases and miRNAs associations our 
model could fully mine and capture the intrinsic associ-
ations between miRNAs and diseases even if the MDA 
matrix is very sparse. Although some favorable results 
have been made, there still exists several limitations 
in HCFMDA. First, there are only 5430 known MDAs 
among 383 diseases and 495 miRNAs, and therefore 
the corresponding MDA matrix is very sparse and 

needs to be further enriched. Second, although we have 
integrated some heterogeneous data into our model, 
there is still room for improving the performance of 
HCFMDA by integrating more effective data sources 
which could provide more useful information for pre-
dicting MDAs. Moreover, we will improve the efficiency 
of our model by introducing graph-based recommen-
dation filtering algorithms in the future.
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