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Type 1 diabetes mellitus (DM1) is a growing disease, and a deep understanding of the patient is required to prescribe the most
appropriate treatment, adjusted to the patient’s habits and characteristics. Before now, knowledge regarding each patient has
been incomplete, discontinuous, and partial. However, the recent development of continuous glucose monitoring (CGM) and
new biomedical sensors/gadgets, based on automatic continuous monitoring, offers a new perspective on DM1 management,
since these innovative devices allow the collection of 24-hour biomedical data in addition to blood glucose levels. With this, it is
possible to deeply characterize a diabetic person, offering a better understanding of his or her illness evolution, and, going
further, develop new strategies to manage DM1. This new and global monitoring makes it possible to extend the “on-board”
concept to other features. This well-known approach to the processing of variable “insulin” describes some inertias and
aggregated/remaining effects. In this work, such analysis is carried out along with a thorough study of the significant variables to
be taken into account/monitored—and how to arrange them—for a deep characterization of diabetic patients. Lastly, we present
a case study evaluating the experience of the continuous and comprehensive monitoring of a diabetic patient, concluding that
the huge potential of this new perspective could provide an acute insight into the patient’s status and extract the maximum
amount of knowledge, thus improving the DM1 management system in order to be fully functional.

1. Introduction

Diabetes is a metabolic disease, characterized by chronic
hyperglycemia resulting from the body’s inability to produce
and/or use insulin. In a nondiabetic human, glucose homeo-
stasis is a closed-loop system which is able to regulate blood
glucose (BG) levels. Unfortunately, this regulation is not pos-
sible in patients suffering from type 1 diabetes mellitus
(DM1), who do not produce any insulin (a strong hormone
able to reduce hyperglycemia), and, therefore, they must
exogenously inject this hormone (or wear an insulin pump)
in order to reduce their BG levels. Hence, diabetic people
must check their BG levels manually (typically through
glucose meters which analyze patients’ capillary blood

samples obtained via finger pricking) several times a day
and, based on these data, as well as other factors like meals
and exercise, decide when and how much insulin is required
to avoid hyperglycemia.

However, a great many new technological advances
achieved in recent years offer a new perspective for diabetes
management and can constitute a real revolution within this
field. An artificial pancreas (AP) is presumed to comprise a
continuous glucose monitoring (CGM) device, which is
aimed at checking the patient’s glucose levels in real time,
and a pump which should inject into his or her body the
amount of insulin (and glucagon, if applicable) stipulated
by a control system based on a closed loop [1-2]. Therefore,
CGM has become a cornerstone in diabetes care and future
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AP prototypes [3], since it can provide the magnitude, ten-
dency, frequency, and duration of glucose level fluctuations
almost every minute.

However, some situations cannot be explained solely by
the provided CGM data. Sometimes, medical staff may need
to question patients about their daily routine or about other
specific circumstances for some particular moment, so that
they can have a comprehensive understanding. Unfortu-
nately, people remember the context in a subjective way, so
doctors and patients cannot analyze the background properly.

Fortunately, beyond CGM, other devices in the field of
biometrics allow maintaining a 24-hour monitoring of the
patient, recording important information about the person’s
health, and could also be of relevance in an AP context. In
this way, variables like temperature, exercise, heart rate, and
perspiration (among others) can be monitored continuously.
Advances in biomedical science allow easy and mobile data
collection [4-5].

As there is no global monitoring of a diabetic patient,
going beyond BG levels alone, there is a necessity to describe
the physiological aspects of patients’ evolution and current
conditions more exhaustively and in much more detail than
before. In the present paper, a thorough analysis of the signif-
icant variables to be taken into account and monitored in
diabetic patients for a fully functional and meaningful DM1
management system will be presented.

In addition, the concept of being “on-board” was widely
treated in diabetes research related to the insulin effect. With
this, the remaining effect of fast insulin of previous bolus can
be taken into account since it should be noted that it can
be acting with low intensity for several hours. This idea
has been recurrently studied in literature and introduced
in a practical way in bolus calculators [6], also taking into
account other variables such as the carbohydrate to insulin
ratio [7] or the influence of circadian variability in this
insulin on-board (IOB) [8]. This interpretation will be
extended and justified—as a novelty—to other continuously
measured features indicated in this paper.

This paper is organized as follows: Section 2 presents
CGM as a cornerstone, with a brief review of the currently
offered possibilities. Some other necessary devices for a com-
plete DM1 management system are described in Section 3.
Then, as a result of the different possibilities of monitoring,
an almost complete characterization of a diabetic patient
(the significant variables to be taken into account) is pro-
posed in Section 4. Section 5 presents a case study and then
Section 6 analyzes some challenges to be faced by this idea.
The conclusions and possibilities offered by this novel global
outlook are given in Section 7.

2. Continuous Glucose Monitoring (CGM)

Currently, it is not possible to think of an approach to an
artificial pancreas without a CGM device. This mechanism
constitutes a revolution in diabetes care, since it can provide
for the magnitude, tendency, frequency, and duration of the
fluctuations of the glucose levels in diabetic patients [9].
Compared with conventional glucose monitoring (finger-
stick, capillary blood glucose monitoring), which provides

between three to ten measurements of glucose level per
day, CGM can deliver up to one measurement per minute
(i.e., 1440 data points per day). Therefore, this sampling fre-
quency is sufficient to be the input of a control system,
although Kovatchev et al. indicate [10] that CGM still suf-
fers from some limitations, such as random noise and a
transient loss of sensitivity. So, in order to get a complete
monitoring of a diabetic person, the first decision is to
choose a proper CGM.

A frequent complaint is the time lag between the data
provided by the CGM and the real glucose level in the blood-
stream of the patient. This is due to the fact that the CGM is
not measured directly from the blood: the value that the
CGM device offers is an estimate based on the interstitial
fluid glucose which exists under the skin, whose level is
delayed someminutes with respect to the actual value present
in the bloodstream. This fact can be perceived as being a dis-
advantage. However, recent research has found that this time
lag is not more than 5 to 10 minutes [11]. Moreover, mathe-
matical methods can suitably compensate for the lack of
accuracy due to this delay. In fact, some tests deployed by
Basu et al. confirmed a delay of just 6 minutes [12].

The accuracy of these devices can be evaluated by means
of two standards: the mean absolute relative difference
(MARD) and the Clarke error grid [13]. The MARD is
defined as the result of a mathematical calculation that mea-
sures the average disparity between the CGM sensor and the
reference measurement. The lower the MARD, the smaller
the average error and the more accurate the device can be
considered to be. The most accurate CGM devices reach
maximum values of the MARD of between 6% and 8%. The
main commercialized CGM devices are presented in Table 1.

Dexcom is probably the most accurate CGM system
available. In its most recent version (Dexcom G5), a MARD
of 9% is reached thanks to the new 505 software, which fea-
tures the same advanced algorithm as that used in artificial
pancreas research. The life of the sensor is seven days,
according to the manufacturer’s specifications, but users
can usually restart it when this expires. The G5 model has
several features, such as the possibility of displaying the glu-
cose levels on a smartphone, without the necessity of carrying
the Dexcom receiver. The previous version (Dexcom G4
PLATINUM) cannot transmit to a smartphone (just to a
Dexcom receiver), but both are able to be connected to an
Animas Vibe insulin pump. Other combinations can also
be found, like the integration of a t:slim insulin pump with
the Dexcom G4 and G5.

Medtronic also offers CGM sensors: Medtronic Enlite,
together with their insulin pumps, although it is also possible
to use the sensor separately. Its MARD (13.60%) is a little bit
higher than that of the Dexcom devices, and the approved life
of the sensor is 6 days, although it can be reactivated for up to
twelve days. By adding a specific Bluetooth device, it is possi-
ble to show the results on a smartphone.

At this moment, the US Food and Drug Administration
(FDA) has approved a device with a CGM gadget and an
insulin pump, capable of stopping the insulin infusion in case
of hypoglycemia (Medtronic 530G) and, recently, the FDA
has also approved the Medtronic 670G, which is also able
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Table 1: Current commercialized CGM sensor systems.

Company Model Features MARD

Abbott

Navigator II

Trend marks
Rate-of-change alerts
Alarms (hyper/hypo)

5-day lifetime

Calibration recommended up to 72 h 14.5% [26]

FreeStyle Libre

Trend marks
No alerts or alarms
14-day lifetime

NFC communication with
smartphone

Read approaching meter to sensor
(NFC technology)

No calibration needed
11.4% [27]

Dexcom

G4 Platinum

Trend marks
Rate-of-change alerts
Alarms (hyper/hypo)

7-day lifetime

Remote monitoring
Calibration every 12 h

13% [28] (Original
algorithm)

G5 Mobile

Trend marks
Rate-of-change alerts
Alarms (hyper/hypo)

7-day lifetime

Remote monitoring
Wireless communication with

smartphone
Calibration every 12 h

9% [29]

Medtronic

Enlite Sensor

Trend marks
Rate-of-change alerts
Alarms (hyper/hypo)

6-day lifetime

Integration with Medtronic 530G
insulin pumps

Calibration every 12 h
13.6% [30]

Guardian Sensor 3

Trend arrows
Rate-of-change alerts
Alarms (hyper/hypo)

7-day lifetime

Integration with Medtronic 670G
insulin pumps

Calibration every 12 h
9.1% [31]

Senseonics

Eversense

Trend arrows
Rate-of-change alerts
Alarms (hyper/hypo)

90-day lifetime

Communication with smartphone
Sensor inserted under the skin

11.6% [32]
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to minimize hyperglycemia thanks to its connection to the
CGM gadget.

Abbott now has two products available. The first one is
the FreeStyle Navigator II, which was the most accurate
CGM device until the new Dexcom algorithm 505 appeared.
It presents a MARD of 11%, but, unfortunately, it is only
available in certain countries, such as the United Kingdom,
the Netherlands, and Israel. It provides a new glucose value
every minute, in contrast to the Dexcom G5, where it is nec-
essary to wait 5minutes for a new value to be offered. The
official life of the sensor is 5 days but it may last longer.
One disadvantage is that an initial calibration by finger prick
glucose monitoring is necessary and, from time to time, a
new calibration is required. This is also true for the Dexcom
and Medtronic devices.

Abbott has also offered the FreeStyle Libre from the end
of 2014 [14]. Strictly speaking, it is not a real CGM device
since the glucose information is not transmitted continu-
ously (although it is stored and can be read by scanning the
sensor with the receiver), so it is not possible to set alarms
for low or high values of glucose. The sensor is placed on
the arm and the information can then be transmitted via
NFC, known as the “Flash System.” It achieves a MARD of
11.4% and the sensors have a longer life (14 days), but they
cannot be restarted. One of its perks is that it does not need
to be calibrated.

All of the CGM devices use different algorithms to
minimize the delay between the glucose levels present in
the bloodstream and those measured under the skin
(interstitial fluid) when trying to predict the next value.
This delay, mainly when glucose levels are changing fast,
results in inaccuracy, the predicted values not being reli-
able under those circumstances. To avoid this, many
improvements have been implemented in CGM. Denoising,
enhancement of raw data accuracy, and minimizing error
due to the delay introducing a correction are the three main
key challenges [15].

The denoising algorithm could be based on an adaptive
self-tunable Bayesian smoother [16] able to automatically
estimate in real time the signal-to-noise ratio present on the
CGM. The other denoising algorithms that can be used here
are, e.g., those presented by Palerm and Bequette [17] and
Mahmoudi et al. [18].

The enhancement module is proposed in [19] grounded
in a stochastic deconvolution-based recalibration algorithm,
which rescales the CGM data using a simple linear regressor
whose parameters are recalculated every time a new SMBG
value is available. The other enhancement/recalibration
algorithms that can be exploited in this step are, e.g., those
presented by Barcelo-Rico et al. [20] (adaptive calibration)
and Kirchsteiger et al. [21] (LMI-based approach).

In the prediction stage, a simple but effective predictor
based on an autoregressive model of order one can be used
[22], whose key feature is the real-time estimation of the
predictor’s parameters using a recursive least squares imple-
mentation, exploiting a forgetting factor to smartly weigh
previously acquired data. Other sophisticated prediction
algorithms can be used, including other signals like IOB or
physical activity: Zecchin et al. [23] (neural network),

Zarkogianni et al. [24] (taking into account physical activity),
and Georga et al. [25] (regression models).

3. Additional Commercial Smart Devices to Be
Included in a Full DM1 Monitoring System

Some new technological advances have brought innovative
developments in this area. In the commercial market, it is
possible to find new devices which have revolutionized
monitoring possibilities.

At the moment, smartphones present a level of adaptabil-
ity that is unachievable by any other device. They allow us to

(1) keep the software responsible to model the dynamics
of the system, make a glucose prediction, optimize a
solution, and control the process

(2) gather information between CGM devices and an
insulin pump. The possibilities of connectivity are
enormous. Today, a mobile phone is able to commu-
nicate not only via 4G but also through Bluetooth,
Wi-Fi, NFC, Ant+, etc., which offers a plethora of
different choices

(3) send data and information to the Cloud, to be either
stored or computed (Cloud computing)

(4) forward emergency calls in case the patient is at risk

(5) update its software when required

Furthermore, smartphones provide a wide range of possi-
bilities in the field of monitoring. Nowadays, the inclusion of
accelerometer sensors, gyroscopes, and pedometers allows
physical activity to be quantified. Other uses could be to mea-
sure physiological features such as heart rate, using camera
flash (admittedly with a large uncertainty), and some are able
to register the environmental temperature. In any case, these
attributes are often used recreationally. In the following par-
agraphs, some other more specific and more accurate sensors
will be described.

These possibilities have been tested in experiments per-
formed by Place et al. [33]; in real time, patients’ evolution
has been followed from different locations. Other publica-
tions have studied the use of a smartphone as a device capa-
ble of sending an emergency call, providing the location via
GPS in case the patient is at risk [34].

However, there are some doubts as to whether smart-
phones will be approved as medical devices (class III, high
risk). The controller application installed in the phone has
to be reliable, so as to avoid conflicts with other applications
running on the device. Other circumstances, such as a dis-
charge of the battery or lost connectivity, would have to be
prevented. These pros and cons are exposited in Rigla [35].

In another vein, groundbreaking advances in electronics
have introduced miniaturization and more powerful innova-
tions in biometrics, the field in which measurable biological
characteristics are studied. It is now possible to measure cer-
tain variables, most of them being vital signs (such as the
heart rate and exercise), in a continuous mode. All of these
measurements play a part in the complex balance of blood
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glucose and must be taken into account. Some years ago, it
was difficult to obtain a full-day’s data, but, nowadays,
devices such as smartbands, smartwatches, and other fitness
and medical wearables make this objective easily attainable,
offering a lot of useful information [36]. These innovations
have potential in the health field due to their ability to collect
different types of data and presenting them in a user-friendly
way. In addition, they have potential due to their connectiv-
ity; they are usually provided with a Bluetooth connection.
However, they are restricted by their size, length of battery
life, and the fact that these devices are sometimes conceived
for non-health care, professional uses. These factors cast
some doubts on their accuracy [37], but, in any case, they
can provide data of an appropriate order of magnitude. A
compilation of the most popular and affordable fitness
smartbands is presented in Table 2, along with a summary
of their main features. As we can see, these devices can pro-
vide a wide range of physiological features and, therefore,
can provide a good characterization of the patient. To com-
plete the monitoring, some other medical devices could be
worn by the patient in order to measure temperature, blood
pressure, etc.

Therefore, although the use of novel devices (accelerome-
ters, electrocardiograms, thermistors, etc.) has been tested,
they have only been studied in isolated trials and not included
inDM1management systems. Some of them (but not all) have
been used together with CGM devices, sometimes with the
sole aim of studying the relationship between BG and other
features and sometimes to predict glycemia levels. It should
be said that a 24-hour simultaneous monitoring of all the fea-
tures has not been carried out nor has a study of the types of
variables, the correlations between them, ranks of influence
on the BG, and a valuable set of features used for modeling
the evolution of glycemia.

4. Significant Variables to Be Monitored for
Complete Diabetes Management

4.1. Types of Variables: The Idea of Something On-Board.
According to the nature of the feature under study and how
it changes through time, it is possible to distinguish three dif-
ferent types of variables, each one requiring specific handling.

4.1.1. Pulse Variables. These features interact with the system
at one point and then stop. However, this impulse, with a
given strength, has the capability to unbalance the system,
creating a disruption. In this sense, insulin boluses and
meals, and just indicating the exact time when they take
place, are pulse variables, and it is known that these features
are zero most of the time [38]. They are considered to be
discrete events, regardless of the time that it takes to end
their influence.

4.1.2. Trending Variables. In this case, it is not only necessary
to know the value in the current moment, but, furthermore, a
corresponding trend is critical in order to know previous
states and then extrapolate (or predict) future values. Exam-
ples of this are glycemia, exercise, and heart rate. However, in
the scientific literature, it is not possible to find a discussion

about how many past values are necessary to take into
account in these kinds of variables.

4.1.3. “On-Board” Variables. This is a well-known concept
that has been introduced in several previously published
works, in order to explain the remaining influence of previ-
ous insulin doses (IOB). In this case, the maximum effect
has already ceased but the remaining tails of the insulin curve
still have a remarkable influence, especially when there were
several punctual injections throughout the experiment. In
this way, an insulin dose presents its maximum effect at 90
minutes but the mentioned tails could have an influence,
even throughout the 6 hours after injection. As these action
times can oscillate because of external causes such as exercise,
this remaining effect will be the subject of discussion in the
next sections. The idea of IOB has been introduced in several
previous works, as in [39], where the possibility of a predic-
tion of glucose levels in a 20-minute horizon using propor-
tional integral derivative (PID) controllers is studied. The
integral component of the algorithm could cause hypoglyce-
mia, and this is, in essence, the IOB contribution. This paper
also presents the concept of “exercise on-board.” After phys-
ical activity, the glucose demand from the muscles is still par-
ticularly high, in order for them to recover after the effort.
This has a permanent and sustained effect in both glycemic
demand and insulin sensibility, as previously explained.
Therefore, this idea will be modeled with an accumulated
amount of exercise in the previous hours. Following the same
philosophy, meals not only disturb the system equilibrium in
a single moment (ingestion) but they also have a critical
influence in a range of several hours. So, meal furthers more
of the disruption in glycemia created at the time of eating
(which should be better understood as an “announcement”);
later, after digestion, the glucose resulting from the metabolic
processes is dumped into the blood or, among other destina-
tions, stored as glycogen in muscles and the liver. This glyco-
gen can be directly correlated with the amount of food
(mainly carbohydrates) ingested in the hours preceding the
measurement, and it can affect the amount of glycemia
dumped as glucose into the bloodstream. Hence, the innova-
tive concept of “meal on-board,” as accumulated food, makes
sense in explaining this circumstance. The amount of hours
needed to consider this fact will need to be discussed deeply.
On the other hand, rest level is also an influential variable in
glycemia control. A low amount of sleeping time tends to
result in rising blood glucose levels because of a higher neces-
sity for stress hormones, which have a hyperglycemic effect.
Therefore, it seems reasonable to take account of lack of sleep
(sleep deprivation on-board) as well. Even with this idea, it is
possible to discuss the influence of the daily routine. Some
kind of “schedule on-board” could make sense, and this con-
cept will be developed later. The limit of this sum will be also
the object of discussion in future works.

Taking these ideas into account, we can list and
describe a complete set of features that can be monitored
in order to produce a global description of the patient,
capturing his or her physiological history as well as their
present condition.
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Table 2: Main currently commercialized smartbands.

Company Model Sleep Distance Steps Calories Waterproof Heart rate Interface Battery

Fitbit

Fitbit Charge 2

✔
High accuracy

✔
✔

High accuracy
✔ Small ✔

iPhone
Android

4–7 days

Fitbit Alta

✔ ✔ ✔ ✔ Small ✖
iPhone
Android

4–7 days

Fitbit Charge HR

✔ ✔ ✔ ✔ 1–2m ✔
Web
iPhone
Android

1–2weeks

Fitbit Alta HR

✔ ✔ ✔ ✔ Small ✔
Web

Android
1–2weeks

Polar

Loop

✔ ✔ ✔ ✖ Small ✖
iPhone
Android

1–2weeks

Garmin
Vivosmart HR +

✔
High accuracy

✔
✔

High accuracy
✔ 5m ✔

iPhone
Android

4–7 days

Vívosmart 3

✔ ✔ ✔ ✔ Small ✔
iPhone
Android

4–7 days

Jawbone

Up 3

✔
High accuracy

✔
✔

High accuracy
✔ Small ✔

iPhone
Android

1–2weeks

Xiaomi

Mi Band 2

✔
High accuracy

✔
✔

High accuracy
✔ Small ✔

iPhone
Android

2–3weeks
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4.2. Identified Variables. At present, most of the previous
literature on diabetes management systems has only taken
into account glycemia and insulin levels, and sometimes an
estimation of meals, but it seems reasonable to incorporate
additional variables that could also influence glucose levels
as far as it is possible to measure or estimate them. It seems
that there is a general agreement in using glycemia, insulin,
and meal as remarkable variables [40, 41], and the studies
with this set of variables are a majority, but it is also possible
to find works involving just previous glycemia data as the
only variable in use (like those that can be found in autore-
gressive model approaches [22]) or in [42], just adding insu-
lin to glycemia and using an autoregressive with exogenous
term model. There is also a lot of studies in the last years tak-
ing into account other variables, mainly exercise, both in
silico and in vivo [43], and also considering the possibility
of heart rate, temperature, etc. These ideas will be presented
in the following lines. In any case, to the best of the authors’
knowledge, there is no previous work using a comprehensive
characterization of the diabetic patient, examining a global
and integral overview.

In this section, a comprehensive list of the significant var-
iables for a complete DM1 control system is analyzed. Some
of them have been previously discussed in the scientific liter-
ature, but others are presented in this paper for the first time.

4.2.1. Current and Previous Glucose Bloodstream Levels. This
is one of the principal variables. In addition to traditional
capillary blood monitoring, which consists of discrete glucose
values, new CGM devices offer enough accuracy and a good
sample frequency [44] to be one of the inputs to a continuous
control algorithm.

4.2.2. Insulin. This hormone has an exogenous origin in a
diabetic patient, who has to make a decision about the dose
to be injected. As it is the variable which primarily governs
how much glucose level will decrease due to hypoglycemic
response, this could be the main variable requiring optimiza-
tion. It is necessary to differentiate three ways of taking insu-
lin into account.

Instantaneous Insulin Input. It refers to recent doses,
especially fast-acting insulin (boluses). This type of insulin
usually has an effect for two and a half hours, with a maxi-
mum peak effect at 90 minutes.

Basal Insulin. It covers 24 hours, compensating for the
normal and slow dump of glucose into the blood (due to
the action of glucagon) from the glycogen stored mainly
within the liver.

Accumulated Insulin (IOB). This concept has been taken
into account in some of the scientific literature and means the
insulin amount that is currently in the body (and which is,
therefore, active). It involves basal insulin and remaining fast
insulin, which can be acting with low intensity (but still
noticeable) for several hours. It is assumed to have a remark-
able effect for the previous eight hours [45], although another
research points to an active range of the previous five to eight
hours [46].

4.2.3. Exercise. Physical activity increases the muscles’
demand for glucose; it is necessary to a normal workout. It
also raises blood circulation, so insulin is used up faster and
its effectiveness is increased because exercise temporarily
makes the cellular walls more permeable, which lets glucose
enter the cells more effectively [47]. This could lead to the
risk of hypoglycemia and a lower requirement of insulin
(however, it should be noted that exercise could cause hyper-
glycemia in the absence of insulin). Exercise also leads to a
reduction of our reservoir of glycogen, which is slowly
dumped into the bloodstream throughout the day and rel-
atively faster when hypoglycemia is taking place. Thus, it
is possible to make a distinction between three aspects
regarding exercise.

Recent Exercise. Physical effort has an immediate conse-
quence in glycemia. Thus, it would be reasonable to continu-
ously measure this variable.

Intensity of Exercise. The duration can define not only the
type of exercise but also the intensity since, for example, the
more power or strength are involved, the more there is influ-
ence on the insulin’s action.

Accumulated Exercise (Exercise On-Board (EOB)).
Although the increased effect of exercise on both blood glu-
cose and insulin requirements starts to decrease at the same
time the physical activity is being performed, a remaining
effect can act for up to 48 hours afterwards [48-49]. More-
over, it is proven that regular activity increases the sugar
bloodstream equilibrium and reduces the need for insulin
[50]. Therefore, the concept of EOB appears to be very neces-
sary if a rigorous glucose prediction method is to be obtained.
For this reason, this variable is one of the innovative
proposals of this paper.

4.2.4. Meals. What we eat and when we do it have a great
influence on blood glucose levels. Food is mainly trans-
formed and absorbed as glucose, which is dumped into the
blood, raising glycemia almost instantly. This interaction
has been described and modeled by using processing soft-
ware [51]. Three aspects should be noted regarding meals.

Notification of Ingestion. As meals have a fast impact
on blood glucose levels, an agile response in an artificial
pancreas would be necessary. Unfortunately, the system
cannot act as quickly as desired, so any preparation regard-
ing the glucose level increase derived from food intake
would be welcome.

Meal (Carbohydrate Counting). How fast and how much
the blood glucose level increases depend mainly on the
amount of carbohydrates that is present, and so, such infor-
mation should be registered. It is generally difficult and inef-
ficient to measure the exact amounts that are consumed
(patients are sometimes confused when evaluating this
parameter because it is a subjective assessment), but, usually,
diabetic people have been trained in how to measure meals
and carbohydrate counting, based on standardized tables.
The speed with which some meals are absorbed and reflected
in glycemia has been studied by Bell et al. [52]. In that study,
the absorption of fats is estimated at five hours (due to
CGM); on the other hand, protein generates a peak at three
hours but is less marked and carbohydrate levels peak in
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about two hours. Of course, meals are a mix of these three
components, and the time of the highest total contribution
will be very diverse.

Accumulated Intakes (Meal On-Board (MOB)). In the
long term, food intake increases glycogen reservoirs, and so,
on the one hand, the eventual hypoglycemic reaction will
be fast, but, on the other, glucose levels will normally be
higher due to the slow and continuous dumping of glucagon
and consequent liberation of glucose (mainly from the glyco-
gen stored within the liver). Moreover, it should be noted that
there can be interactions between the main types of macro-
nutrients when it comes to their absorption, since one can
be delayed by the effect of another. For example, the ingestion
of fat can slow down the absorption of carbohydrates [53]. In
fact, an excessive ingestion of fat can lower the sensitivity of
the body to insulin [54]), but, on the other hand, the intake
of fiber can slow down the absorption of carbohydrates
[55]. Regarding the above statement, the idea of a “meal
on-board” concept has arisen and seems reasonable. Unfor-
tunately, to the best of the authors’ knowledge, there is no
research which takes this idea into account. In this sense, this
variable is first presented in the present paper.

4.2.5. Stress. Stress hormones also have a hyperglycemic
influence [56]. Adrenaline and cortisol are secreted for
several reasons. In this case, two important aspects should
be noted.

Sleep Quality at Night. Poor quality of rest at night or too
few hours of sleep can lead to an altered glucose metabolism
and to an insulin resistance (i.e., hyperglycemic effects) [57].
Therefore, another novel variable is proposed: sleep depriva-
tion on-board (SDOB), since the hyperglycemic response
derived from sleep deprivation can last for several hours.
Thus, an estimation of the number of hours slept should
be considered.

Heart Rate. An increase of this parameter can be due to
several causes. Evidently, this value increases when exercis-
ing. However, if such an increase is not related to physical
activity, it could also be generated by stressful situations
[58]. Moreover, the heart rate can also be indicative of a
hypoglycemia episode [59]; the relationship with hyperglyce-
mia has also been studied [60].

4.2.6. Temperature. This parameter can be a symptom of
hypoglycemia, becoming lower under these circumstances
[61]. However, long-term patients with frequent drops of
glucose levels often present a lack of symptoms, not realizing
their low-glucose state until the situation is risky. On the
other hand, hyperthermia (which is normally the signal of a
concurrent illness) usually has hyperglycemic effects [62].
Completing this view, correlation between a hypothermic
state could lead to subsequent hyperglycemia [63].

4.2.7. Perspiration. This is another expression of hypoglyce-
mia. As with temperature, this symptom can go unnoticed
in long-term patients [64].

4.2.8. Blood Pressure. Arterial hypertension is commonly
associated with type 2 diabetes because of the so-called
metabolic syndrome (which involves insulin resistance) and

also with type 1 long-term diabetes patients, generally due
to kidney malfunction. Therefore, high blood pressure could
point to a poor control of glycemia [65] and lead to compli-
cations involving the heart, eyes, kidneys, and blood vessels.

4.2.9. Schedule (Time). As we are always involved in a set of
customs and habits, patients’ schedules tend to be similar
from one day to the next. It is usually possible to identify a
weekly pattern, especially in the case of diabetic patients,
since this is generally helpful in controlling their diabetes.
Several tasks are usually carried out routinely at the same
hour, such as working, eating, practicing sports, or injecting
insulin. Thus, by identifying both the hour and the day of
the week, it should be possible to anticipate and predict the
evolution of the system. Another advantage of recording
the schedule is the identification of the basal insulin evolu-
tion. New types of slow-acting insulin [66] have an almost
flat profile, but it should be noted that it is not 100% flat.
Therefore, the hourly absorption and its alterations should
be taken into account. In fact, going further, another innova-
tive variable can be considered: schedule on-board (ScOB),
which can be seen as the persistence in time of a daily routine,
in terms of its impact on glucose levels, when a routine is
changed or modified.

4.2.10. Others. Other features that could be considered in the
system, in order to reach personalized solutions, could be

(i) age

(ii) sex

(iii) height

(iv) weight

(v) body-mass index

There are also some other patient’s features, situations,
and concurrent (chronic or temporary) illnesses that could
affect glucose levels. This issue results in a wide discussion
and varies from a patient to another. For instance, special
attention has also been developed in some particular diabetic
women’s circumstances, like pregnancy [67], where the
deployment of a specific planning has resulted in an
improvement in gestation and childbirth. Continuing with
special situations in the life of diabetic women, it is necessary
to pay attention to menstruation, menopause [68], or the
progression of osteoporosis [69].

In another vein, influence of psychiatric illness has been
discussed in [70], concluding the importance of taking into
account this coexisting disease. Other concurrent illnesses,
especially those derived from diabetes, are also mandatory
to bear in mind and be considered as a “variable” to charac-
terize a diabetes patient. In this area, it is possible to name
cardiovascular and renal impairment [71] and others like
diabetic foot and retinopathy [72], where the importance of
considering these simultaneous circumstances and imple-
menting a combined approach has been successfully probed.
Although the casuistry of these concurrent situations is so
extensive and needs to be studied case by case by specialized
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medical staff, a deep characterization like that exposed in the
present work could provide more exact information and tune
exactly a personal diabetes care.

So, although it would be reasonable to add other variables
if they have any significance, only the ones that can easily be
measured with noninvasive devices are listed above.

Figure 1 summarizes all of the points analyzed in this
section.

5. Case Study: Results of a Comprehensive
Monitoring System

In order to explore the possibilities of the monitoring
described above, a case study was carried out. For that, the
following devices were used:

(1) Abbott Freestyle Libre: this groundbreaking device
allows accurate and affordable 24-hour glucose mon-
itoring. It also makes it possible to register meals as
carbohydrate portions (CP) (one CP is equal to 10 g
of carbohydrate) and the insulin dosage (units)

(2) Fitbit Charge HR: this is an advanced tracking wrist-
band that gives an automatic, continuous heart rate
and activity tracking during workouts and through-
out the day. It records number of steps, distance,

floors climbed, and sleep time. It stays connected
wirelessly and can be synchronized with a smart-
phone and computer to monitor trends. With this
smartband the following features were recorded:
steps, heart rate, and sleep.

Patients also recorded their meal intake and schedule,
indicating periods of work time or playing sports.

Although we listed other features (temperature, blood
pressure, and perspiration), they were not monitored due to
limitations in the chosen devices, and the additional devices
would not have been able to be acquired easily and/or
were not affordable. As this was a preliminary study, we
considered the measured features with the available tools
to be relevant enough to make a first evaluation of the
monitoring experience.

The patient studied was a healthy man, 25 years old,
DM1 for 12 years, and with diabetes under control. We con-
sidered this individual to be a good example for a preliminary
study. He was under continuous monitoring for 14 days. In
this period, he continued with his daily routine, including
work, sports, dietary habits, and insulin dosages. The moni-
toring was carried out in a passive way, so there was no inter-
vention in his diabetes treatment. A physician checked his
medical condition daily, with the aim of assuring the safety
of the process.

Sleep

Temperature

Insulin

Blood pressure

Schedule

Pulse

Trend, historical
data

On-board

Intensity

Notification

Perspiration

Heart rate

Exercise

GlucoseAge
Sex

Height
Weight

Body mass
index

Meal

Figure 1: How to characterize a diabetic person using continuous monitoring devices.
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Data were collected every 5minutes, although it could
have been recorded with a higher frequency. At this rate,
the datasheet comprises more than 24,000 measurements;
the level of detail achieved is really high. However, in terms
of data storage, it is easily affordable.

Figure 2 shows the results from a few days and represents
an example of the results that can be achieved.

As can be observed, the data provides more information
than a simple glucose graph, and, therefore, caregivers can
better understand the phenomena that influence the patient’s
status. With just a glance, it is now possible to understand
glycemia evolution just by looking at the relationship with
physical activity, for example.

Furthermore, all of the data can easily be transmitted to a
smartphone or to the Cloud because of the connections of
the CGM and smartbands, or other medical devices, mainly
via Bluetooth. With all of these values, the possibilities that
arise using machine learning techniques are boundless. It is
in this context that the derived “on-board” variables are
especially meaningful and have sense to be generated, that
this idea encloses aggregative significance, and it is in this
situation where the power of this perspective can be
completely exploited.

6. Challenges to Be Overcome

However, beyond the promising view given above, some
challenges still need to be solved. If we want wearable devices
to play a crucial role in diabetes monitoring and manage-
ment, one aspect that has to be ensured is energy supply.
Batteries are now able to cover several hours (a few days at
best), but we cannot rely on devices which lose power in a
short period of time. On the other hand, another challenge
is to get the prices of these devices lower, since today some
of these devices are unaffordable for some parts of the popu-
lation. Of course, another issue is to ensure their security and
privacy [73]. Finally, it is necessary to deal with the accep-
tance level of telemedicine. A continuous monitoring that
records personal data and provides a complete characteriza-
tion of the patient could be considered to be interference in
their private life. This could lead to an attitude of rejection
from the user. These issues are compiled in [74], where
it is explained that variables such as age, gender, and pre-
vious experiences with telemedicine can modulate its level
of acceptance.

As can be seen, some areas need to be improved on, but,
on the other hand, new horizons now seem to be opening up.
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Figure 2: A complete 24-hour monitoring of a diabetic person.
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Modeling techniques based on artificial intelligence
methods open up the possibility of predicting glycemia and
anticipating actuation. This will help us follow the different
stages of the so-called “Kowalski Path” [75] which needs to
be followed in order to obtain an artificial pancreas. Unfortu-
nately, such methods have not been studied taking into
account the preceding considerations. In this sense, the
fields of work that have been opened up are immense and
promising. Implementing a predictive model in order to
forecast the evolution of the patient is something highly
desirable. It could anticipate risky situations or even provide
decision support. Unfortunately, the development and vali-
dation of models using machine learning techniques are far
from complete, laying aside in all the studies some features
that could improve the model.

A complete monitoring leads to an enormous amount of
data that needs to be transformed into knowledge. In this
regard, it is necessary to study complete technological plat-
forms that allow proper diabetes management, taking advan-
tage of improvements in information and communication
technologies (ICT); however, this is outside the scope of this
paper. These architectures make no sense if they are partial
and consider only some features of the patient’s status. In this
sense, this paper is a good beginning to lay down the basis for
such a purpose, in order for future research to develop a
complete ICT framework for efficient DM1 management.

Developing a fully operational ICT-based platform could
help in information exchange between caregivers and medi-
cal staff, provide a better way to manage emergency situa-
tions, allow pattern identification, and optimize solutions to
deal with DM1.

In addition to these advantages, the clearer and more
complete explanation of the patient’s evolution is a good
benefit, as far as it results in a physician’s better under-
standing of the context of their illness and thus improves
the chosen treatment.

This idea of using ICT and developing a telemedicine
framework has been studied and put into practice many
times, for instance, as early as 2008, the INCA (Intelligent
Control Assistant for Diabetes) system [76] or the DIAdvisor
[77] in 2010, with excellent results. The possibilities of a
remote blood glucose monitoring have also been exposed
more recently in [78]. All of these issues have been specif-
ically analyzed in a previous work of the authors [79],
with an extended evaluation of the historical development
of theses ICT-based platforms, their pros and cons, and a
proposal of a complete diabetes telemedicine system in an
ICT environment.

7. Conclusions

Our world is changing in a very remarkable way and contin-
uously being updated due to advances in technology. All of
these improvements have become revolutionary in many
fields, making life easier in a lot of respects. In the struggle
to obtain a definitive way to monitor and control diabetes,
some improvements have occurred due to the development
of new devices like those with CGM.

However, this monitoring is not enough to fully define
the evolution of a diabetic person. There is a wide set of sub-
jective features that need to be taken into account in the
patient’s mind. This also implies that caregivers cannot ana-
lyze all of the influences on a patient’s condition and this can
lead to a wrong interpretation.

As we have shown, it is now possible to find wearable
monitoring systems that provide a lot of information about
the human body. Smartbands, new medical devices, and
CGM harvest thousands of measurements per day, which
was something unthinkable some years ago. Moreover, as
presented in this paper, a wide and definitely complete range
of novel variables needs to be monitored for a full diabetes
control system, and, furthermore, the idea of “on-board”
has been extended to other features. This compilation had
not been proposed so completely before and allows the
description of patients in a global, comprehensive way. As
an example of the possibilities of this monitoring, a case
study has been discussed.

In future work, we will take advantage of these new per-
spectives. The content of this paper could contribute to the
development of new information and communication tech-
nology (ICT) platforms for a global management system of
DM1, as well as the development of a complete and totally
operational artificial pancreas.
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