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ABSTRACT: Biological switches must sense changes in signal concen-
tration and at the same time buffer against signal noise. While many
studies have focused on the response of switching systems to noise in the
ON state, how systems buffer noise at both ON and OFF states is poorly
understood. Through analytical and computational approaches, we find
that switching systems require different dynamics at the OFF state than at
the ON state in order to have good noise buffering capability. Specifically,
we introduce a quantity called the input-associated Signed Activation Time
(iSAT) that concisely captures an intrinsic temporal property at either the
ON or OFF state. We discover a trade-off between achieving good noise
buffering in the ON versus the OFF states: a large iSAT corresponds to noise amplification in the OFF state in contrast to noise
buffering in the ON state. To search for biological circuits that can buffer noise in both ON and OFF states, we systematically
analyze all three-node circuits and identify mutual activation as a central motif. We also study connections among signal
sensitivity, iSAT, and noise amplification. We find that a large iSAT at the ON state maintains signaling sensitivity while
minimizing noise propagation. Taken together, the analysis of iSATs helps reveal the noise properties of biological networks and
should aid in the design of robust switches that can both repress noise at the OFF state and maintain a reliable ON state.

KEYWORDS: noise, signaling switch, SAT, feedbacks, sensitivity, network motif

Regulatory processes in biology often require switch-like
behaviors that are resistant to noise. Although it has

become clear that feedback loops are critical for mediating
precise switching between mutually exclusive ON and OFF
states in regulatory networks (e.g., calcium signaling,1,2 p53
regulation,3 galactose regulation,4 cell cycle,5−8 and budding
yeast polarization9−13), their relationship to noise propagation
is less clear. For example, some have demonstrated that positive
feedback loops amplify noise and negative feedback loops
attenuate noise,14−16 while others have suggested that positive
feedback loops can also attenuate noise and that there is no
strong correlation between the sign of feedback loops and their
noise propagation properties.17−19 In a particularly insightful
study of the latter, Brandman et al. proposed that two
interlinked positive feedback loops with dual time scales (one
slow and one fast) could effectively reduce noise in signal
output and at the same time respond promptly to an activating
signal.20−25

Since the sign of feedback does not by itself explain the noise
propagation features of biological circuits, is there an intrinsic
quantity that does? To address this question, we previously
conducted a mathematical analysis and discovered that a critical
quantity, termed the signed activation time (SAT), succinctly
captures a system’s ability to maintain a robust ON state under
large disturbances.26 The SAT is defined as the difference
between a switch’s deactivation and activation times multiplied
by input noise frequency. We showed that systems with a small
SAT are easily susceptible to noise in the ON state (intuitively,

this is because input fluctuations can turn the switch off more
quickly than they can turn the switch back on), whereas
systems with a large SAT buffer noise at the ON state (Figure
1). This means that noise attenuation can be achieved even in a
single positive loop system, as long as the dynamics satisfy a
high SAT.
While the focus of the previous study was on the ON state,

many biological systems require a robust switch that not only
prevents spurious deactivation at the ON state, but also
spurious activation at the OFF state. Given that a high SAT
buffers noise at the ON state, it stands to reason that a high
SAT amplifies noise at the OFF state. A trade-off therefore
emerges: how does a biological circuit prevent spurious
activation at the OFF state and, at the same time, deactivation
at the ON state? Here a common property of biological
switches, bistability, sheds light. In the hysteresis region of a
bistable switch, the ON and OFF states are both immune to
changes in input concentration, thereby displaying superior
noise buffering at both states.27−31 If we ask what the SAT is in
this hysteresis region, we quickly realize that there are in fact
two SATs, since the ON state does not deactivate and the OFF
state does not activate. That is, coming from a high input
concentration, the SAT at the ON state is infinity, and coming
from a low input concentration, the SAT at the OFF state is
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negative infinity. The SAT, therefore, is not a single constant
describing a circuit but is associated with the state of the circuit.
Since we are interested in the noise tolerance of the OFF and
ON states, we may introduce two SATs, which we call input-
associated SATs (iSATs), each of which corresponds to the
significantly different mean input concentration at the OFF and
the ON states.
With these new quantities, we hypothesize that systems

exhibiting superior resistance to input noise at both ON and
OFF states are those exhibiting high iSATs at the ON state and
low iSATs at the OFF state. In this paper, we first extend our
mathematical analysis of SATs to noise propagation in the OFF
state of switches, demonstrating that a low SAT indeed leads to
a stable OFF state. We then explore 33 three-node circuits to
find networks that can achieve high iSAT at the ON state and
low iSAT at the OFF state. Though there is a general trade-off,
we identify five networks that readily satisfy this condition.
Interestingly, we find that all five networks share the mutual
activation motif, suggesting the advantage of positive feedback
in buffering noise. More generally, we believe that analyzing a
network’s iSAT values can provide a concise description of how
a circuit may respond to input noise. To further understand

noise management, we also analyze the relation of sensitivity
(or susceptibility), noise amplification rate, and iSATs.

■ RESULTS AND DISCUSSION

Low SAT Leads to a Stable OFF State. One commonly
used quantity to measure noise is the standard noise
amplification rate (NAR) defined as the ratio of the coefficient
of variation between the output and the input:32,33

= ⟨ ⟩
⟨ ⟩

c c
u u

NAR
std( )/
std( )/ (1)

where c is the output, u is the input, ⟨·⟩ represents the mean,
and std(·) denotes the standard deviation. Direct application of
NAR to the OFF state, however, leads to loss of one critical
piece of information for switches: the relative size of the mean
output to the distance between ON and OFF states. To
illustrate this notion, in Figure 2a we present two systems with
similar NAR. Yet system I is superior because the output stays
closer to the OFF state, as the distance between the ON and
the OFF in system I is larger. This example suggests the need
for a measurement that not only takes into account variations in

Figure 1. SAT and noise attenuation property at the ON state. (a) The single positive feedback module.20 (b) The definition of SAT. ω is the noise
frequency in the input. (c) Comparing outputs of systems with large SAT and small SAT when giving inputs without (left) and with noise (right).

Figure 2. SAT and noise attenuation property at the OFF state. (a) Systems I and II have similar NAR, but system I stays closer to the OFF state
than system II. (b) Comparison of outputs of systems with large SAT and small SAT when given inputs without (left) and with (right) noise. (c)
NARoff and SAT have a positive relationship in the single positive feedback module, the double positive feedback module, the polymyxin B resistance
model in enteric bacteria, and the yeast cell polarization system.

ACS Synthetic Biology Research Article

dx.doi.org/10.1021/sb400044g | ACS Synth. Biol. 2013, 2, 587−593588



the output but also considers its deviation from the OFF state.
We therefore first introduce a more appropriate measurement
of noise in this context, defined as the deviation from the OFF
state, normalized by the distance between the steady state ON
and OFF values:

=
⟨ − ̅ ⟩ ̅ − ̅

⟨ ⟩
c c c c

u u
NAR

( ) /( )

std( )/off
0

2
1 0

(2)

Here, c1̅ and c0̅ are the steady state values of output
corresponding to static inputs at ON and OFF, respectively.
Using this new measurement, system I in Figure 2a has a
smaller NARoff than system II, indicating a more desirable noise
property at the OFF state. Consequently, systems with a low
NARoff are capable of attenuating local fluctuations at the OFF
state as well as staying away from the ON state. The NAR
defined in eq 1 will still be used to measure noise amplification
at the ON state and will be denoted by NARon thereafter.
Naturally, we ask what the relation between SAT and NARoff

is and how SAT affects the noise property at the OFF state.
Intuitively, a system that responds slowly to a pulse signal and
falls back quickly after removal of the signal would tend to stay
close to the OFF state. It is therefore natural to speculate that a
strongly negative SAT (t1→0 < t0→1) leads a low NARoff.
This conjecture is immediately confirmed by numerical

simulations in a single positive feedback module: smaller SAT
corresponds to better noise attenuation at the OFF state
(Figure 2b and the first panel in Figure 2c). To further explore
the generality of this result, we simulated a double positive
feedback module,20 a polymyxin B resistance model in enteric
bacteria,34 and a yeast cell polarization system35 (Supporting
Information, Section A). In all simulations, selected parameters
were randomly varied following a log uniform distribution in
the 20-fold range of the base parameters in the original models
(Tables S1−4, Supporting Information, Section A). All
simulations consistently demonstrate a positive correlation
between the NARoff and SAT (Figure 2c). We also investigated
the effect of using different frequencies and distributions in the
input noise. The overall positive relation between SAT and
NARoff remains true (Supporting Information, Section B.7).
Attenuating Noise at Both ON and OFF. With the

“design principles” for the OFF state in the previous section
and those concluded in ref 26 for the ON state, a natural
question arises: Can one find a system that attenuates noise at
both ON and OFF states? At the first thought, it seems
impossible. A system with large SAT amplif ies noise at the OFF
state but attenuates noise at the ON state; however, a system
with small SAT attenuates noise at the OFF state but amplif ies
noise at the ON state (Figure 1c and Figure 2b). The dilemma
resolves when a system can have different SATs at the ON and
OFF states, which can be captured by the introduction of the
input-associated SATs (iSATs):

ω= − ·→ →t tiSAT ( )high low low high (3)

Here, tlow→high is defined as the response time to a signal
changing from ulow to uhigh, and thigh→low is defined as the
response time to a signal changing from uhigh to ulow (Figure 3a
green bars, and Supporting Information, Section A). As a result,
the SAT in ref 26 is a special case of when ulow = 0 and uhigh = 1.
Considering that the mean, variance, and frequency of the

inputs at the ON and the OFF states are usually significantly
different, the iSAT of a system should be allowed to vary
between the ON and OFF states. Figure 3a shows a case where

the input varies in [0, 1] at the ON state (gray lines in Figure
3a left panel) and [0, 0.2] at the OFF state (gray lines in Figure
3a right panel). At the ON state the new iSAT remains the
same as SAT, whereas at the OFF state it is now defined to be
associated with the response time to pulses ranging from 0 to
0.2 and 0.2 to 0. In this particular case, the iSAT is positive at
the ON state and negative at the OFF state. For convenience,
we hereafter denote the iSAT at the ON state as iSATon and the
iSAT at the OFF state as iSAToff. Compared with the original
definition of SAT in ref 26, iSAT exhibits a stronger
relationship with sensitivity of the system (introduced in the
following section), given the same noise attenuation level
(Figure S4b, Supporting Information).
Now if we examine the relation between iSAT and the noise

amplification rate for the single positive feedback module, it is
not hard to find a system with a good noise attenuation
property at both ON and OFF states. One such case illustrated
in Figure 3c has an iSATon = 28.8 and iSAToff = −10.1.
To search for general systems that attenuate noises at both

ON and OFF states, we systematically explore all three-node
circuits, composed of an input node (I), an output node (O),
and an intermediate node (A) (Figure 4a). The output and

Figure 3. Relation of iSAT and NAR in the single positive feedback
module. (a) Left: iSATon is positive (tlow→high < thigh→low) with respect
to the stochastic input varying between 0 and 1 (the light gray curve in
the background). Right: iSAToff is negative (tlow→high > thigh→low) with
respect to the stochastic input varying between 0 and 0.2 (the light
gray curve). (b) In the single positive feedback module, iSATon has a
negative relation with NARon, and iSAToff has a positive relation with
NARoff. The triangles point to desirable parameter sets that give rise to
high iSATon and low iSAToff. (c) A single positive feedback module
with small NARoff and NARon at the same time. Left: a noisy input
signal ranging uniformly from 0 to 0.1 at the OFF state and 0 to 0.5 at
the ON state. Right: the output corresponding to the positive feedback
system with k1 = 7, k2 = 1, k3 = 0.001, k4 = 0.01, and τb = 0.003.
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intermediate nodes can have incoming arrows, outgoing arrows,
or no arrow, but the input node is not allowed to have
incoming arrows, that is, the input is not subject to regulations
from the output or the intermediate node. Each arrow can be
either positive (activation) or negative (repression). Among all
81 possible configurations of the networks captured by this
formulation, 33 of them are capable of producing the desired
switching behaviors, that is, the output is high with a high input
and low with a low input (Figure S2, Supporting Information,
Section A.5).
Each network structure can give rise to a range of noise

properties when varying the values of parameters. To identify
networks that attenuate noise at both the ON and OFF states,
around 6 × 104 random parameter sets were generated for each
network, and the corresponding iSATs associated to the ON
signal and the OFF signal were calculated, respectively. Here
we define the “good iSAT region” as the top left corner in the
iSATon−iSAToff plane (above the red dotted lines in Figure 5a
as defined in the Supporting Information, Section A.5).
Networks in this region can give rise to large (positive) iSATon
and small (negative) iSAToff and are expected to attenuate

noise at both states. We identify five systems (Figure 4b) that
have parameter sets falling in this region (Figure 5a).
Interestingly, all five networks contain the mutual activation
motif. This is likely due to the fact that the positive feedback
slows down the temporal dynamics to provide a longer
averaging time beneficial to noise buffering.
Next, we confirm that these five mutual activation systems

show an advantage in noise management. The NARon and
NARoff can be computed by giving a noisy signal to the
networks defined by the 6 × 104 random parameters. The
density plot is shown in Figure 5b. The same group of five
networks is found to have better noise property at both states.
To quantitatively compare the noise properties among

different networks, we define the “low noise region” as the
bottom left corner in the NARon−NARoff plane (under the
green dotted lines in Figure 5b as defined in the Supporting
Information, Section A.5). Points in this region have low noise
level at both ON and the OFF states. In all 33 systems, on
average 0.4% of the points fall in the “low noise region”, while
for systems corresponding to the “good iSAT region”, this
average percentage increases to 77%. Moreover, all points in
the “low noise region” are contributed by the five mutual
activation systems.
Compared to the simplest two-node linear network (network

27) that directly transmits an input signal to the output node,
networks with extra regulation from the intermediate node
(e.g., networks 19, 20, and 23) generally show a wider range of
iSATs and hence have a better chance at noise attenuation.
Among them, the ones with the mutual activation motif (e.g.,
network 19) are capable of reaching the “good iSAT region”,
which leads to the best noise attenuation at both ON and OFF
states (Figure 6).
Still, a trade-off between the NARon and NARoff exists for a

majority of the networks: Data lie on the diagonal region of the
NARon−NARoff plane, showing a negative correlation of the
noise amplification rates between the ON and OFF states

Figure 4. Three-node networks. (a) All possible three-node networks.
Red arrows denote positive regulations, and blue ones represent
inhibitions. I, the input; A the intermediate node; O, the output. (b)
Five network structures that result in large iSATon and small iSAToff.

Figure 5. Temporal and noise properties for all 33 networks. (a) The density plot of iSATon vs iSAToff. The top left corner above the red dotted line
is the “good iSAT region”. Only networks 1, 10, 19, 28, and 31 have points in that region. (b) The density plot of NARon vs NARoff. The bottom left
corner under the green dotted line is the ″low noise region″. Only networks 1, 10, 19, 28, and 31 have points in that region.
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(Figure 5b). This implies that when a system is capable of
attenuating noise at the ON state, it often comes at the cost of
large noise amplification at the OFF state, and vice versa.
To further investigate the five mutual activation systems’

noise properties, we sampled a set of random parameters six
times larger than those in Figure 5. We evaluate a system’s
iSAT property by how close it is to the ideal case (the star
symbol in Figure 7a). The “good iSAT region” is further
divided into 4 groups (groups 2−5). Systems with a larger
group number are closer to the ideal case and are defined to
have better iSAT property (larger iSATon and smaller iSAToff).

Group 1 consists of all other points falling outside the “good
iSAT region”. Figure 7 shows that for mutual activation
systems, the better their iSAT property is, the better chance
they have to achieve good noise attenuation (Figure 7b). In
particular, independent of the specific mutual activation system
chosen, the majority of the points lying in the second quadrant
of the iSAToff−iSATon plane (Figure 7a) have values of NAR in
the “low noise region” for both ON and OFF states.
Finally, we studied the single positive feedback system using

different types of equations, specifically, mass-action kinetics
versus Michaelis−Menten kinetics, to explore the relationship
between SATs and NARs. We find consistent results among
different representations of the same regulatory system
(Supplementary Figure S8). In addition, we plot the relation-
ship in the 33 three-node networks. It is interesting to observe
that while the relationship between SATs and NARs shows a
clear trend, there seems to be more outliers in the OFF state
(Supplementary Figure S9). It is not surprising that NARs are
likely to depend on other factors, as seen in our analytical
studies of iSAToff and NARoff (e.g., eqs 19 and 22 in Supporting
Information, Sections B.4 and B.5).

Sensitivity, iSAT, and Noise Amplification Rate at the
ON State. Although it is important to control noise
amplification at both ON and OFF states, a useful system
must be able to respond to the input signal with sufficient
sensitivity. One way to estimate how sensitively a system
responds to an input at the ON state is by evaluating the
sensitivity (or susceptibility) of the output in response to an
infinitesimally small perturbation in the input: s(u) = d(ln c)/
d(ln u), in which u is evaluated at the ON state in the input and
c is the output. Naturally, the noise amplification rate and the
level of sensitivity of a system in the ON state exhibits a
positive correlation.36 But how do the noise amplification rate,
iSAT, and the sensitivity relate to each other?
We study these relationships by first analyzing the single

positive feedback module at the ON tate. The analytical
estimate of the simple system suggests an interesting role of
iSATon in connecting NARon and the sensitivity, denoted son
(Supporting Information, Section B.3):

≈
s

NAR
iSATon

on

on (4)

First, we notice a positive relationship between son and
NARon in eq 4. One challenge for noise management in a
switching system is simultaneously attaining low NARon and
high son, as sensitivity to signal change seems inevitably linked
to sensitivity to noises in the signal. Interestingly, our analysis
reveals that by increasing iSATon, a low noise amplification rate
and large sensitivity can be achieved simultaneously. Direct
simulations of the single positive feedback module as well as the
other three more complex systems, including the double
positive feedback module, the polymyxin B resistance model in
enteric bacteria, and the yeast cell polarization system, support
and confirm this analytical relationship (Figure 8a).
Next, eq 4 indicates that the NARon and iSATon are

negatively correlated with a fixed son, which is further confirmed
through direct simulations of the four systems (Figure 8b). The
result is consistent with the previous findings in ref 26 based on
SATs (Figure S4a, Supporting Information). As expected, from
eq 4, we observe a positive correlation between the noise
amplification rate and sensitivity, as demonstrated in previous
studies.17,19

Figure 6. iSATs and noise properties for four sample networks. (a)
From left to right: linear cascade, mutual activation, interlinked
positive and negative feedback loop, and mutual inhibition. (b) iSAToff
vs iSATon. (c) NARon vs NARoff. Panels b and c share the same 5000
randomly chosen data sets. (d) Typical output from each network.
Dashed blue line: concentration of the output over time with a noise-
free input. Solid red line: concentration of the output over time with a
noisy input.

Figure 7. iSAT as an indicator of noise properties in the five mutual
activation systems. (a) The randomly selected parameters used for the
simulation are grouped into five groups (regardless of the choice of the
five systems) according to their distance to the upper left corner (the
spot indicated by the star). (b) The systems with parameters
corresponding to better iSAT property (smaller iSAToff and larger
iSATon) consistently show larger proportion falling in the “low noise
region”.
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Finally, these results are further validated by a two-sample t
test between the high iSATon group (highest quartile) and the
low iSATon group (lowest three quartiles). The mean ratio of
NARon and sensitivity in the high iSATon group is significantly
larger than that of the low iSATon group, for all four models
studied. This demonstrates that when iSATon is small, the ratio
of sensitivity and NARon are small, and when iSATon is large,
the ratio of sensitivity and NARon are large.
Interestingly, at the OFF state, only a weak positive relation

between NARoff and sensitivity can be observed for the single
positive feedback module according to our analysis (Supporting
Information, Section B.6). However, the trend is not observed
in more complex systems, and our numerical simulations do
not show a consistent monotonic correlation of the two
quantities. By scrutinizing the expression of NARoff, one
intuitive explanation is that increasing the sensitivity increases
both the denominator and the numerator. Thus, a monotonic
relation between soff and NARoff should not be expected.
Finally, we would like to comment that the input noise used

here is monochromatic. When varying the input noise
frequency (Supplementary Figure S6) or replacing the
uniformly distributed noise by the white noise (Supplementary
Figure S7), the relations among NAR, iSAT, and sensitivity are
conserved in the single positive feedback module. When the
input noise is a superimposition of noises with different
frequencies, one may use Fourier Transform to decompose the
input into noises with frequency ωi and amplitude ai. It is likely
that the one with the smallest frequency has more weight in the
overall SAT, as also indicated by the two-time-scale asymptotic
expansion of the solutions to the single positive feedback
system, which has shown that fast varying noises are filtered out
in such case.26

■ METHOD

All simulations were performed in Mathematica 8.0.37 Data
analysis and visualization were generated by Matlab 2010b38

and R 2.15.2.39 Please see Supporting Information for more
details for the models, simulations, and mathematical analysis.
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