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Abstract: The diagnosis of sarcopenia requires accurate muscle quantification. As an alternative to
manual muscle mass measurement through computed tomography (CT), artificial intelligence can be
leveraged for the automation of these measurements. Although generally difficult to identify with the
naked eye, the radiomic features in CT images are informative. In this study, the radiomic features
were extracted from L3 CT images of the entire muscle area and partial areas of the erector spinae
collected from non-small cell lung carcinoma (NSCLC) patients. The first-order statistics and gray-
level co-occurrence, gray-level size zone, gray-level run length, neighboring gray-tone difference, and
gray-level dependence matrices were the radiomic features analyzed. The identification performances
of the following machine learning models were evaluated: logistic regression, support vector machine
(SVM), random forest, and extreme gradient boosting (XGB). Sex, coarseness, skewness, and cluster
prominence were selected as the relevant features effectively identifying sarcopenia. The XGB model
demonstrated the best performance for the entire muscle, whereas the SVM was the worst-performing
model. Overall, the models demonstrated improved performance for the entire muscle compared
to the erector spinae. Although further validation is required, the radiomic features presented here
could become reliable indicators for quantifying the phenomena observed in the muscles of NSCLC
patients, thus facilitating the diagnosis of sarcopenia.

Keywords: sarcopenia; radiomic feature; machine learning; identification; computed tomography

1. Introduction

Sarcopenia is an illness accompanied by the loss of muscle mass and muscle strength
that becomes more prevalent with age. Sarcopenia is closely associated with injury, de-
creased functioning, and death [1]. With the accelerated aging of the worldwide population
in recent years, the prevalence of sarcopenia is increasing. The number of global cases
is expected to increase from 50 million in 2010 to 200 million by 2050 [2,3]. Accordingly,
sarcopenia is recognized as one of the most serious threats to public health from clinical,
social, and economic perspectives [4].

The accurate quantification of muscles is required for the accurate diagnosis of sar-
copenia. The quantity and quality of muscles are the main factors to be measured. In
particular, muscle quantity is one of the most important indicators for diagnosing sarcope-
nia. Various methods have been proposed to measure muscle quantity accurately. The most
accurate method is to measure the muscle mass manually via computed tomography (CT)
or magnetic resonance imaging [5]. However, this approach requires enormous amounts
of time and energy. Recently, various attempts at automated measurements of muscle
mass have been made using artificial intelligence (AI). In 2020, Blanc-Durand et al. trained
a convolutional neural network model using 1025 CT slices to distinguish the muscle
areas and reported a dice similarity coefficient (DSC) of 0.97 in 500 test sets that had been
separately developed [6]. In the same year, Park et al. trained a fully convolutional network
model using 883 L3-level CT slices obtained from 467 patients in an attempt to divide the
muscle, subcutaneous fat, and visceral fat and reported a DSC of 0.97 in 426 test sets of
308 patients [7].
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In most existing AI-based studies, scholars have attempted to quantify the muscle mass
in a prompt and convenient manner. CT images display not only the quantity of muscles,
but also provide many other types of information that are difficult to identify with the
naked eye [8]. If further quantifiable information about muscles can be acquired from CT
images, it will be useful in the diagnosis of sarcopenia. Researchers have recently reported
that the CT-derived skeletal muscle radiodensity is closely related to sarcopenia [9–11].
In 2020, Ebadi et al. reported that the CT images of hepatocirrhosis patients showed a
significant difference (p < 0.05) in radiodensity between non-sarcopenia and sarcopenia
patients in both men and women [9]. In the case of sarcopenia, such a difference in
radiodensity can be indicated by the texture of a muscular cross-section or a structural
difference that can also be described by the radiomic features in the radiological area.
Radiomic features are obtained from medical images by applying various quantification
methods to the features that are difficult to recognize with the naked eye. As quantified
information, radiomic features are used to explain the radiological properties of tumors and
other diseases [12]. Such radiomic features enable the phenomena present in a muscular
cross-section caused by an increase or decrease in the muscle to be quantified and digitized
into various radiological indicators. If radiomics techniques can respond sensitively to the
phenomena present on a muscular cross-section, they can be used to identify sarcopenia
through classifiers such as machine learning.

In this study, we aimed to find radiomic features that are useful for identifying
sarcopenia in CT images of non-small cell lung cancer (NSCLC) patients and to verify
the performance of machine learning in identifying radiomic features for the diagnosis of
sarcopenia.

2. Materials and Methods
2.1. Ethics Statement

This retrospective study was approved by the Institutional Review Board (IRB) of
Gachon University Gil Medical Center, and the requirement of the informed consent of the
patients was waived (GCIRB 2020-251, 30/06/2020).

2.2. Data Collection

We retrospectively collected the CT data of 247 patients diagnosed with pathologically
proven NSCLC at the Gil Medical Center of Gachon University between January 2011 and
December 2016. To eliminate the effects of external factors as much as possible, we limited
the participants of this study to NSCLC patients. The patients included 149 men (60.32%)
and 98 women (39.68%). The average age of the male patients was 63 ± 9.26 years (range:
36–81 years), and the average age of the female participants was 62 ± 10.38 years (range:
33–80 years).

To train the machine learning model, we divided the datasets into training data
and test data. For use as the test data, 20% of the data were randomly selected from
the sarcopenia group and the non-sarcopenia group separately (sarcopenia, n = 12; non-
sarcopenia, n = 37). The remaining data were used as the training data (sarcopenia, n = 49;
non-sarcopenia, n = 149). Figure 1 provides a flowchart of the data collection and analysis
procedures.
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Figure 1. Flowchart of sarcopenia data collection and analysis. NSCLC, non-small cell lung carcinoma; GLCM, gray-level
co-occurrence matrix; GLSZM, gray-level size zone matrix; GLRLM, gray-level run length matrix; NGTDM, neighboring
gray-tone difference matrix; GLDM, gray-level dependence matrix; SMOTE, synthetic minority oversampling technique;
LR, logistic regression; SVM, support vector machine; RF, random forest; XGB, extreme gradient boosting.

2.3. CT Examinations

The patients underwent contrast-enhanced multi-detector CT scans (Somatom Defini-
tion 64, and Somatom Definition Flash, Siemens Medical Solutions, Erlangen, Germany). A
contrast agent was injected at a volume of 2 mL/kg of body weight (maximum 150 mL)
through an 18-gauge peripheral venous access device at a flow rate of 4 mL/s and portal
venous imaging was obtained one minute after achieving a 50 HU enhancement of the
descending aorta.

2.4. Definition of Sarcopenia

To define sarcopenia, we quantified the muscular areas using an in-house-developed
software program (Gachon_DeepBody, developed in the GCUMC, Incheon, Korea) and the
collected L3 CT images. Gachon_DeepBody automatically extracts the images of muscles,
subcutaneous fat, and visceral fat through a trained U-Net-based deep learning model and
provides the areas of each body component [13] (see Figure 2). Using the software program,
we automatically identified the muscles in the CT images and secured the muscular areas
at the L3 level by manually correcting the erroneously identified areas. The identified areas
were also reviewed and corrected by a radiologist with 13 years of experience.



Int. J. Environ. Res. Public Health 2021, 18, 8710 4 of 14

Figure 2. Areas of body components identified by Gachon_DeepBody: muscle (green), subcutaneous fat (red), visceral
fat (yellow).

We calculated the L3 muscle indices (L3MI, cm2/m2) by normalizing the cross-
sectional area of the entire muscle for height at the L3 level. Sarcopenia was defined
as an L3MI of less than 55 cm2/m2 for men and less than 39 cm2/m2 for women, as pro-
posed by the International Consensus for Cancer Cachexia [14]. Based on each cut-off, the
presence of sarcopenia was determined in all data, which were used as ground truth data
after a final review by the radiologist.

2.5. Regions of Interest (ROIs) on Muscle

ROIs for two types of muscle were also defined to perform comparisons of the muscles,
from which radiomic features were to be extracted. The first ROI was defined as the overall
muscle area, and the second was defined as a part of the erector spinae muscle.

The muscle areas obtained from the L3MI calculation process were used for the ROI
of the overall muscle area. ImageJ (version 1.53e), opensource software provided by the
National Institutes of Health (NIH, Bethesda, MD, USA), was used to define the ROI
of the partial areas of the erector spinae muscle. Box-shaped ROIs with dimensions of
1.5 cm × 1.5 cm were drawn in the left and right erector spinae muscles, respectively, on an
L3 level CT slice. Two ROIs were collected from each patient. Figure 3 provides examples
of the ROIs that were collected.
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Figure 3. Examples of ROIs for two types of muscles. ROI for the entire muscle area (left), ROI for the left and right erector
spinae muscles (right).

2.6. Radiomic Feature Extraction

Using the CT images, we extracted radiomic features from the CT values in each
ROI, either for the entire muscle area or for the partial areas of the erector spinae mus-
cle. A Python package called Pyradiomics (version 3.6.2, https://github.com/Radiomics/
pyradiomics.git, (accessed on 1 July 2021) was used to extract these features [15]. Pyra-
diomics is an open-source platform for extracting radiomic features from medical images.
We used Pyradiomics to analyze the following six types of radiomic features, excluding
morphological features: first-order statistics, gray-level co-occurrence matrix (GLCM),
gray-level size zone matrix (GLSZM), gray-level run length matrix (GLRLM), neighboring
gray-tone difference matrix (NGTDM), and gray-level dependence matrix (GLDM) [16].

The first-order statistics indicate the distribution of pixel intensities within an area [17].
The GLCM explains a joint probability function by representing the number of combinations
of two neighboring pixels in an area through a matrix [18]. The GLSZM quantifies the
number of connected pixels in a matrix that share the same gray-level intensity in an
area [19]. The GLRLM quantifies the lengths of successive pixels in a matrix that have
the same gray-level value in an area [20]. The NGTDM quantifies the difference between
adjacent gray-level values within a specified distance through a matrix [21]. The GLDM
quantifies the dependence of gray-levels in an area through a matrix [22]. The dependence
of the gray-level is defined as the number of pixels connected within a particular distance
and is dependent on the center pixel. In this study, we extracted 94 radiomic features:
19 first-order statistics features, 24 GLCM features, 16 GLSZM features, 16 GLRLM features,
5 NGTDM features, and 14 GLDM features. As different cut-offs are used to diagnose
sarcopenia for different sexes, we added the variable of sex, yielding a total of 95 radiomic
features.

2.7. Feature Selection

Of the 95 features, those with variance inflation factors (VIFs) of 10 or above were
considered to be multicollinear and were removed. The permutation feature importance
algorithm was implemented for the remaining variables to derive the importance of each

https://github.com/Radiomics/pyradiomics.git
https://github.com/Radiomics/pyradiomics.git
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feature. This algorithm calculates the importance by determining the change in a particular
score, whereas the index of each feature is randomly shuffled in a model that has been
initially trained once [23,24]. As illustrated in Figure 4, four features (sex, coarseness,
skewness, and cluster prominence) were selected.

Figure 4. Feature importance plot showing the relative importance of four features with respect to the identification of
sarcopenia and non-sarcopenia groups.

2.8. Machine Learning Model to Identify Sarcopenia

We trained machine learning models to distinguish between sarcopenia and non-
sarcopenia using the already-constructed training data. Four types of machine learning
models were trained for comparisons: logistic regression (LR), support vector machine
(SVM), random forest (RF), and extreme gradient boosting (XGB).

LR is a statistical method for predicting the probability using a linear combination of
independent variables. LR classifies values by applying a logistic function to a coefficient
calculated via linear regression [25]. The SVM technique is a classification model for
determining a hyperplane in which the margin or distance between each data group and
the baseline for classifying the data is maximized [26]. As an ensemble model with an
expanded form of the decision tree method, the RF approach develops multiple decision
trees and determines a result with the optimal performance based on the votes for the
classification of each tree [27]. XGB was developed to overcome the disadvantages of
gradient boosting. The execution of this algorithm is rapid, and it demonstrates excellent
prediction performance. It also includes the function of overfitting regularization, which
performs internal cross-validation in each iterative execution [28].

We selected the optimal parameters for each machine learning model through a grid
search [29] (see Table 1). To prevent data imbalances, we also performed oversampling
of the training data for the sarcopenia group by implementing a synthetic minority over-
sampling technique (SMOTE) algorithm and subsequently trained the machine learning
models [30].
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Table 1. Parameters used in the four types of machine learning models.

Model Parameters

LR C: 7.079, penalty: 12, random state: 1818
RF max depth: 27, min samples split: 7, n estimators: 80, random state: 1818

SVM C: 141.3094, gamma: 25.7714, probability: True, random state: 1818
XGB max depth: 2, learning rate: 0.0093, n estimators: 979, random state: 1818

LR, logistic regression; SVM, support vector machine; RF, random forest; XGB, extreme gradient boosting.

2.9. Statistical Analysis

The identification performance of each machine learning model (LR, SVM, RF, and
XGB) was evaluated in terms of the accuracy, sensitivity, specificity, positive predictive
value (PPV), and negative predictive value (NPV), which were calculated based on the true
positive (TP), false positive (FP), false negative (FN), and true negative (TN). To evaluate the
predictive performance of each machine learning model, we calculated the area under the
curve (AUC) of the receiver operating characteristic (ROC) curve. The Delong method [31],
based on non-parametric statistics, was used to compare the AUC of the ROC curves,
whereas the Bonferroni method was used to correct for statistical multiplicity.

The machine learning models and their identification performances were evaluated
using the scikit-learn library (version 0.23.2). The statistical analysis of the ROC was
performed using MedCalc (version 14.0, MedCalc Software Ltd., Mariakerke, Belgium).
Clinical data were statistically analyzed using SPSS (version 20, IBM Corp., Armonk, NY,
USA). Statistical significance was set at p < 0.05.

3. Results

The basic characteristics of the patients in the sarcopenia and non-sarcopenia groups
were collected, as shown in Table 2.

In this study, we selected four features and trained each machine learning model using
them. Next, we compared the sarcopenia identification performances of these models
based on the separately constructed testing data. Five-fold cross-validation was employed
because the test data were not sufficient. Training and validation were iterated five times,
and every dataset was used for validation once. Table 3 and Figure 5 present the results of
the cross-validation for the sarcopenia identification performance of each machine learning
model.

Table 2. Characteristics of the patients in the sarcopenia and non-sarcopenia groups and comparisons
between the groups.

Characteristics
Number of Patients (%)

p ValueSarcopenia
(n = 61)

Non-Sarcopenia
(n = 186)

Age (years) 63.508 ± 9.230 62.263 ± 9.790 0.3831
Sex <0.0001

Males 54(88.5%) 89(47.8%)
Females 7(11.5%) 97(52.2%)

Height (cm) 1.655 ± 0.078 1.598 ± 0.085 <0.0001
Weight (kg) 58.557 ± 9.368 64.237 ± 10.668 0.0003

BMI (kg/m2) 21.324 ± 2.745 25.089 ± 3.196 <0.0001
L3 muscle index (cm/m2) 129.975 ± 20.979 148.538 ± 37.137 <0.0001

L3 VAT area (cm/m2) 100.661 ± 58.589 132.677 ± 65.647 0.0008
L3 SAT area (cm/m2) 99.180 ± 57.466 153.101 ± 68.319 <0.0001

Histology (%) 0.0358
ADC 32(53.3%) 129(69.0%)
SCC 24(40.0%) 43(23.0%)

Others 4(6.7%) 15(8.0%)
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Table 2. Cont.

Characteristics
Number of Patients (%)

p ValueSarcopenia
(n = 61)

Non-Sarcopenia
(n = 186)

Neoadjuvant therapy (%) 5(8.3%) 11(5.9%) 0.7116
Operation type (%) 0.4267

Lobectomy 51(85.0%) 168(89.8%)
Others 9(15.0%) 19(10.2%)

Pathologic stage (%) 0.1619
IA 17(28.3%) 66(35.3%)
IB 16(26.7%) 51(27.3%)

IIA 13(21.7%) 26(13.9%)
IIB 4(6.7%) 4(2.1%)

IIIA 8(13.3%) 38(20.3%)
IV 2(3.3%) 2(1.1%)

Values are the mean ± standard deviation or counts (proportions). p-value: Student t-test. BMI, body mass index;
VAT, visceral adipose tissue; SAT, subcutaneous adipose tissue; ADC, adenocarcinoma; and SCC, squamous cell
carcinoma.

Table 3. AUC, sensitivity, specificity, PPV, and NPV of each machine learning model for the identification of sarcopenia in
the entire muscle and the erector spinae muscle.

AUC
(95% CI)

Accuracy
(95% CI)

Sensitivity
(95% CI)

Specificity
(95% CI)

PPV
(95% CI)

NPV
(95% CI)

(Entire muscle)

LR 0.832
(0.779–0.876)

0.777
(0.720–0.828)

0.803
(0.682–0.894)

0.769
(0.702–0.827)

0.533
(0.460–0.604)

0.923
(0.877–0.952)

SVM 0.778
(0.721–0.828)

0.790
(0.733–0.839)

0.377
(0.256–0.510)

0.925
(0.877–0.958)

0.622
(0.475–0.749)

0.819
(0.788–0.847)

RF 0.828
(0.775–0.873)

0.798
(0.742–0.846)

0.721
(0.592–0.829)

0.823
(0.760–0.875)

0.571
(0.485–0.653)

0.900
(0.857–0.931)

XGB 0.837
(0.758–0.881)

0.822
(0.768–0.868)

0.771
(0.645–0.869)

0.839
(0.778–0.889)

0.610
(0.523–0.691)

0.918
(0.875–0.947)

(Erector spinae muscle)

LR 0.750
(0.691–0.802)

0.664
(0.601–0.723)

0.771
(0.645–0.869)

0.629
(0.555–0.699)

0.405
(0.351–0.462)

0.893
(0.839–0.931)

SVM 0.556
(0.492–0.619)

0.717
(0.656–0.772)

0.131
(0.058–0.242)

0.909
(0.858–0.946)

0.320
(0.176–0.509)

0.761
(0.741–0.780)

RF 0.697
(0.636–0.754)

0.692
(0.631–0.749)

0.590
(0.457–0.715)

0.726
(0.656–0.789)

0.414
(0.340–0.491)

0.844
(0.798–0.881)

XGB 0.693
(0.631–0.750)

0.656
(0.593–0.715)

0.607
(0.473–0.729)

0.672
(0.600–0.739)

0.378
(0.313–0.447)

0.839
(0.790–0.878)

LR, logistic regression; SVM, support vector machine; RF, random forest; XGB, extreme gradient boosting; AUC, area under the curve; PPV,
positive predictive value; NPV, negative predictive value; CI, confidence interval.
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Figure 5. Comparison of ROC curves among different machine learning models for the identification of sarcopenia. The left
graph presents the ROC curves of the entire muscle, where XGB has the highest AUC. The right graph shows those of the
erect spinae muscle, where LR has the highest AUC. LR, logistic regression; SVM, support vector machine; RF, random
forest; XGB, extreme gradient boosting; ROC, receiver operating characteristic; AUC, area under the curve.

Cross-validation revealed that the XGB model exhibited the best performance for
the entire muscle. The XGB model exhibited evenly distributed sensitivity (0.771, CI:
0.645–0.869) and specificity (0.839, CI: 0.778–0.889), and the highest accuracy (0.822, CI:
0.768–0.868). On the other hand, the SVM model exhibited the worst performance. The
accuracy of SVM (0.790, CI: 0.7332–0.839) was lower than that of LR (0.777, CI: 0.720–0.828).
However, LR demonstrated evenly distributed sensitivity (0.803, CI: 0.682–0.894) and speci-
ficity (0.769, CI: 0.702–0.827), whereas SVM exhibited biased results between sensitivity
(0.377, CI: 0.256–0.510) and specificity (0.925, CI: 0.877–0.958). In the case of the erector
spinae muscle, the LR model demonstrated the best performance. Although the accuracy
of the RF model (0.692, CI: 0.631–0.749) was slightly higher than that of the LR model (0.664,
CI: 0.601–0.723), the LR model exhibited superior performance in terms of the deviation
between sensitivity and specificity. The SVM model exhibited the worst performance. The
SVM model exhibited a large deviation between sensitivity (0.131, CI: 0.058–0.242) and
specificity (0.909, CI: 0.858–0.946), and the lowest accuracy (0.556, CI: 0.492–0.619). In the
comparison between the entire muscle and the erector spinae muscle, all models exhibited
higher accuracy, sensitivity, specificity, PPV, and NPV for the entire muscle than for the
erector spinae muscle.

In the comparative analysis of the AUC between the models, the XGB model exhibited
a statistically significant difference compared to SVM (p = 0.0008) and RF (p = 0.0245),
respectively, but it showed no significant difference with LR (p = 0.0533). The ROC analysis
of the erector spinae muscle achieved the highest performance with the LR model (0.750,
CI: 0.691–0.802). In the comparative analysis of the AUC between the models, the LR
model exhibited a statistically significant difference compared to SVM (p = 0.0001) and XGB
(p = 0.0331), respectively, but it showed no significant difference with RF (p = 0.0696). The
AUC of each model was found to be greater for the entire muscle than for the erector spinae
muscle. Additionally, SVM (p = 0.0005), RF (p = 0.0037), and XGB (p = 0.0001) indicated a
statistically significant difference in AUC between the entire muscle and the erector spinae
muscle, but the results of LR (p = 0.0716) were not significant different.

Figure 6 shows a heatmap of the effects of the four features on the identification
of sarcopenia in each machine learning model. In all the models, the most influential
parameter for the identification of sarcopenia was sex, with heatmap values of 0.363 for
LR, 0.220 for SVM, 0.279 for RF, and 0.338 for XGB. Coarseness was the most influential
parameter among the radiomic features, with heatmap values of 0.039 for LR, 0.087 for
SVM, 0.056 for RF, and 0.111 for XGB.
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Figure 6. Heatmap of the effects of the functions selected in each machine learning model for the
identification of sarcopenia. The higher the heatmap value (that is, the closer the color is to white),
the more intense the impact of a feature on the identification of sarcopenia. LR, logistic regression;
SVM, support vector machine; RF, random forest; XGB, extreme gradient boosting.

4. Discussion

In this study, we extracted a large number of radiomic features from the L3 level
CT slices of 247 patients diagnosed with NSCLC and subsequently selected the relevant
features for the effective identification of sarcopenia. Furthermore, we validated the
performance of these features through machine learning, focusing on how appropriately
they could identify sarcopenia and non-sarcopenia.

The four features of sex, coarseness, skewness, and cluster prominence were selected
as the relevant features for effectively identifying sarcopenia. Among these features, sex
was the most important feature because it resulted in the use of different muscle index
cut-offs in diagnosing sarcopenia. Coarseness is one of the NGTDM features and indicates
the average difference between a center pixel and its neighboring pixel in NGTDM, as
well as the spatial change rate. The higher the coarseness, the lower the spatial change
rate and the more uniform the local texture. Skewness is a first-order feature and suggests
an asymmetrical distribution of values with respect to the average value in a histogram.
The lower the skewness, the more skewed the histogram is to the left. The higher the
skewness, the more skewed the histogram is to the right. On the one hand, the left-side
skewness of a histogram indicates that the overall distribution of the CT values is low.
On the other hand, right-side skewness signifies a high distribution of CT values. Cluster
prominence is a GLCM feature that indicates the asymmetry of the GLCM. The higher the
cluster prominence, the larger the asymmetry with respect to the average. Furthermore,
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the smaller the cluster prominence, the closer the peak to the average value and the smaller
the deviation from the average value. In GLCM, the large asymmetry with respect to
the average implies a large difference between the neighboring pixels, indicating a rough
surface texture of the muscle.

The features selected in this study had the following magnitudes for the sarcopenia and
non-sarcopenia groups: 0.00022 ± 0.00013 and 0.00020 ± 0.00012 (p = 0.188) for coarseness,
−0.372 ± 0.304 and −0.328 ± 0.421 (p = 0.369) for skewness, and 15.517 ± 25.330 and
11.578 ± 5.012 (p = 0.232) for cluster prominence, respectively. The sarcopenia group
showed a slightly larger coarseness, smaller skewness, and larger cluster prominence
than the non-sarcopenia group. Considering these characteristics in their entirety, the
cross-section of the sarcopenia muscle displayed more low-intensity values than the non-
sarcopenia muscle. Therefore, the cross-section of the sarcopenia muscle is more likely to
have a rough surface. Based on these results, it can be inferred that, as the muscle density
was lower in the sarcopenia group, fat intrusion occurred and the low Hounsfield unit of
fat influenced the intensity distribution and texture of muscle in the CT images.

Considering the permutation importance of each feature, the optimal identification
performance for sarcopenia can be ensured by considering the four features collectively. In
other words, sarcopenia needs to be explained by comprehensively considering all four
features. However, because the individual radiomic features do not exhibit any statistically
significant differences between the sarcopenia and non-sarcopenia groups, an individual
feature is limited in its ability to explain sarcopenia. Accordingly, univariate analysis needs
to be conducted in the future to examine the correlations between the individual radiomic
features and sarcopenia.

Sex is the largest contributing factor in the identification of sarcopenia. However, the
data used in this study are susceptible to sex-specific bias. Only seven out of 61 partici-
pant sarcopenia patients were female. Additionally, there were only seven patients with
sarcopenia in the data based on all 104 female patients. This imbalance in the data may
lead to biased learning and is a limitation in this experiment. Therefore, it is necessary
to conduct further experiments in the future by minimizing the issue of sex imbalance
through additional data collection.

Among the four machine learning models of LR, SVM, RF, and XGB, the XGB model
demonstrated the best performance for the identification of sarcopenia for the entire
muscle. The XGB model showed an AUC of 0.837 (CI: 0.758–0.881). The other three
models demonstrated satisfactory performance. In the case of the SVM approach, the
AUC was 0.778 (CI: 0.721–0.828), corresponding to appropriate performance; however,
the sensitivity of 0.377 (CI: 0.256–0.510) and specificity of 0.925 (CI: 0.877–0.958) indicated
biased results. To prevent data imbalance between the sarcopenia and non-sarcopenia
groups as much as possible, we conducted oversampling by applying a SMOTE technique
to the training process. Nevertheless, biased training could not be prevented in a few
models. Furthermore, it was not possible to perform external validation in this study,
which is essential in order to identify biased training and model overfitting. Further
research is required to validate and solve the problems of data imbalance and overfitting
by collecting additional data for external validation.

We conducted a comparative experiment to determine whether the entire muscle could
be represented by the area of a partial muscle. If the area of a partial muscle can exhibit
performance similar to that of the entire muscle, it would be possible to avoid spending
the time and energy necessary to acquire the entire muscle area from CT. Accordingly, we
set box-shaped regions with dimensions of 1.5 cm × 1.5 cm in the erector spinae muscle
and conducted a comparative experiment on the area of the entire muscle. However, the
identification performance of machine learning for the partial region of the erector spinae
muscle was inferior to that of the entire muscle. The LR, SVM, RF, and XGB models all
showed low performance, and the LR model, which had the best performance, had an AUC
of 0.750 (CI: 0.691–0.802). This finding may support the conclusion that the partial region
set in the erector spinae muscle is too small to represent the change in the entire muscle.
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However, this result does not imply that the partial region of the erector spinae muscle
cannot be used to identify sarcopenia. Generally, diagnostic accuracy is considered to be
good when the AUC is 0.7 or greater. Therefore, we believe that the partial region of the
erector spinae muscle has sufficient potential to be used in the identification of sarcopenia.
Further verification is necessary in the future through various comparative studies that
consider the location of partial regions and measurement ranges.

There are several limitations associated with the data used in this study. First, because
NSCLC patients were the only participants in this study, we cannot conclude that the
results of the study are applicable to other cases. Further experiments and validations are
necessary with respect to various ethnic groups, sexes, and symptoms. A comparative
experiment also needs to be conducted for various modalities, such as DXA. Second, the
images used in this study were collected from a single center, but taken with two pieces of
equipment. Although the difference in quality due to the equipment may not be sufficiently
significant to alter the direction of the results, we cannot rule out the possible influence of
the equipment. This is an issue that occurs in all radiomics studies. To address the bias issue
created by the use of different equipment, the models need to be generalized by collecting
sufficient data, which is very difficult to achieve. Further research is needed to understand
the extent of the influence of different equipment on the quality of images. Third, sex is the
largest contributing factor in the identification of sarcopenia. However, the data used in
this study are susceptible to sex-specific bias. Only seven out of 61 participant sarcopenia
patients were female. There were only seven patients with sarcopenia in the data based
on all 104 female patients. This imbalance in the data may lead to biased learning and is a
limitation in this experiment. Therefore, it is necessary to conduct further experiments in
the future by minimizing the issue of sex imbalance through additional data collection.

Although some limitations are yet to be addressed, in this study, the radiomic features
in muscles exhibited the potential to serve as effective indicators of sarcopenia and non-
sarcopenia through machine learning. If sufficient validation is ensured by performing
various additional experiments, then these radiomic features could become reliable indica-
tors explaining the phenomena appearing on the cross-sections of muscles and could be
used to diagnose sarcopenia.

5. Conclusions

In conclusion, radiomic features can be used to quantify the phenomena observed
in the muscles of NSCLC patients and have the potential to become useful radiologic
indicators for the diagnosis of sarcopenia. If sufficient validation is ensured by further
research, these radiomic features could be used as indicators providing diverse information
about muscles that are generally not visible to the naked eye, as well as the mass, density,
and strength of muscle, and facilitating accurate sarcopenia diagnoses.
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