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A Novel Decision Making Procedure 
during Wakefulness for Screening 
Obstructive Sleep Apnea using 
Anthropometric Information and 
Tracheal Breathing Sounds
Ahmed Elwali1 & Zahra Moussavi1,2

Obstructive sleep apnea (OSA) is an underdiagnosed common disorder. Undiagnosed OSA, in particular, 
increases the perioperative morbidity and mortality risks for OSA patients undergoing surgery 
requiring full anesthesia. OSA screening using the gold standard, Polysomnography (PSG), is expensive 
and time-consuming. This study offers an objective and accurate tool for screening OSA during 
wakefulness by a few minutes of breathing sounds recording. Our proposed algorithm (AWakeOSA) 
extracts an optimized set (3–4) of breathing sound features specific to each anthropometric feature 
(i.e. age, sex, etc.) for each subject. These personalized group (e.g. age) classification features are 
then used to determine OSA severity in the test subject for that anthropomorphic parameter. Each 
of the anthropomorphic parameter classifications is weighted and summed to produce a final OSA 
severity classification. The tracheal breathing sounds of 199 individuals (109 with apnea/hypopnea 
index (AHI) < 15 as non-OSA and 90 with AHI ≥ 15 as moderate/severe-OSA) were recorded during 
wakefulness in the supine position. The sound features sensitive to OSA were extracted from a training 
set (n = 100). The rest were used as a blind test dataset. Using Random-Forest classification, the 
training dataset was shuffled 1200–6000 times to avoid any training bias. This routine resulted in 81.4%, 
80.9%, and 82.1% classification accuracy, sensitivity, and specificity, respectively, on the blind-test 
dataset which was similar to the results for the out-of-bag-validation applied to the training dataset. 
These results provide a proof of concept for AWakeOSA algorithm as an accurate, reliable and quick 
OSA screening tool that can be done in less than 10 minutes during wakefulness.

Obstructive sleep apnea (OSA) is a common syndrome characterized by repetitive episodes of complete (apnea) 
or partial (hypopnea) pharyngeal collapse during sleep1. The severity of OSA is commonly measured by the 
apnea/hypopnea index (AHI), which is the number of apnea/hypopnea episodes per hour of sleep. Usually, an 
AHI < 5 is considered as non-OSA, 5 < AHI < 15 as mild, 15 < AHI < 30 as moderate and AHI > 30 as severe 
OSA. Clinically, however, it is a common practice to consider individuals with AHI < 15 as those who may not 
benefit from treatment, and therefore an AHI of 15 is used as a threshold to determine severity2,3. Signs and symp-
toms of OSA include excessive daytime sleepiness, loud snoring, and observed episodes of breathing ceasing, 
gasping and/or choking during sleep4. OSA can severely impact the quality of sleep, and therefore the quality of 
life. It is associated with an increased risk of developing cardiovascular problems, hypertension, stroke, depres-
sion, diabetes, and headaches, as well as traffic accidents5. These comorbidities may be worsened if OSA is not 
treated6. In addition, it has been suggested to consider the existence of critical comorbidity for OSA to determine 
its severity and its treatment management7. Furthermore, not taking suitable precautions (due to lack of accurate 
and reliable screening tools for OSA) prior to a full anesthesia of OSA patients undergoing a sugary may lead 
to perioperative morbidity and mortality8,9. An accurate OSA screening tool, in particular for patients prior to 
undergoing a surgery requiring a full anesthesia, would reduce these risks8,9. This paper reports on a novel OSA 
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classification procedure as a quick and accurate screening tool, based on anthropometric information and a few 
minutes of breathing sounds recorded during wakefulness.

The gold standard for OSA diagnosis is an overnight Polysomnography (PSG) assessment. However, it is costly 
and time-consuming. There are many portable monitoring devices for OSA, but they all require an overnight 
recording. In Canada and US, about 10% of the population suffer from OSA10, while the number of qualified 
sleep rooms available for conducting PSG studies is limited. Consequently, there is a long waiting list of patients; 
in some places, the waiting time exceeds a year for an overnight full PSG. Due to the mentioned facts, it is very 
desirable for anesthesiologists, in particular, to have an efficient perioperative management plan based on an 
objective, reliable and prompt diagnostic or screening tool for OSA8,9,11.

A quick OSA screening tool that is commonly used for patients undergoing surgery requiring full anesthesia 
is the STOP-BANG questionnaire12. It is a simple, quick, and inexpensive assessment that is reported to have a 
high sensitivity (~93%) but at the cost of a very poor specificity (~36%)12. Any assessment with poor specificity 
indirectly increases the referral rate to the full PSG study; thus, increases healthcare system’s cost. Therefore, there 
is a need for a quick and reliable objective technology with high sensitivity and specificity for OSA screening 
applicable during wakefulness.

Our team has been pioneering in proposing the use of tracheal breathing sound analysis during wakefulness 
for screening OSA13–16. Aside from our team, several research groups around the globe have been working on the 
possibility of using either tracheal breathing or vocal sounds during wakefulness to predict OSA17–20. Overall, 
those studies have reported an accuracy between 79.8 to 90% with both comparable sensitivity and specificity. 
While their accuracy is much better than the STOP-Bang questionnaire, none of the reported accuracies indicate 
blind test accuracy. In addition, their unbalanced sample sizes were quite small [23 (minimum 10 subjects for 
non-OSA) and 70 (minimum 13 subjects for OSA)] given the heterogeneity of OSA population.

In our team, we have investigated the use of tracheal breathing sounds analysis for screening OSA. Breathing 
sounds recorded from the mouth and nose were first sequestered into inspiratory and expiratory sounds; then, 
the characteristic features were extracted by spectral, bispectral and fractal analyses, followed by a classification 
routine for estimating the severity of OSA.

Our hypothesis is that the upper airway (UA) deformities due to OSA affects the breathing sounds even during 
wakefulness, and that effect should be detectable by tracheal breathing sounds analysis15,21,22. In our team’s pre-
vious works13–16, we showed the proof of concept for this hypothesis. Moreover, in our recent work, we achieved 
a testing classification accuracy of ∼84% with comparable (<10% difference) specificity and sensitivity for two 
balanced groups of non-OSA (AHI ≤ 5, n = 61) and OSA (AHI ≥ 10, n = 69)16. We also showed a significant 
superiority of using tracheal breathing sound features over the use of only anthropometric information (i.e., sex, 
age, neck circumference) for screening OSA during wakefulness16. However, the effects of the anthropometric 
confounding variables (i.e., age, sex, height, etc.) on the sound signals were not investigated. In addition, as the 
goal is to have a quick screening with high sensitivity of identifying the OSA individuals in need of treatment, it 
is desirable to have only one threshold (e.g., AHI = 15) for such decision making. Although it is difficult to dis-
tinguish an AHI of 14 and 16 from each other, the AHI = 15 was chosen as the threshold because it is the most 
common clinically accepted threshold to separate OSA individuals in need of treatment from those who do not 
benefit from a treatment2,3. When we applied the technique used in our previous publication mentioned above 
with this threshold AHI = 15, the blind-test accuracy dropped to <70%, which is not desirable. It is commonly 
discussed that AHI is not the best indicator of a diagnostic decision for OSA. Sleep medicine doctors usually 
base their decision on several factors such as daytime sleepiness, number of arousals/night, etc. along with AHI. 
However, for a quick screening with automated real-time screening, we have to have a reference for accuracy, 
and AHI is the most common standard used. Therefore, we propose a new decision-making algorithm, called 
AWakeOSA, using anthropometric information and a few minutes of tracheal breathing sounds recorded during 
wakefulness to identify OSA individuals in need of treatment. This algorithm considers the confounding anthro-
pometric effects on the breathing sounds and uses them in to predict the severity of OSA in a subgroup with a 
similar confounding variable.

The premise of the AWakeOSA algorithm is to find the best sound features sensitive to OSA severity (deter-
mined by AHI) for each subgroup of individuals with a specific anthropometric factor (i.e., age, sex, weight, etc.); 
the algorithm is shown schematically in Fig. 1. Since the OSA population is very heterogeneous and many con-
founding variables such as age, sex, height, weight, etc. affect breathing sound characteristics23–26, it is challenging 
to have some sound features predicting AHI for all individuals. The proposed AWakeOSA algorithm (Fig. 1) 
overcomes this challenge by grouping individuals into subgroups based on their specific anthropometric factors 
that in turn affect breathing sounds. Then, in each subgroup, the best sound features to predict AHI are extracted, 
and a classifier is trained using a training set of data. The classifiers’ outcomes in each subgroup are then used in 
a weighted average voting scheme to make the classification decision OSA (AHI > 15) or non-OSA (AHI < 15).

In this paper, we present the results of the AWakeOSA algorithm for an AHI = 15 as the threshold for data 
collected from 199 individuals with various severity of OSA (AHI was between 0 to 143), out of which about 45% 
of data were set aside as a blind test and the remaining was used for extracting features and training the classifiers. 
In all instances, we used a two-group classification algorithm based on the random forest algorithm27.

Results
In this study, the breathing sounds data of 199 participants made up of 109 non-OSA individuals (50 males, 
AHI < 15) and 90 OSA individuals (66 males, AHI > 15) were used. All data were recorded during wakefulness in 
the evening (~8 PM) before the participants proceed to PSG sleep study. Anthropometric parameters for the two 
groups are reported in Table 1. The data of the two groups were not matched in terms of any of the confounding 
variables: sex (male/female), body mass index (BMI threshold = 35), neck circumference (NC threshold = 40), 
age (threshold = 50), or Mallampati score (MpS threshold = 3). Out of the 199 individuals’ dataset, 86 individuals 
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(47 non-OSA and 39 OSA) data were set aside as a blind test for assessing the algorithm’s accuracy. Table 1 also 
shows the anthropometric information for the two groups of training and testing.

AHI was found to have significant correlations with BMI, NC, and MpS (r = 0.44, 0.43, and 0.26, respec-
tively). However, when we used the available anthropometric information (i.e., BMI, age, NC, and sex) of the 
STOP-BANG questionnaire12 and classified the entire dataset (199 subjects) for the two OSA severity groups 
(with AHI = 15 as threshold), the resulted classification accuracy, specificity, and sensitivity were found to be only 
63.4%, 74.3%, and 50.5%, respectively.

Next, we analyzed the recorded breathing sounds collected from four breathing maneuvers (i.e., Mouth and 
Nose –inspiration and -expiration). While we used a sharp threshold of AHI = 15 for training classifiers, for the 
feature extraction and reduction stage, only data of subjects with AHI ≤ 10 (n = 60) and AHI ≥ 20 (n = 40) in the 
training dataset were used. Using the algorithm shown in Fig. 1, we analyzed the recorded breathing sounds in 
each of the following subsets of the training dataset separately: BMI < 35, Age > 50, Age ≤ 50, male, NC > 40, and 
MpS ≤ 2. Subjects in each subset were matched with respect to only one anthropometric variable. We did not have 
subsets of BME > 35 or NC < 40, etc due to limited sample size. The selected and used subsets had ≥30 non-OSA 
subjects and ≥20 OSA subjects, which were reasonable numbers for feature extraction and reduction and group 
classification.

The number of breathing sound features extracted from the two breathing maneuvers, while analyzing inspir-
atory and expiratory phases separately, was around 250. Using the proposed feature reduction procedure (see 
appendix) on the training dataset, around 15 features per each anthropometric subset were selected for fur-
ther investigation. These sound features showed significant differences (p < 0.05) between the two OSA severity 
groups as they were highly correlated (p < 0.01) with AHI. In addition, they showed an effect size >0.8. Table 2 
shows the selected sound features’ definition and where they were extracted from, the subsets and the correlation 
coefficients of the selected sound features and AHI in the entire training dataset and each anthropometric subset.

In the next stage of the AWakeOSA algorithm, we used the selected sound features and one anthropometric 
feature, the NC, as the features for classification because it showed a significant correlation (0.43, with p < 0.01) 
with AHI when tested on the training dataset. The NC feature was investigated further in all subsets other than 
its own subset. Thus, the selected sound features and NC were divided into three- and four-feature combinations. 
These feature combinations were used to classify each participant’s data in every subset to one of the two OSA 
severity classes. Table 2 column 4 shows the sound features used per anthropometric subset constructing the 
combination for classification. NC was selected and used in age ≤50 and male subsets.

Table 3 shows the classification accuracy, specificity, and sensitivity for the out of the bag-validation using 
Random Forest classification27 and for the blind testing dataset for each anthropometric subset separately as 
well as the final voted classification. In addition, Table 3 shows the correlation coefficient between AHI/loga-
rithm(AHI) and each of the feature combinations using the linear regression analysis. Figure 2 shows the linear 
regression analysis outcomes of the selected feature combinations selected for age ≤ 50 and male subsets with 
the AHI in logarithmic scale. Furthermore, feature combination selected for age ≤ 50 showed the highest testing 
classification accuracy of 86% within its own subgroup. When this feature combination used for the entire train-
ing dataset and blind data set, it resulted in 71.6% accuracy for out of the bag-validation of the training set, and 
75.6%, for the blind testing data.

Figure 1.  The AWakeOSA algorithm used for decision making routine using the weighted outcomes from each 
of the used anthropometric subsets classifiers. Legend: RF: random forest; AHI: apnea-hypopnea index.
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The overall classification results using the proposed weighted linear voting scheme, illustrated in Fig. 1, were 
found to be 82.3%, 82.3% and 81.4% for classification accuracy, specificity, and sensitivity for the out of the 
bag-validation, and 81.4%, 80.9% and 82.1% for classification accuracy, specificity, and sensitivity for the blind 
testing data, respectively. Figure 3 shows the scatter plot for overall out of bag-validation (top) and blind (bottom) 
testing classification decisions. A classification decision of 1 (considering 100% for both specificity and sensitiv-
ity) means that all the used random forest classifiers of each anthropometric subset voted the subject into the OSA 
group, while classification decision of −1 (considering 100% for both specificity and sensitivity) means all the 
used random forest classifiers of each anthropometric subset voted the subject into the non-OSA group.

Anthropometric information of the misclassified subjects in both out of bag-validation and blind testing clas-
sification are listed in Table 4. Out of 109 non-OSA subjects, 20 were misclassified to the OSA group, and out of 
90 OSA subjects, 16 were misclassified to the non-OSA group. We also investigated whether removing a subset’s 
decision from the voting stage in the AWakeOSA algorithm would improve or degrade the overall classification 
results. The results indicated removing any of the subsets decreases the classification performance by 2.5–8%.

Discussion
Undiagnosed severe OSA significantly increases the healthcare cost and the risk of perioperative morbidity and 
mortality8,9. A quick, accurate and reliable screening tool can help resolve this. This study proposes a new algo-
rithm (AWakeOSA) for screening OSA using anthropometric information and tracheal breathing sounds during 
wakefulness.

Anthropometric measures have been shown to have a high sensitivity in screening OSA12,28 but at the cost of a 
very poor specificity (~36%)12. This might be in part due to the subjectivism of most of the STOP-BANG param-
eters. Although those parameters do not have a good classification power to screen OSA, they are correlated 
with AHI and also affect breathing sounds12,23–26. In our dataset, Anthropometric parameters had a correlation 
of 0.03 < |r| ≤ 0.44 with AHI, and 0.00 < |r| ≤ 0.5 with breathing sounds. Previously, in our team, we showed that 
breathing sounds have a much higher classification power for screening OSA than the anthropometric features16. 
When we used only sound features for classification of OSA severity with a sharp AHI = 15, the classification 
accuracies were found to be 79.3% and 74.4% for out of bag-validation and blind testing, respectively. These 
accuracies are much higher than what STOP-Bang questionnaire can provide (63.4%) but not high enough nor 
sufficient for a reliable (robust) OSA screening during wakefulness.

In order to increase the accuracy and reliability of using breathing sounds to screen OSA during wakefulness, 
in this study, we propose a new algorithm, called AWakeOSA. This algorithm (shown schematically in Fig. 1) 
uses the anthropometric features to subgroup the data and get a classification vote in each subgroup, while the 
final classification is based on the weighted average vote of all subsets.; This subdivision has been done to reduce 
the impact of the confounding variables on the feature extraction stage and the classification process. The results 
showed that the new AWakeOSA voting algorithm provides a higher and more reliable blind test accuracy even 
with a sharp threshold of AHI = 15. The main challenge in all studies using breathing sounds analysis for wake-
fulness OSA screening is the heterogeneity of the population. As the cause of OSA can vary among individuals, 
people with the same OSA severity can have very different anthropometric features, and those differences affect 
respiratory sounds differently. The new proposed algorithm takes into account such heterogeneity and tries to 
find the best sound features specific to each subset of data that share one particular important confounding var-
iable such as age, BMI, sex, etc. On the other hand, as the effect of these features on the sounds varies, we allow a 
weighting factor for each subset classifier’s vote. The weighting factor for each subset’s classifier vote is based the 
on sensitivity and specificity of the classifier developed in the training stage; please see the Appendix for details.

AHISupine

Age

Sex

BMI NC

MpSn > 50 n ≤ 50 n ≥ 35 n < 35 n > 40 n ≤ 40

The entire dataset (199 subjects)

Non-OSA (AHI < 15, n = 109) 3.59 ± 3.95
48.60 ± 12.69 50 M, 

59 F
31.79 ± 7.21 39.81 ± 5.14

59 ‘I’, 25 ‘II’, 15 ‘III’ and 9 ‘IV’
50 59 28 81 50 59

OSA (AHI ≥ 15, n = 90) 42.85 ± 32.72
52.18 ± 11.55 66 M, 

24 F
36.44 ± 8.01 44.08 ± 3.67

22 ‘I’, 30 ‘II’, 22 ‘III’ and 16 ‘IV’
52 38 44 46 72 18

The training dataset (113 subjects)

Non-OSA (AHI < 15, n = 62) 3.4 ± 3.69
49.18 ± 12.89 32 M, 

30 F
31.69 ± 7.42 40.06 ± 5.22

32 ‘I’, 14 ‘II’, 11 ‘III’ and 4 ‘IV’
30 32 18 44 32 30

OSA (AHI ≥ 15, n = 51) 52.79 ± 39.91
51.96 ± 12.03 36 M, 

15 F
37.33 ± 9.01 43.94 ± 3.85

13 ‘I’, 14 ‘II’, 16 ‘III’ and 8 ‘IV’
29 22 25 26 39 9

The Blind testing dataset (86 subjects)

Non-OSA (AHI < 15, n = 47) 3.85 ± 4.29
47.83 ± 12.52 18 M, 

29 F
31.92 ± 7.00 39.47 ± 5.05

27 ‘I’, 11 ‘II’, 4 ‘III’ and 5 ‘IV’
20 27 10 37 18 26

OSA (AHI ≥ 15, n = 39) 29.86 ± 17.63
52.46 ± 11.04

30 M, 9 F
35.26 ± 6.40 44.25 ± 3.48

9 ‘I’, 16 ‘II’, 6 ‘III’ and 8 ‘IV’
23 16 19 20 33 6

Table 1.  Participants’ anthropometric information. AHI: apnea-hypopnea index, BMI: body mass index, NC: 
neck circumference, MPS: mallampati score, M/F: male/female.
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FN BM Feature’s definition Subset CC

1 ExpM =

=
−

=

=

f
f

Mean of P f
f
f

Mean of P f
2 235
1 130

( )
2 1410
1 1260

( ) All data −0.40

2 InsN f
f

Mean of the slope of P f
2 355
1 250

( )
=
=

All data 0.37

3 ExpM =
=

f
f

Bandwidth of the spectral centroid of P f
2 550
1 300

( ) All data −0.48

4 InsM f
f

First order moment of the positive diagonal of B f f
2 1515
1 1200

( , )
=
=

All data 0.25

5 InsM f
f

Gmean of P f
2 270
1 140

( )
=
=

BMI < 35 −0.41

6 InsM =
=

. −
f
f

First order moment of B f f on f f line
2 270
1 140

( , ) 0 5 BMI < 35 −0.45

7 InsN f
f

Mean of B f f
2 275
1 130

( , )
=
=

BMI < 35 −0.40

8 InsN =
=

f max
f min

Weight center of the positive diagonal of B f f
2
1

( , ) BMI < 35 0.43

9* InsN f
f

Mean of P f
2 280
1 130

( )
=
=

Age > 50 −0.35

10* InsN f
f

Spectral centroid of P f
2 560
1 80

( )
=
=

Age > 50 0.37

11 InsM =
=

f
f

Weight center of the positive diagonal of B f f
2 230
1 130

( , ) Age > 50 0.32

12 InsN f
f

Mean of B f f
2 280
1 130

( , )
=
=

Age > 50 −0.37

13 InsN f
f

Second order moment of the negative diagonal of B f f
2 280
1 130

( , )
=
=

Age > 50 −0.48

14 InsN =
=

f
f

Mean of the slope of P f
2 370
1 270

( ) Age ≤ 50 0.52

15 ExpN =
=

f
f

Mean of the slope of P f
2 550
1 450

( ) Age ≤ 50 −0.41

16 InsM =
=

. −
f
f

Weight center of B f f on f f line
2 510
1 390

( , ) 0 5 Age ≤ 50 0.40

17 InsN =
=

f
f

Mean of the slope of P f
2 350
1 250

( ) Male 0.42

18 InsN Frequency of the first peak for of P f with a cuttoff of Hz( ) 550 Male 0.53

19 InsN f
f

Mean of P f
2 520
1 395

( )
=
=

NC > 40 0.37

20 InsM =
=

f
f

Frequesncy of the average of Maximum peaks of P f
2 600
1 60

( ) NC > 40 0.29

21 InsM =
=

−
f
f

Weight center of B f f on f f line
2 600
1 60

( , ) 2 NC > 40 0.35

22 InsN =
=

f
f

Weight center of the positive diagonal of B f f
2 520
1 395

( , ) NC > 40 0.28

23 InsN =
=

f
f

Mean of the slope of P f
2 350
1 250

( ) MpS < 3 0.34

24 InsM =
=

−
f
f

Weight center of B f f on f f line
2 1460
1 1090

( , ) 2 MpS < 3 0.27

25 InsM =
=

−
f
f

First order moment of B f f on f f line
2 1460
1 1260

( , ) 2 MpS < 3 0.39

26 ExpM f
f

First order moment of the negative diagonal of B f f
2 1410
1 1260

( , )
=
=

MpS < 3 0.36

Table 2.  Descriptions and details of the selected features. Legend: INS/EXP: inspiration/expiration, M/N: 
mouth/nose, mean: arithmetic mean, gmean: geometric mean, P(F): the power spectrum, B(F,F): the 
bispectrum, F: frequency, FN: feature number, BM: breathing maneuver, subset: subset of usage, BMI: body 
mass index, NC: neck circumference, MPS: mallampati score, CC: the correlation coefficient with AHI. All 
correlations were significant at P < 0.01 Level. *Features 9 and 10 were used alternatively.
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We divided the subsets based on age, sex, BMI, Mallampati score and neck circumference. Aging affects the 
female’s voice by decreasing its pitch, and the male’s voice by increasing its pitch24. Furthermore, aging causes 
muscle mass loss, drying of the mucous membrane, and increasing speech variability25; thus, we used two subsets 
for age > 50 and age < 50 separately. Sex was selected as a subset as it is known that females’ voice has a higher 
fundamental frequency pitch than men23, and that is independent of OSA severity; thus it is important to sepa-
rately analyze males and females’ breathing sounds. BMI has a significant effect on the vocal quality and breathing 
sounds26; thus, we used two subsets for BMI > 35 and < 35. Mallampati score is an indicator of pharyngeal size, 
and therefore associated with narrowing of upper airway29; thus, MpS > 2 and <3 were chosen to form two sub-
sets. The neck circumference is one of the most important OSA risk factors30; hence, we investigated participants 
with NC < 40 and >40 separately. If our dataset’s size was larger so that we could have more subjects in each 
subset, it might have been beneficial to form subsets based on height and weight independent of BMI as well. 
Nevertheless, BMI and NC are highly correlated with weight and height; thus, including subsets of weight and 
height may not improve the accuracy significantly.

Figure 2.  Linear regression models of feature combinations selected for age ≤ 50 (top) and male (bottom) 
subsets with the logarithm of AHI. Blue dots show the estimated logarithm of AHI values by the model. Legend: 
AHI: apnea-hypopnea index. CC: correlation coefficient.

Groups CC/CCdB

Out of bag-validation Blind testing

Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity

BMI < 35 0.46/– 78.9% 81.8% 74.1% 68.4% 75.7% 55.0%

Age > 50 0.52/– 81.7% 83.3% 80.0% 67.4% 60.0% 73.9%

Age ≤ 50 0.63/0.66 85.7% 84.4% 87.5% 86.0% 85.2% 87.5%

Male 0.49/0.60 75.0% 71.9% 77.8% 64.6% 66.7% 63.3%

NC > 40 0.43/– 75.0% 75.0% 75.0% 64.7% 66.7% 63.6%

MpS ≤ 2 0.47/0.51 73.3% 71.7% 75.9% 74.6% 81.6% 64.0%

Final voted results

Voted Accuracies — 82.3% 81.4% 82.3% 81.4% 82.1% 80.9%

Table 3.  Correlation coefficient (Cc) of each feature combination and ahi and classification results using feature 
combinations for each anthropometric subset separately. CCDB: CC with the logarithm of AHI, BMI: body 
mass index, NC: neck circumference, MPS: mallampati score.
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Among the anthropometric subsets, the lower age subset (age ≤ 50) showed the highest testing classification 
accuracy (86%) compared to the others. This was not a surprising outcome. Age is a well-known risk factor for 
OSA31. Healthy individuals of age ≤ 50, in general, do not suffer from losing their upper airway muscle mass that 
in turn is responsible for upper airway collapse during an apnea/hypopnea event. They have more muscle tone 
than their age-matched OSA individuals. Thus, the loss of muscle tone is correlated with AHI in this group, and it 
affects breathing sounds significantly. In addition, after investigating the anthropometric information of the low 
age subset, we found that majority of non-OSA individuals in this subset also had BMI < 35, MpS < 3, NC < 40, 
and were females. On the other hand, the majority of the OSA individuals in this subset were from the opposite 
categories. Therefore, the low age subset was expected to have the highest classification accuracy among the other 
subsets to classify individuals with AHI > 15 and < 15.

Another interesting observation for the selected feature combination for low age and male subsets is their 
high correlation (0.66 and 0.6, respectively) with AHI in the logarithm scale as shown in Fig. 2. This implies the 
severity of OSA increases exponentially with an increase in AHI. Clinically, this is also implied as the challenge 
in OSA diagnosis for people with relatively low AHI. Otherwise, a very high AHI matches with apparent clinical 
symptoms.

Figure 3.  Scatter plot for out of the bag-validation in the training dataset (top) and blind testing (bottom) 
classification decisions; Blue and Red colors represent non-OSA and OSA individuals, respectively.

AHI Age Sex BMI NC MpS

Non-OSA (AHI < 15, n = 20) 3.1 ± 3.1 45.9 ± 13.6 13 M, 7 F 36.7 ± 7.6 43.2 ± 3.4 13 ‘I’, 4 ‘II’, 2 ‘III’ and 1 ‘IV’

OSA (AHI > 15, n = 16) 37.0 ± 28.3 54.2 ± 11.8 13 M, 3 F 34.4 ± 6.9 43.3 ± 3.6 5 ‘I’, 6 ‘II’, 4 ‘III’ and 1 ‘IV’

Total (n = 36) 18.2 ± 25.3 49.6 ± 13.3 26 M, 10 F 35.7 ± 7.3 43.2 ± 3.4 18 ‘I’, 10 ‘II’, 6 ‘III’ and 2 ‘IV’

Table 4.  Anthropometric information of all misclassified subjects within the training dataset (out of the bag-
validation) and blind testing data. NC: neck circumference, BMI: body mass index, MPS: mallampati score.
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Among the selected sound features, only 6 features were extracted from frequency components above 1100 Hz, 
while the rest of the features were extracted from frequency components below 600 Hz. This indicates that OSA 
affects low-frequency components the most. Thus, it is important to record breathing sounds with devices that do 
not filter out either low or high frequencies. One of the best sound features has been the mean of the slope of the 
power spectrum of the nose inspiratory signal recorded within a frequency band of 250–350 Hz. This feature was 
selected 3 times in the following subsets age ≤ 50, Male, and MpS < 3. During nose inspiration, the upper airway’s 
muscles are active, while the pharynx cavity is patent. Pharynx cavity is responsible for transporting air from the 
nose to the lung, or the opposite. The upper airways of OSA individuals are commonly characterized by narrowing 
in the pharynx, thick tongue, losing muscles’ tone, thick and long soft palate22. These characteristics contribute to a 
significant narrowing of the upper airway cavity, increasing the chance of OSA during sleep. The mean of the spec-
tral slope in 250–350 Hz shows that after 250 Hz the power of the sound of OSA individuals is increasing, but it is 
decreasing in non-OSA individuals (Fig. 4). It also shows the OSA individuals tend to have higher resonant frequen-
cies than non-OSA individuals. These outcomes imply that OSA group is characterized by a more deformed and stiff 
upper airway than non-OSA. This is congruent with MRI/CT Imaging studies21,22 that showed the upper airway of 
OSA individuals during wakefulness on average had more regional compliance and stiffness.

Based on the final overall classification decisions (see Fig. 3), classifying a subject with an overall classification 
decision >0.7 or <−0.7 has about 90% confidence of being in the correct class. We also investigated whether all 
the subsets’ contribution to reach a reliable final vote for group assignment was significant. Excluding one of the 
selected subsets from the last voting stage degraded the overall classifier performance. Therefore, the proposed 
subsets are all critical to being considered in the analysis.

It is of interest to note the anthropometric parameters of the misclassified subjects. As can be seen in Table 4, 
the majority of misclassified subjects in the non-OSA group have age <50, male-sex, BMI > 35, NC > 40 and 
MpS < 3. On the other hand, the majority of misclassified subjects in the OSA group have age > 50, male-sex, 
BMI < 35, NC > 40 and MpS < 3; bold words show risk factors for the opposite group based on the STOP-BANG 
questionnaire. This implies the anthropometric parameters or risk factors show correlations with AHI, yet do not 
have classification power and can result in misclassification.

Limitations of the study.  All participants were recruited randomly from those referred to the sleep lab 
for full PSG assessment. In this study, we only considered the anthropometric confounding variables as we did 
not have information about the plausible existing OSA comorbidities for our study subjects. A study has shown 
a high correlation of some comorbidity and OSA severity, and has suggested considering those comorbidity in 
determining OSA severity and its treatment options7. In this study, we did not have any information about the 
comorbid conditions of our study participants; the anthropometric information was the only available data along 
with the PSG reports. It is plausible that adding subgroups based on comorbidities would increase the accuracy of 
our AWakeOSA algorithm; that is a future goal of our studies.

Our dataset including 199 subjects has been the largest dataset studied on this topic; nevertheless, it is still not 
enough to overcome the heterogeneity of the population under study. We will need a much larger dataset so that 
we have an equal and reasonable number for every important anthropometric factor. For this study, we did not 
have enough numbers for the subgroups: females and individuals with NC < 40, MpS > 2 and BMI > 35. Sample 
size limitation also limits the Investigation of the reasons behind the misclassification. In addition, while our 
recorded sounds have had a large bandwidth compared to others in the literature, still it would be of interest to 
expand the bandwidth both at very low (down to 10 Hz) and high frequencies (up to 16 kHz) as they may reveal 
a better physiological interpretation.

Conclusion
This study shows that anthropometric parameters affect the tracheal breathing sounds, and their effects can be 
positively utilized to improve the accuracy and reliability of OSA identification during wakefulness. All selected 
sound features for each anthropometric subgroup were statistically significant different (p-value < 0.05) between 
the two OSA groups. Despite using a sharp AHI threshold (AHI = 15), our proposed AWakeOSA algorithm shows 

Figure 4.  The average power spectrum of the signal recorded from nose inspiration. Dotted lines represent the 
95% confidence interval. Red color represents the OSA group. Blue color represents the non-OSA group.
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a promising high classification blind-test accuracy with 82.1% sensitivity and 80.9% specificity. The AWakeOSA 
technology will be of great interest for OSA identification during wakefulness, in particular for anesthesiologists 
to be prepared accordingly for patients undergoing full anesthesia. As such reliable and quick OSA identification 
will reduce the perioperative resources and cost significantly. It will also help in reducing the number of undiag-
nosed OSA and the need for PSG assessment; thus, reducing the healthcare cost significantly.

Methods
Participants and Recording protocol.  Study participants were recruited randomly from those referred to 
the overnight PSG assessment at Misericordia Health Center (Winnipeg, Canada). The study was approved by the 
Biomedical Research Ethics Board of the University of Manitoba. All experimental procedures were performed in 
accordance with the protocol approved by the Biomedical Research Ethics Board and its regulations. All partici-
pants signed an informed consent form prior to the experiments. The recording was performed about 1–2 hours 
prior to conducting the PSG study. During wakefulness and in the supine position (with head rested on a pillow), 
tracheal breathing sound signals were recorded using Sony microphone (ECM77B) embedded in a small chamber 
placed over the suprasternal notch of the trachea allowing ~2 mm space between the skin and the microphone. 
The participants were instructed to breathe deeply at the same flow rate, first, through their nose, and then, 
through their mouth with 5 breath cycles for each breathing maneuver. At the end of each breathing maneuver, 
participants were instructed to hold their breath for a few seconds to record the background noise (called silent 
period); for more details about the recording protocol see16. The AHI values were extracted from the PSG records 
from Misericordia Health Center after the overnight PSG assessment that was prepared by a sleep technician.

Dataset.  Out of the 300 recorded breathing sounds, data of 199 individuals were selected as valid data. The 
criterion to include an individual’s data was to have at least two clean (no artifacts, vocal noises, tones, interrup-
tions, and low SNR) breathing cycles for each breathing maneuver. Each individual’s sound signals were inspected 
by audio and visual means in time and frequency domains to separate the inspiratory and the expiratory phases. 
At the time of our wakefulness recordings, we always marked the first inspiratory phase to help to achieve a 100% 
accurate separation of the two phases.

This dataset included data of 109 individuals with AHI < 15 and 90 individuals with AHI > 15. For simplicity, 
we call these two groups as non-OSA and OSA groups, hereafter. A block diagram representing the methodology 
is presented in Fig. 5. Anthropometric information of the analyzed data (199 individuals) is presented in Table 1.

Subsets’ Creation.  Overall, data of 113 individuals were used for training and the remaining data of 86 
individuals was used as the blind-test dataset. Within the training set, data of subjects with AHI ≤ 10 (n = 60) and 
AHI ≥ 20 (n = 40) were used for feature extraction for the two groups of the non-OSA and OSA, respectively; 
these data were from 100 subjects. Data of the remaining 13 subjects in the training dataset with 10 < AHI < 20 
were not used for feature extraction but were included in the training classification process.

Within the dataset of the 100 subjects used for training, the following subsets were created: BMI < 35, Age ≤ 
50 and > 50, Male, NC > 40, and MpS ≤ 2. These subsets had at least 30 and 20 individuals in each non-OSA and 
OSA groups, respectively.

Signal analysis and Feature computation/extraction.  We extracted spectral and bispectral features 
from the breathing sounds data. The signals power spectra were calculated using the Welch method32, and their 
bispectra using the indirect class of conventional bispectrum estimator33.

In our previous work16, we found that the frequency band could be divided into main four discriminative 
frequency bands (i.e., 100–300 Hz, 350–600 Hz, 1000–1700 Hz, and 2100–2400 Hz). Using these four frequency 
bands, the spectral and bi-spectral features were extracted. Some of the features (i.e., mean, standard deviation, 
spectral entropy, skewness and kurtosis, spectral centroid, etc.) were extracted from the non-overlapping area 
between the average spectra/bispectra and their 95% confidence intervals of the two groups of the training data-
set. The minimum bandwidth to select a feature was set at 100 Hz. As an example, Fig. 4 shows the power spectra 
of the two groups’ inspiratory nose breathing.

We also calculated Katz and Higuchi fractal dimensions34,35, and Hurst exponent36 from the signals in the 
time domain. Therefore, for each subset, approximately, 250 features were extracted from the time and frequency 
domains analyses of the mouth and nose breathing sound signals. All features were scaled into the range of [0, 1].

Feature reduction.  Feature significance.  We computed the p-value for each feature between the two OSA 
severity groups of the training dataset using the unpaired t-test. Any feature with a p-value > 0.05 was excluded.

Feature robustness.  Each feature was assigned a robustness score. At first, all features had robustness scores of 
zero. Using the available individuals of the two severity groups, small groups of 15 per OSA severity group was 
created. These groups were randomly generated and shuffled until all the individuals were selected at least once. 
All combinations of the small groups generated for each severity group were created. For each feature and using 
each combination, the p-value and normality check for each small group of the two severity groups were com-
puted, separately; Lilliefors test was used for normality check37. If the p-value was ≤0.05 and the normality check 
for each severity group was valid, the robustness score of this feature was increased by 1 point. This process was 
repeated 20 times. In the end, each feature had an overall robustness score. The features with an overall robustness 
score >0.6 of the maximum robustness score were selected for further analysis.

Feature correlation and redundancy.  Using the available individuals’ data of the two severity groups, and using a 
support vector machine classifier, the training accuracy, specificity, and sensitivity were computed for each feature 
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in each anthropometric subset of the training dataset. All correlation coefficients between any two features were 
computed. Any set of features with in-between correlation coefficient ≥0.9 were removed except the feature with 
the highest training classification accuracy, specificity, and sensitivity. The final set of features for each subset was 
selected by the end of this stage. We also checked the effect size of each of the selected features using Glass’s delta 
equation38.

Training and validation.  The selected features for each subset were evaluated using a total training data of 
113 individuals (62 with AHI < 15, and 54 with AHI > 15) and a blind testing dataset of the 86 individuals (47 
with AHI < 15, and 39 with AHI > 15).

Outliers’ removal.  Using the training data for each OSA severity group of each subset separately, the outliers 
for each feature were removed, and the upper and lower adjacent values of boxplot were recorded39,40. Using the 
recorded values, the lowest lower adjacent value and the highest upper adjacent value were recorded. Using the 
blind testing data, any value outside the recorded boundaries was removed.

Feature combination creation and selection.  Within each subset, the selected features were combined to cre-
ate three-feature and four-feature combinations. Using each combination and the training data, a Random 
Forest27 classifier with 2/3 data in the bag (training) and 1/3 data out of the bag was used to evaluate the 
out-of-bag-validation testing accuracy, specificity, and sensitivity. We used the built-in function of Matlab27. The 
Random Forest routine included 1200 trees, interaction-curvature as a predictor selection, Gini’s diversity index 
as split-criterion. Cost matrix was used to compensate for the difference in the sample size between the two OSA 
severity groups. This procedure was repeated three times. Therefore, for each feature combination, it resulted in 
three values for each of accuracy, sensitivity, and specificity.

All values ≥0.7 were considered for the following stage, and the difference of the maximum and minimum of 
each three values were evaluated. The maximum difference for each of accuracy, sensitivity, and specificity was 
recorded. For each feature combination, the average value of each of accuracy, sensitivity, and specificity was 
recorded. The feature combinations with values between the maximum average and the difference between the 
maximum average and the maximum difference or 2% were selected to be the best feature combinations.

Final combinations and blind testing.  Each subset (separately).  Using the best feature combinations 
selected in the previous stage for each subset separately, and using Random Forest classifier with the same men-
tioned properties, the classification accuracies, sensitivities, and specificities of both the out of bag-validation and 
blind testing datasets were evaluated. This process was repeated 5 times; then, the average values were evaluated.

Figure 5.  The workflow block diagram. AHI is apnea/hypopnea index.
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For each anthropometric subset, the feature combinations with the highest validation and blind testing accu-
racies were selected as the best feature combinations for that subset.

For the overall classification (last stage in the AWakeOSA algorithm).  The following process was done with and 
without including anthropometric features with the sound features. The overall classification was evaluated using 
feature combinations which each one was selected among the best for each subset. Different combinations were 
created due to having more than one final best feature combination per subset. The combination providing the 
highest overall classification accuracies, sensitivities, and specificities for both of out of bag-validation and blind 
testing datasets, was selected as the best feature combination.

The overall classification was conducted as follows:

	(1)	 Within each subset, the classification decision for each individual was evaluated; we assigned 1 and −1 
labels to each class (OSA and non-OSA groups).

	(2)	 Using the outcomes of the subsets out of bag-validation, label 1 was multiplied by the sensitivity, and label 
−1 was multiplied by the specificity.

	(3)	 After conducting the previous two steps on all subsets, the weighted classification decisions of each indi-
vidual were averaged to result in the final classification decision; any value > 0 or <0 was classified to OSA 
or non-OSA groups, respectively.

The misclassified individuals were investigated for any commonality between the OSA subjects misclassified 
to non-OSA, and/or the non-OSA subjects misclassified to OSA. The effect of neglecting a subset’s results in the 
overall classification process was investigated.

Additional analyses.  The correlation coefficient between AHI and anthropometric variables were investi-
gated. Classifying the subjects using available variables of the STOP-BANG (i.e., Bang: BMI, age, NC and gender) 
were conducted, then the classification accuracy, sensitivity, and specificity were evaluated.

The correlation coefficient between AHI and the final selected sound features were investigated. Using the 
final selected feature combination for each subset, the correlation coefficients of the feature combination and AHI 
and its logarithm were evaluated.
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