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Abstract

The deconvolution process is a key step for quantitative evaluation of fluorescence lifetime

imaging microscopy (FLIM) samples. By this process, the fluorescence impulse responses

(FluoIRs) of the sample are decoupled from the instrument response (InstR). In blind decon-

volution estimation (BDE), the FluoIRs and InstR are jointly extracted from a dataset with

minimal a priori information. In this work, two BDE algorithms are introduced based on linear

combinations of multi-exponential functions to model each FluoIR in the sample. For both

schemes, the InstR is assumed with a free-form and a sparse structure. The local perspec-

tive of the BDE methodology assumes that the characteristic parameters of the exponential

functions (time constants and scaling coefficients) are estimated based on a single spatial

point of the dataset. On the other hand, the same exponential functions are used in the

whole dataset in the global perspective, and just the scaling coefficients are updated for

each spatial point. A least squares formulation is considered for both BDE algorithms. To

overcome the nonlinear interaction in the decision variables, an alternating least squares

(ALS) methodology iteratively solves both estimation problems based on non-negative and

constrained optimizations. The validation stage considered first synthetic datasets at differ-

ent noise types and levels, and a comparison with the standard deconvolution techniques

with a multi-exponential model for FLIM measurements, as well as, with two BDE methodol-

ogies in the state of the art: Laguerre basis, and exponentials library. For the experimental

evaluation, fluorescent dyes and oral tissue samples were considered. Our results show

that local and global perspectives are consistent with the standard deconvolution tech-

niques, and they reached the fastest convergence responses among the BDE algorithms

with the best compromise in FluoIRs and InstR estimation errors.
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Introduction

Fluorescence microscopy has become a powerful tool to characterize the chemical properties

of tissue samples [1–4]. In fluorescence lifetime imaging microscopy (FLIM), a sample is

excited by an electromagnetic source, usually an ultraviolet (UV) narrow laser-pulse. Given a

sample with synthetic dyes or endogenous fluorophores, the sample will emit light at a longer

wavelength than the excitation source [3, 4]. This fluorescent response contains information of

the chemical environment in the sample, its fluorescent components and their concentrations.

In multi-spectral FLIM (mFLIM) several spectral channels are recorded simultaneously, and

the resulting time-responses are concatenated to construct a characteristic time-frequency sig-

nature [5, 6]. The mFLIM methodology has shown to be a powerful medical resource for early

and non-invasive diagnosis for different pathologies such as cardiovascular and dermatological

diseases [5, 7–9], oral pre-cancer and cancer conditions [10, 11], colonic dysplasia [12], skin

cancer [13, 14], and to assess therapeutic responses of anticancer drugs [15].

The fluorescence response measured by FLIM can be modeled as the convolution between

the instrument response (InstR) and the particular fluorescence impulse response (FluoIR) of

the tissue sample. In order to identify the FluoIR of the sample and provide quantitative infor-

mation of the FLIM data, a deconvolution stage needs to isolate the InstR from the fluores-

cence decay (FluoD) [16–20]. There are different strategies to solve this inverse problem,

usually the InstR is assumed known or measured a priori, and then carefully aligned with the

FluoIRs to avoid bias in the estimations. Other strategies quantify FLIM data by analyzing the

FluoDs with a linear unmixing approach [21–25], or in a lower-dimensional domain using the

phasor approach [26–28].

In the literature, there are two principal tendencies for the deconvolution process for FLIM

datasets: 1) multi-exponential models [16–18], and 2) Laguerre-basis approximation [19, 20,

29]. The former assumes that the FluoIR of each fluorophore in the sample is a linear combina-

tion of multi-exponential functions, characterized by the time constants for the exponential

functions and the scaling coefficients for each sample position (local approach). On the other

hand, a global approach on the time constants is defined when these parameters are assumed

constant throughout the sample, i.e. just the scaling coefficients of the exponential functions

change for every sample position. Given the non-linear dependence on the time constants, a

non-linear least squares approach is assumed to estimated these parameters [30], while the

scaling coefficients can be solved using standard least squares routines for each spatial point.

In other approaches, the FluoIR is modeled as a linear combination of discrete-time Laguerre

basis functions. In this way, the objective is to estimate the scaling coefficients of the Laguerre

functions, whose values can be computed through a linear least squares estimation. The disad-

vantage of this approach is that for some cases, the resulting FluoIRs might not have a mono-

tonic decay, which is a characteristic of the fluorescence decays, or the fitting could be poor for

extremely short or long lifetimes [4]. Therefore, a constrained optimization method is applied

with restrictions on the second or third order time derivatives of the resulting FluoIRs to over-

come this drawback. Finally, fluorescence lifetimes can be computed from the estimated

FluoIRs to provide information about the chemical composition of the sample [31].

An alternative approach is blind deconvolution estimation (BDE), which aims to simulta-

neously estimate the InstR and the FluoIRs in the sample [32]. Under this perspective, the

resulting InstR will be automatically aligned with the FluoDs to minimize the bias estimation

of the FluoIRs. To the best of the author’s knowledge, there is only one BDE algorithm

reported for FLIM data, which considers a Laguerre-basis approach [32]. However, a key

hyper-parameter of this proposal has to be carefully tuned for the given input data, and it

requires a constrained optimization scheme to achieve a monotonically decaying FluoIR. An
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equivalent formulation to BDE was presented in [33] for spike train inference from fluores-

cence measurements to evaluate neurons activity. In this formulation, the generative model is

linear auto-regressive, and the spike inference is obtained by an approximated maximum a

posterior formulation with a sparse constraint. This same formulation is further extended in

[34] by an active set method to solve the sparse non-negative deconvolution problem (non-

negative least absolute shrinkage and selection operator, LASSO, formulation) motivated by

isotonic regression. Recently, in [35], the authors introduced the short-and-sparse deconvolu-

tion methodology which is based on a bilinear LASSO problem, sphere constraints and data-

driven initialization.

In this context, this paper introduces two new BDE algorithms based on modeling the

FluoIR by a linear combination of multi-exponential functions. The first BDE algorithm seeks

for the characteristic parameters of the exponential functions (time constants and scaling coef-

ficients) with a local perspective in each spatial point of the sample, i.e. pixel-by-pixel. On the

other hand, in the global approach, the exponential functions in the FluoIR model are assumed

common for all spatial points of the dataset, while their contributions change across the sam-

ple, i.e. the time constants of the exponentials are common to all pixels, but the scaling coeffi-

cients in each pixel are different. Given the monotonically decaying nature of the exponential

functions, there is no need to include a shape-constraint during the estimation process in con-

trast to [32]. In addition, the only hyperparameters are the lower and upper bounds for the

time constants of the exponential functions, which can be easily defined based on prior infor-

mation of the fluorophores expected in the sample. To overcome the nonlinear interaction

between FluoIRs and InstR variables, an alternating least squares (ALS) methodology, itera-

tively solves both estimation problems. In fact, due to a linear dependence on the InstR param-

eters in the observation model, a global search is made to estimate and align the shape of the

UV laser-pulse through a linear non-negative least squares approximation. The InstR estima-

tion is assumed with a free-form structure and a sparcity condition. In this way, our BDE

methods jointly provides an estimation of the InstR and FluoIRs in the sample. The synthetic

and experimental results, including synthetic datasets, fluorescence dyes, and oral tissue sam-

ples, show that the proposals are robust to different noise types and levels, and achieve a low

computational time compared to other strategies in the state of the art. An initial version of

the BDE algorithm based on the global approach was presented in [36]. Contrary to [33, 34],

in our approach, the InstR does not have a spike train shape, and the observation model relies

on a convolution with a multi-exponential structure. Furthermore, our formulation does not

assume a short kernel nor a sparse activation map, as in comparison to [35]; and also our

multi-exponential kernel is not restricted to a sphere constraint.

The notation used in this paper is described next. Scalars are denoted by italic letters, while

vectors and matrices by lower and upper-case bold letters, respectively. R and Z represent the

real and integer numbers, respectively, and RN N-dimensional real vectors. For a real vector x,

the transpose operation is denoted by x>, the l-th element by x[l], the Euclidean norm by

kxk2 ¼
ffiffiffiffiffiffiffiffi
x>x
p

, and x� 0 (x > 0) represents that each element in the vector is non-negative

(positive). For a square matrix X 2 RN�N , Xi,j represents the element in the i-th row and j-th

column (i, j 2 [1, N]), Tr(X) = ∑i Xi,i denotes the trace operation, and kXkF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TrðX>XÞ

p
the

Frobenius norm. X� 0 represents that each element in the matrix is non-negative. For all vec-

tors x 2 RN and y 2 RM, Tx;y 2 R
N�M denotes a Toeplitz matrix with x and y> as its first col-

umn and row, respectively, where the first element in x and y must be equal. An N-

dimensional vector for which all elements are ones (zeros) is represented by 1N (0N), and IN

denotes the identity matrix of order N. For a random variable x, x � U½a; b� represents that x
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is uniformly distributed in the interval [a, b] (b> a), and x � N ð0; s2Þ that x is normally dis-

tributed with zero mean and variance σ2.

Blind deconvolution estimation

We assume that the FLIM dataset is sampled regularly with a period T over a spatial domain of

K points in the field of view (FOV) of the instrument [1–3]. Hence, the FluoDs at any spatial

location are L-th dimensional vectors zk 2 R
L that satisfy zk� 0 8k 2 [0, K − 1]. The set of

FLIM measurements is denoted as Z ¼ fz0; . . . ; zK� 1g, where their spatial location is not rele-

vant so the ordering in Z is indistinct. Considering an initial pre-processing stage, all the mea-

sured FluoDs are normalized to sum-to-one, therefore:

yk ¼
zk

1>zk
8k 2 ½0;K � 1�; ð1Þ

such that the dataset of scaled FluoDs is given by Y ¼ fy
0
; . . . ; yK� 1

g and cardðYÞ ¼ K. The

FLIM observation model for the l-th time sample in the k-th spatial position is given by

yk½l� ¼ u½l� ? hk½l� þ vk½l� ¼
Xl

j¼0

u½l � j� hk½j� þ vk½l� 8l 2 ½0; L � 1�; k 2 ½0;K � 1�; ð2Þ

where yk[l], u[l] and hk[l] denote the measured FluoD, InstR, and FluoIR, respectively, ? repre-

sents the convolution operator, and vk[l] stands for random noise related to measurement

uncertainty. As a result, the scaled FluoDs represent the causal convolution between the InstR

and the FluoIR at each spatial location [37]. The FLIM observation model is depicted in Fig 1.

Fig 1. FLIM observation model. The instrument response u[l] is common to all K spatial points, and the FluoDs fyk½l�g
K� 1

k¼0
result from the convolution

between the FluoIRs fhk½l�g
K� 1

k¼0
and the InstR u[l].

https://doi.org/10.1371/journal.pone.0248301.g001
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In our formulation, the FluoIR time sample at k-th position is characterized by the linear com-

bination of N exponential functions. Thus, in the FluoIR model, the free parameters are the

scaling coefficients of the exponential functions, and their time constants. Nonetheless,

according to the nature of the exponential functions, we adopt two strategies to model the l-th

FluoIR time sample:

• Local Approach: the time constants of the exponential functions fτk;ng
N
n¼1

are different at

each k-th spatial location:

hk½l� ¼ ck;0 þ
XN

n¼1

ck;ne
� l
τk;n 8l 2 ½0; L � 1�: ð3Þ

• Global Approach: common exponential functions with time constants fτng
N
n¼1

are scaled at

each k-th spatial location:

hk½l� ¼ ck;0 þ
XN

n¼1

ck;ne
� l
τn 8l 2 ½0; L � 1�: ð4Þ

The scaling coefficients ck;n 2 R 8n 2 [0, N] are selected different for each spatial location k,

such that the estimated FluoD matches the actual measurement [19, 20, 29]. In this way, the

local perspective in the FluoIR construction allows a major diversity in the fitting of the

measured FluoDs, since at k-th spatial location there are 2N + 1 parameters fck;ng
N
n¼0

and

fτk;ng
N
n¼1

to be estimated. On the other hand, the global perspective assumes the same exponen-

tial functions in the whole dataset, so at k-th spatial location just the N + 1 scaling parameters

fck;ng
N
n¼0

are obtained, resulting in a faster fitting procedure compared to the local approach at

the expense of limited diversity. Nonetheless, the fitting accuracy of the measured FluoDs by

the local and global approaches will depend on the studied FLIM dataset and the order selec-

tion of the multi-exponential models in Eqs (3) and (4).

The observation model in Eq (2) can be expressed in vector notation for the local approach

as

yk ¼ UHLðτkÞ ck þ vk 8k 2 ½0;K � 1�; ð5Þ

and similarly, for the global approach as

yk ¼ UHGðτÞ ck þ vk 8k 2 ½0;K � 1�; ð6Þ

where

U ¼

u½0� 0 . . . 0

u½1� u½0� . . . 0

..

. ..
. . .

. ..
.

u½L � 1� u½L � 2� . . . u½0�

2

6
6
6
6
6
4

3

7
7
7
7
7
5

2 RL�L
ð7Þ
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HLðτkÞ ¼

1 1 . . . 1

1 e�
1

τk;1 . . . e�
1

τk;N

..

. ..
. . .

. ..
.

1 e�
L� 1
τk;1 . . . e�

L� 1
τk;N

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

2 RL�ðNþ1Þ
ð8Þ

ck ¼ ½ck;0 . . . ck;N�
>
2 RðNþ1Þ ð9Þ

τk ¼ ½τk;1 . . . τk;N�
>
2 RN ð10Þ

vk ¼ vk½0� . . . vk½L � 1� �
>
2 RL�

ð11Þ

HGðτÞ ¼

1 1 . . . 1

1 e�
1
τ1 . . . e�

1
τN

..

. ..
. . .

. ..
.

1 e�
L� 1
τ1 . . . e�

L� 1
τN

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

2 RL�ðNþ1Þ ð12Þ

τ ¼ ½τ1 . . . τN �
>
2 RN ð13Þ

By following a similar perspective to [32], the InstR fu½l�gL� 1

l¼0
is assumed common to all K

spatial points in the FLIM dataset, and with a free-form. The InstR samples are also considered

non-negative and normalized to sum-to-one to avoid scaling ambiguity, such that

XL� 1

l¼0

u½l� ¼ 1 & u½l� � 0 8l 2 ½0; L � 1�: ð14Þ

In FLIM applications, the InstR is sparse, so there is no need to estimate every sample. Hence,

we consider only the first L̂ terms ðL̂ < LÞ to represent the InstR. As a result, the input matrix

U in Eq (7) can be parametrized as a linear combination of L̂ Toeplitz matrices:

U ¼
XL̂ � 1

l¼0

ylU
o
l ; ð15Þ

where the parameter θl = u[l] represents l-th sample in the InstR, and

Uo
l ¼ Txl ;zl

2 RL�L
;

xl ¼ ½0l 1 0L� l� 1�
>
2 RL;

zl ¼ ½xl½1� 0L� 1�
>
2 RL:

With this mathematical description, the blind deconvolution estimation (BDE) problem is

formulated as jointly obtaining the InstR components fylg
L̂ � 1

l¼0
, the scaling coefficients fckg

K� 1

k¼0
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and the time constants, either fτkg
K� 1

k¼0
or just τ for a given FLIM dataset Y. Hence assuming

Gaussian noise and independent measurements in Eq (5), we can formulate the local BDE as a

maximum likelihood estimation, which is equivalent to the following nonlinear least-squares

(NLS) approximation problem [30]:

min
fylg

L̂ � 1
l¼0

;fckg
K� 1
k¼0

;fτkg
K� 1
k¼0

1

2

XK� 1

k¼0

�
�
�
�
�
yk �

XL̂ � 1

l¼0

ylU
o
lH

LðτkÞck

�
�
�
�
�

2

2

; ð16Þ

such that

P
lyl ¼ 1; & yl � 0 8l 2 ½0; L̂ � 1� ð17Þ

ck � 0; τk > 0 8k 2 ½0;K � 1�: ð18Þ

A similar approximation problem is defined for the global BDE:

min
fylg

L̂ � 1
l¼0

;fckg
K� 1
k¼0

;τ

1

2

XK� 1

k¼0

�
�
�
�
�
yk �

XL̂ � 1

l¼0

ylU
o
lH

GðτÞck

�
�
�
�
�

2

2

; ð19Þ

with restrictions in Eq (17), ck� 0 8k, and τ> 0.

The inverse problems in Eqs (16) and (19) involve nonlinear interactions among the free

parameters of the InstR fylg
L̂ � 1

l¼0
, and those involved in the FluoIR fckg

K� 1

k¼0
; fτkg

K� 1

k¼0
or τ. To

tackle these problems, we applied ALS approaches similar to [21] and [38, 39], where we esti-

mate a solution for the FluoIR components while fixing the InstR, and vice versa until

convergence.

Alternated least-squares methodology for blind estimation

The proposed ALS methodology solves iteratively the local and global BDE problems in Eqs

(16) and (19), and these two mathematical formulations have distinctive features that are dis-

cussed next. We observe that the InstR parameters fylg
L̂ � 1

l¼0
have a linear dependence on the

approximation error, as well as the scaling coefficients fckg
K� 1

k¼0
in the FluoIRs. However, the

exponential time constants fτkg
K� 1

k¼0
or τ show a nonlinear interaction. Furthermore, the scaling

coefficients for each spatial point are always non-negative, while the time constants are

restricted to be positive values. Moreover, in our formulation for FLIM datasets, the InstR is a

narrow pulse without repetitions, so each measured FluoD will exhibit a sharp increase to its

peak value, followed by a monotonic decrease. Moreover, all the measured FDs fyk½l�g
K� 1

k¼0
are

scaled to sum-to-one, and also the InstR is limited to sum-to-one. As a result, the scaled shift

symmetry described in [35] will not hold in our BDE formulation. In addition, at each

iteration of the ALS scheme in the local and global approaches, a quadratic approximation

problem is solved by either a non-linear least squares or linear least squares. So, at each itera-

tion, the estimation error is reduced or at least maintained. Consequently, convergence is

guaranteed in the iterative scheme, but only to a local minimum. For this reason, the initializa-

tion based on processing the FLIM dataset is a crucial step in our formulation to obtain mean-

ingful results.

We set initial conditions for the InstR parameters, and for the time constants of the expo-

nential functions by considering a raw estimation of the overall lifetime present in the dataset,

this process is fully described in the following sections. To speed up the estimation of the InstR

parameters, and considering that the InstR is common for all spatial points in the dataset, only
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a random subset of FluoDs Ŷ � Y (K̂ ¼ cardðŶÞ < K) was used for the initial estimation.

The overall process for ALS assumes fixing one unknown parameter while optimizing for the

other, i.e. fixing the InstR and estimating the FluoIRs or vice versa. In this sense, we first fixed

the InstR to its initial condition and estimated the FluoIRs, for each spatial position of the

reduced subset, by NLS following either the local or the global perspective [30]. Next, the esti-

mated FluoIRs are fixed and the InstR is computed by constrained linear least squares. This

alternated process is repeated until convergence for the InstR is reached. Finally, the FluoIRs

are estimated taking into account the estimated InstR from the last iteration. The mathematical

derivations for each optimization methodology are presented in the appendix, and the block

diagrams of the local and global implementations are shown in Figs 2 and 3, respectively.

Estimation of FluoIR parameters

At this stage, the components fylg
L̂ � 1

l¼0
of the InstR are assumed fixed, i.e. matrix U is known in

Eqs (5) and (6). The local FluoIR estimation considers the estimation of the parameters {ck, τk}
at k-th spatial point by NLS with a Levenberg-Marquardt (LM) approach [30]. The damping

term in the LM approach is adapted according to a similarity metric ρk [40]. The mathematical

Fig 2. Blind deconvolution estimation: Local approach. Block diagram of the general methodology with local approach to estimate FluoIRs.

https://doi.org/10.1371/journal.pone.0248301.g002
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derivations of the local approach are described in S2 Appendix in S1 File (see Fig 2). For this

purpose, we implement two iterative blocks for the k-th measurement to estimate the FluoIR

parameters (ck, τk):

1. A convergence loop that computes the ALS for the optimal parameters (chk; τ
h
k) indexed by h

until the percentage approximation error ehk converges with respect to the previous iteration

h − 1:

ehk≜
kyk � �yh

kk2

kykk2

; ð20Þ

where �yh
k ¼ UHLðτh

kÞ c
h
k denotes the k-th estimated FluoD at h-iteration, i.e., the conver-

gence criterion is given by

jehþ1
k � ehkj

ehk
< �1; ð21Þ

where �1 > 0 is the stopping threshold.

Fig 3. Blind deconvolution estimation: Global approach. Block diagram of the general methodology with global approach to estimate FluoIRs.

https://doi.org/10.1371/journal.pone.0248301.g003
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2. An internal loop that adjusts the damping factor l
h
k in the LM approach until rhþ1

k > �2,

where �2 > 0. After this condition is achieved, the damping factor l
h
k is updated for subse-

quent iterations.

The global FluoIR estimation takes into consideration a non-negative least-squares (LS)

approximation to estimate the scaling parameters {ck} for each k-th pixel in the dataset, which

is followed by a NLS optimization for the time constants τ over the reduced dataset until con-

vergence [30]. Similar to the local approach, the NLS optimization is implemented by a LM

approach [40]. The mathematical derivations of the global approach are described in S3

Appendix in S1 File (see Fig 3). As previously outlined, we implement two iterative blocks to

estimate the global FluoIR parameters:

1. An outer-loop that computes the ALS for the optimal scalings Ch ¼ ½ch
1
. . . chK̂ � and time

constants τh indexed both by h until the percentage approximation error eh over the

reduced dataset converge with respect to the previous iteration:

eh ¼
kY � UHGðτhÞChkF

kYkF
; ð22Þ

where Y ¼ ½y
1

. . . yK̂ � 2 RL�K̂ i.e.

jehþ1 � ehj
eh

< �1; ð23Þ

where �1 > 0 is the stopping threshold.

2. An inner-loop that adjusts the damping factor λh in the LM approach to estimate the time

constants τ until ρh+1 > �2, where �2 > 0. After this condition is achieved, the damping fac-

tor λh is updated for subsequent iterations.

Estimation of InstR parameters

At this step, the scaling coefficients {ck}, and time constants {τk} or τ are assumed known and

fixed in the cost functions in Eqs (16) or (19), and the optimization is implemented with

respect to the samples of the InstR fylg
L̂ � 1

l¼0
. In this case, a closed-form solution can be calcu-

lated, as will be shown next by using the reduced dataset Ŷ . In this formulation, we are not

assuming a pre-defined form or time-pattern for the InstR samples, just that fylg
L̂ � 1

l¼0
are always

non-negative values and sum-to-one. The optimization problem is re-formulated in a compact

structure as

min
fylg

L̂ � 1
l¼0

1

2
Y �

XL̂ � 1

l¼0

ylΓl

�
�
�
�
�

�
�
�
�
�

2

F|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
Ĵ

; ð24Þ

such that

P
lyl ¼ 1; & yl � 0 8l 2 ½0; L̂ � 1�;
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where

Γl≜
Ulo½HLðτ1Þc1...HLðτK̂ ÞcK̂ � local approach

Uo
lH

GðτÞC global approach

8
<

:
ð25Þ

i.e. Γl 2 R
L�K̂

where l 2 ½0; L̂ � 1�. The mathematical derivations of the InstR parameter esti-

mation are described in S4 Appendix in S1 File (see Figs 2 and 3). An iterative scheme follow-

ing the ALS philosophy is implemented between the FluoIR estimation at each spatial pixel,

and the InstR parameters over the reduced dataset. The iterative scheme is stopped after con-

vergence of the overall parameters in the FluoIRs and InstR. If this iterative structure is

indexed by t, i.e. fy
t
l ;Γ

t
lg

L̂ � 1

l¼1
the convergence performance is evaluated by a normalized metric:

ϒt≜
kY �

PL̂ � 1

l¼0
y
t
lG

t
lkF

kYkF
; ð26Þ

and the next stoppage criterion is considered as

jϒtþ1 � ϒtj

ϒt < �3; ð27Þ

where �3 > 0 is the stopping threshold in this outer-loop.

Initial conditions

An initial condition is required in the ALS scheme for InstR parameters θ0, and time constants

in the FluoIRs estimation for the local fτ0
kg

K̂ � 1

k¼0
or global τ0 approaches. We start by estimating

an initial condition for θ0, which is defined as follows:

y
0
½l� ¼

0 0 � l �
L̂
2
� 1

2L̂
L̂
2
� l � L̂ � 1;

8
>>><

>>>:

ð28Þ

The proposed initial InstR represented by θ0 is a narrow pulse, like the one used in fluorescent

measurements applications [32, 41], which will be refined in each subsequent iteration.

Another advantage is that the resulting estimated InstR is aligned with the FluoDs, resulting in

a better approximation of the FluoIRs.

An initial estimation for the time constants τ0 or τ0
k is computed from the average lifetime

in the whole dataset, which is defined as:

~tk ¼

PL� 1

l¼lmax
k
ðl � lmax

k Þyk½l�
PL� 1

l¼lmax
k

yk½l�
8k 2 ½0;K � 1�; ð29Þ

where the peak value of each FluoD is defined as:

lmax
k ¼ arg max

l2½0;L� 1�
yk½l�: ð30Þ
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By defining the mean and standard deviation of the values in f~tkg
K� 1

k¼0
:

�t ¼ ð1=KÞ
XK� 1

k¼0

~tk; ð31Þ

st ¼ ð1=KÞ
XK� 1

k¼0

ð~tk � �tÞ
2
; ð32Þ

the elements in τ0 and τ0
k are selected in the range ½�t � 3st; �t þ 3st�. By setting the initial con-

dition on y
0
; τ0

k for the local approach, the matrices U and HL(τ0) can be constructed from Eqs

(7) and (8), respectively. To set the initial scaling coefficients c0
k in the NLS scheme for k-th spa-

tial pixel, a LS problem is formulated from Eq (16) as:

min
c0
k�0

1

2
kyk � UHLðτ0

kÞc
0

kk
2

2
; ð33Þ

which can be solved using standard numerical methods efficiently [30].

Synthetic and experimental validation

To validate the proposed BDE algorithms, we consider synthetic and experimental FLIM data-

sets. In both cases, the performance of the proposals will be tested by measuring the estimation

errors on the InstR and FluoDs; in addition, for the synthetic evaluation, we can also quantify

the errors on the estimated FluoIRs. We also evaluate different scenarios of Gaussian and Pois-

son noise in the FluoDs for the synthetic datasets [23]. Furthermore, we quantify the shape of

the InstR by the full-width at half-maximum (FWHM) parameter Δufwhm:

Dufwhm ¼ l2 � l1; ð34Þ

where the time indexes 0< l1 < Imax and Imax < l2 < L − 1 satisfy

u½l1� ¼ u½l2� ¼ umax=2; ð35Þ

where

Imax ¼ arg max
l2½0;L� 1�

u½l� & umax ¼ u½Imax�: ð36Þ

By assuming that �yk,
�hk and �u denote the FluoD, FluoIR and InstR estimations by a BDE algo-

rithm, respectively, and yk, hk and u the corresponding ground-truths, we employ four estima-

tion performance metrics:

Ey ¼
1

K

XK� 1

k¼0

kyk � �ykk2

kykk2

;

Eh ¼
1

K

XK� 1

k¼0

khk �
�hkk2

khkk2

; ð37Þ
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Eu ¼
ku � �uk

2

kuk
2

;

Efwhm ¼
jDufwhm � D�u fwhmj

Dufwhm
: ð38Þ

The metrics (Eu, Eh, Ey) provide information of the estimation performance with respect to

the estimated InstR, FluoIRs and FluoDs in a percentage fashion. For the synthetic FluoIR hk

at k-th spatial point, the average lifetime (ALT) τk is a key parameter related to the fluorescent

property of the sample:

τk ¼
t>hk

1>L hk
k 2 ½0;K � 1�; ð39Þ

where t ¼ ½0 T . . . ðL � 1ÞT�> 2 RL
represents a vector of the sampling times. These ALTs

are used to generate a representative image with spatial information of the chemical composi-

tion of the sample. Hence, the error between the ALTs generated through the synthetic FluoIR

ftkg
K� 1

k¼0
and the estimated one f�tkg

K� 1

k¼0
can be quantified by using the next normalized metric:

Ealt ¼
1

K

XK� 1

k¼0

jtk � �tkj

tk
: ð40Þ

In our evaluations, we compare the proposed BDE local and global algorithms based on

multi-exponential models (BDELME and BDEGME) to the BDE by a Laguerre-basis (BDELB)

[32], and a blind extension of the exponentials library deconvolution (BDEEL) approach [42].

In addition, we also compare the standard local and global deconvolution methodologies with

a multi-exponential model that assume available the InstR, and they are denoted as: DELME

and DEGME, respectively [17, 18]. As suggested in [32], BDELB was implemented with a 8th

order approximation and shape parameter 0.85. Meanwhile, for BDEEL, the exponential

library contains 25 elements and a weight factor of 0.25, as suggested in [41] and [42]. All the

MATLAB implementations of the methodologies: DELME, DEGME, BDELME, BDEGME,

BDELB and BDEEL are freely available in the website http://galia.fc.uaslp.mx/~bde.

Synthetic evaluation

The proposals were first validated by using synthetic datasets under different types and noise

levels. The synthetic datasets were generated considering a measured InstR [5], with a sam-

pling interval T = 0.25 ns and a length of 186 samples (L = 186). This measured InstR fu½l�gL� 1

l¼0

is a positive time-signal with a sharp rising time and exponential decay with Δufwhm = 1.53 ns.

The k-th synthetic FluoIR is modeled as a sum of Nsynth 2 {2, 3, 4} exponential functions:

hk½l� ¼ ak;0 þ
XNsynth

i¼1

ak;ie
� l T

τk;i 8k 2 ½0;K � 1�; l 2 ½0; L � 1�; ð41Þ

where the magnitudes ak,i were selected to have uniform regions of high concentration of all

components in the dataset [41], ak,0 = 0.001 8k, and the characteristic times are selected ran-

domly, but in a limited interval τk;1 � U½3:75; 4:25� ns, τk;2 � U½8:75; 9:25� ns, τk;3 �

U½1:25; 1:75� ns, and τk;4 � U½6:25; 6:75� ns 8k. With these definitions of the synthetic

FluoIRs, the BDE local and global perspectives are both viable.
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Next, the synthetic noise-free FluoDs yo
k½l� are obtained by applying the convolution opera-

tor in (2), i.e. yo
k½l� ¼ u½l� ? hk½l�. In our evaluation, we included Gaussian and Poisson noise to

the FluoDs to take into account uncertainty in the equipment according to the following

model [23]:

yk½l� ¼ yo
k½l� þ ok½l� þ

ffiffiffiffiffiffiffiffi
yo
k½l�

p
� �k½l� 8l 2 ½0; L � 1�; ð42Þ

where ok½l� � N ð0; s2
G;kÞ and �k½l� � N ð0; s2

P;kÞ represent normal random variables, and the

variances s2
G;k, s

2
P;k are selected with respect to a desired signal-to-noise ratio (SNR) and peak-

to-noise signal ratio (PSNR):

SNR ¼ 10 log 10

kyo
kk

2

s2
G;k

8k 2 ½0;K � 1�; ð43Þ

PSNR ¼ 10 log 10

maxl2½0;L� 1�ðyo
k½l�Þ

2

s2
P;k

8k 2 ½0;K � 1�: ð44Þ

Since the construction of the synthetic datasets involved uniformly distributed random

samples, we carried out a Monte Carlo evaluation with 10 repetitions by implementing the

BDE algorithms according to the parameters listed in Table 1, whose selection is explained

next. In the synthetic evaluation, a spatial domain of 100 × 100 = 10, 000 samples were gener-

ated by Eqs (41) and (42) at different values of SNR 2 {40, 45, 50, 55} dB, and PSNR 2 {10, 15,

20, 25} dB, and the resulting datasets were analyzed by the BDE algorithms, i.e. K = 10, 000.

The random spatial sampling retained only K̂ ¼ 2; 000 to estimate the InstR, i.e. 20% of the

complete dataset. As previously mentioned, we considered three different values for the num-

ber of exponential functions in the synthetic FluoIRs Nsynth 2 {2, 3, 4}. Since for DELME,

DEGME, BDELME and BDEGME, we could not know a priori the number of exponentials in

the FluoIRs model, we assume a fourth order model in the synthetic datasets, i.e. N = 4.

First, we have included a numerical convergence evaluation of the BDE schemes (BDELME

and BDEGME) with the synthetic datasets for different noise levels, and orders in the multi-

exponential model of the synthetic impulse response. The stopping threshold is set to �3 =

1 × 10−3. The resulting normalized metric Yt in the alternated least squares iterations is

described below in Fig 4, where it is observed that in either BDE scheme, the convergence is

always monotonic for any noise combination and model order, and just its final steady-state

value depends on the noise level. From Fig 4, we conclude that the local approach (BDELME)

converges slower than the global scheme (BDEGME), which could be intuitively expected,

Table 1. Parameters of synthetic dataset and BDE implementation during the synthetic evaluation.

Parameter Value

T 0.25 ns

K 10,000

L 186

Nsynth {2,3,4}

τmin 0.5 ns

τmax 15.0 ns

�1 0.05

�2 0.05

�3 0.05

https://doi.org/10.1371/journal.pone.0248301.t001
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since BDELME has roughly twice the free parameters to optimize. For BDELME, the most

drastic reductions are achieved in the first five iterations, and for BDEGME, in the first two.

In the following evaluations, to evaluate the convergence in the iterative process of the BDE

algorithms (see Figs 2 and 3), we use a 5% tolerance in all iterations, �1 = �2 = �3 = 0.05, as a

good balance between precision and complexity in our evaluations. All the data processing

was carried out in MATLAB, and the computational time was measured using the function

“tic-toc”. For the experiments, we used a MacBook Pro with an Intel Dual Core i5 CPU at 2.3

GHz, and 16 GB of RAM. In addition, our evaluation also considered DELME and DEGME

with the measured InstR fu½l�gL� 1

l¼0
by applying the procedures in S1 and S3 Appendices in S1

File. Hence, the performance indexes Ey, Eh and Ealt can examine the estimation accuracy in

the FluoDs, FluoIRs and ALTs by a direct deconvolution process, as well as the computational

time. Meanwhile, the metrics Eu and Efwhm can also quantify the accuracy in the InstR estima-

tions by the BDE strategies.

Fig 5 illustrates the computational time and performance metrics (Ey, Eh, Ealt) as a function

of ascending SNR/PSNR pairs for 2nd, 3rd and 4th order synthetic FluoIR models. As

expected, the lowest computational time is achieved by the standard deconvolution techniques,

Fig 4. Normalized metric (Yt) vs iteration (t) in the ALS scheme for (top row) BDELME and (bottom row) BDEGME by considering synthetic FLIM

datasets at different noise levels (SNR,PSNR) 2 {(10, 40), (15, 45), (20, 50), (25, 55)} dB, and impulse response orders (2nd, 3rd and 4th).

https://doi.org/10.1371/journal.pone.0248301.g004
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DELME and DEGME. In fact, the results in the computational time are independent of the

order in the synthetic model. Now, from the BDE strategies, BDEGME obtained the lowest

computational time consistently, and BDELME was just surpassed by BDEEL in all scenarios.

For the Ey metric, the results had the same tendency for all algorithms, as the pair SNR/PSNR

Fig 5. Performance metrics in synthetic evaluation with 2nd, 3rd and 4th order FluoIR models: (top row) Computational time,

(middle-top row) Ey, (middle-bottom row) Eh, and (bottom row) Ealt.

https://doi.org/10.1371/journal.pone.0248301.g005
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increased, the error metric decreased. In the FluoIR estimations, BDELB reached the worst

performance in all scenarios. For all BDE algorithms, the results for Eh show a small variability

with respect to the SNR/PSNR pairs. The proposed BDELME and BDEGME had always Eh

errors lower than 20%, in contrast with state of the art approaches. Finally, the errors in ALT

Ealt are small (<10%) for all methodologies, despite all different noise types and levels. Fig 6

shows the estimation performance in the InstR by the metrics Eu and Efwhm. It is remarkable

that the proposed blind techniques BDELME and BDEGME reached the best performance for

all noise pairs SNR/PNSR in 2nd and 4th order synthetic models. Meanwhile, for the 3rd

Fig 6. Performance metrics in synthetic evaluation with 2nd, 3rd and 4th order FluoIR models: (top-row) Eu, and (bottom row) Efwhm.

https://doi.org/10.1371/journal.pone.0248301.g006

PLOS ONE Blind deconvolution estimation by multi-exponential models and alternated least squares approximations

PLOS ONE | https://doi.org/10.1371/journal.pone.0248301 March 18, 2021 17 / 29

https://doi.org/10.1371/journal.pone.0248301.g006
https://doi.org/10.1371/journal.pone.0248301


order model, their performance was in between the worst by BDELB and the minimum by

BDEEL.

To illustrate the estimation performance, Fig 7 shows the ALT map for one realization of

the synthetic dataset with the most severe noise conditions, i.e. SNR = 40 dB and PSNR = 10

dB, and 3rd order synthetic model. As shown in Fig 6, all the ALT maps are consistent with

the ground-truth, since the errors are less than 10% for all deconvolution techniques. Finally,

Fig 8 presents the resulting time responses for k = 1, 000 spatial points in the same testing sce-

nario. Thus, the top plot highlights the heavy noise condition in the synthetic FluoD measure-

ment, and the accurate estimation by all techniques, since the errors are lower than 7%, as

shown in the middle column for Ey. The middle plot illustrates that the closest response to the

ground-truth is achieved by DELME, BDELME, DEGME and BDEGME. Finally, the bottom

plot shows that the InstR is accurately estimated by all BDE methodologies, since the errors are

always lower than 20% (see Fig 6).

As conclusions of the synthetic evaluation, BDEGME reached the fastest convergence in

the blind techniques, independently to the noise scenario. BDELME required more computa-

tional time, but not significantly more to BDEGME. In the FluoIR and InstR estimations,

BDEGME and BDELME reached the best performance in the 2nd and 4th synthetic order

models, and for the 3rd order model, their results were between the best and worst of all the

approaches considered.

Fig 7. Average lifetime map for one realization in synthetic evaluation with 3rd order FluoIR model, SNR = 40 dB and PSNR = 10 dB: (a) Ground-

truth, (b) DELME, (c) BDELME, (d) DEGME, (e) BDEGME, (f) BDELB, and (g) BDEEL.

https://doi.org/10.1371/journal.pone.0248301.g007
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Experimental evaluation with fluorescence dyes

The proposals were first validated experimentally with fluorescence dyes: POPOP, FAD and

NADH. The lifetimes of these dyes are reported in the literature: *1.3 ns, 2.0-2.5 ns and 0.3-

Fig 8. Estimated time responses for k = 1, 000 spatial position for one realization with 3rd order FluoIR model, SNR = 40

dB and PSNR = 10 dB: (top) FluoDs, (middle) FluoIRs, and (bottom) InstRs.

https://doi.org/10.1371/journal.pone.0248301.g008
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0.6 ns, respectively [1, 4]. The FLIM datasets were collected at the wavelength channels: 390

±40 nm (channel 1), and 494±41 nm (channel 2), with a sampling time of 0.25 ns (T = 0.25

ns). The FAD dye has an emitting response only in channel 1, the POPOP only in channel 2,

while the NADH response to both channels. For each channel measurement, there are defined

80 time samples (L = 80) over a spatial resolution of 1,000 pixels (K = 1, 000). Since the number

of spatial samples is relatively small, there is no random subsampling to estimate the InstR, i.e.

K̂ ¼ K. The InstR was measured at both channels, where the FWHM of the UV laser-pulse

(355 nm) was Δufwhm = 1.78 ns and 1.97 ns for channel 1 and 2, respectively. Since we expect

two fluorophores per channel, we set N = 2 for BDELME and BDEGME. The estimated ALT

by using BDELME, BDEGME, BDELB and BDEEL are presented in Table 2 with parameters

τmin = 0.25 ns and τmax = 4 ns (based on the literature results [1, 4]). The computational times

for the BDE algorithms in channels 1/channel 2 were 1.78/2.76 s, 1.75/2.07 s, 2.95/2.80 s, and

2.45/2.92 s for BDELME, BDEGME, BDELB and BDEEL, respectively. Thus, the lowest

computational times were obtained by the proposed algorithms: BDELME and BDEGME.

These results show a good agreement with the literature by considering that there is an

uncertainty factor in the estimation due to the sampling interval of 0.25 ns. In addition, the

performance of the proposed BDE algorithms is visualized by using the Bland-Altman (B&A)

methodology with the estimated ALTs [43]. The B&A plot measures the similarity between

two types of data, by setting limits of agreement in terms of the mean and the standard devia-

tion (SD) of the differences between the two sources. In this case, the B&A analysis was com-

puted with the ALTs generated by pairs of the studied BDE algorithms: BDELME, BDEGME,

BDELB and BDEEL, and Figs 9 and 10 illustrate the B&A plots for all pairs. In addition at the

top of each subplot in Figs 9 and 10, the correlation coefficient ρ was computed between both

estimated ALTs. As a result, we observe that in all scenarios, two distinctive ALTs are obtained

per channel by the two characteristic clusters in the B&A plots. Also, the plots illustrate that

the estimated ALTs are mostly contained in the 95% confidence interval defined by the red

dashed-lines (mean ± 1.96 SD), and the correlation coefficients are always greater than 0.99 for

both channels.

Experimental evaluation with oral tissue samples

From the study in [44], oral tissue samples were used for validation in this section that belong

to different regions in the oral cavity. Dysplastic and cancerous oral lesions were analyzed

by in vivo clinical endogenous mFLIM images. The imaging protocol was approved by the

Institutional Review Board at Texas A&M University. The clinical diagnosis and more detailed

information about the samples are presented in Table 3. The temporal resolution of the mea-

surements is 0.16 ns (T = 0.16 ns). All the measurements included the fluorescent responses to

three wavelength bands: 390 ± 20, 452 ± 22.5, and 550 ± 20 nm, that correspond to channel 1,

channel 2 and channel 3, respectively. Only 186 time samples were considered for each chan-

nel (L = 186). The spatial dimensions of the tissues are approximately 10 mm × 10 mm, divided

equiespatially in 160 × 160 pixels (K = 25, 600). Due to low SNR, some pixels in the images

Table 2. Estimated average lifetimes (ns) for synthetic dyes.

Synthetic Dye BDELME BDEGME BDELB BDEEL Literature

POPOP (390±20 nm) 1.409 ± 0.076 1.685 ± 0.061 1.678 ± 0.053 1.467± 0.057 1.3 ns

NADH (390±20 nm) 0.558 ± 0.063 0.749 ± 0.075 0.888 ± 0.042 0.617 ± 0.050 [0.3,0.6] ns

POPOP (494±41 nm) 1.039 ± 0.121 1.137 ± 0.070 1.216 ± 0.033 1.046 ± 0.028 1.3 ns

FAD (494±41 nm) 2.976 ± 0.073 2.976 ± 0.073 3.168 ± 0.074 3.084 ± 0.074 [2.4,2.9] ns

https://doi.org/10.1371/journal.pone.0248301.t002
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Fig 9. Bland-Altman plots for estimated average lifetimes with fluorescence dyes in channel 1 (390±20 nm) and

correlation coefficients: (a) BDELME vs BDEGME, (b) BDELME vs BDELB, (c) BDELME vs BDEEL, (d) BDEGME vs

BDELB, (e) BDEGME vs BDEEL, and (f) BDELB vs BDEEL.

https://doi.org/10.1371/journal.pone.0248301.g009
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Fig 10. Bland-Altman plots for estimated average lifetimes with fluorescence dyes in channel 2 (494±41 nm) and

correlation coefficients: (a) BDELME vs BDEGME, (b) BDELME vs BDELB, (c) BDELME vs BDEEL, (d) BDEGME vs

BDELB, (e) BDEGME vs BDEEL, and (f) BDELB vs BDEEL.

https://doi.org/10.1371/journal.pone.0248301.g010
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Table 3. Detailed information of the oral tissue lesion samples.

Sample Number of Pixels Region Medical diagnosis

49 17,693 Gingiva Squamous cell carcinoma

62 23,918 Gingiva Squamous cell carcinoma

65 25,429 Tongue Dysplasia

69 23,961 Gingiva Benign

82 25,173 Gingiva Benign

https://doi.org/10.1371/journal.pone.0248301.t003

Fig 11. Performance metrics in experimental evaluation with lesion and normal samples for the three spectral channels: (top row) Computational

time, (middle-top row) Ey, (middle-bottom row) Eu, and (bottom row) Efwhm.

https://doi.org/10.1371/journal.pone.0248301.g011
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were manually masked, so their information will not misguide the BDE strategies. During the

experimental evaluations, the following parameters were set for BDELME and BDEGME as

τmin = 0.64 ns, τmax = 16 ns, and �1 = �2 = �3 = 0.05. The experimental InstRs used to generate

the fluorescent measurements in channels 1, 2 and 3 have a FWHM of Δufwhm = 1.70 ns, 1.88

ns and 2.21 ns, respectively. For each oral tissue the dataset contains two samples, lesion and

reference. The reference sample was taken from the symmetrical location of the sagittal plane.

Fig 11 shows the resulting computational time and performance metrics (Ey, Eu, Efwhm) for

all the datasets describe in Table 3. We can observe that the computational time is always the

lowest for BDELME and BDEGME for all three channels. With respect to the estimation error

in the FluoDs, Ey exhibits the same tendency for all datasets and channels, where the differ-

ences are lower than 1%. Meanwhile, for the InstR estimations, no particular BDE methodol-

ogy achieved consistently the lowest errors Eu and Efwhm. Nonetheless, BDELME and

BDEGME presented more regular responses in Eu and Efwhm, especially in the second and

third channels. In general, the largest errors were obtained by BDELB in the three channels.

To illustrate a specific response for the estimated FluoIRs, Fig 12 presents the estimated

ALT maps for lesion sample No. 82 in the 3rd channel with the four BDE algorithms. The

Fig 12. Average lifetime maps for lesion sample No. 82 in 3rd spectral channel: (a) BDELME, (b) BDEGME, (c) BDELB, and (d)

BDEEL.

https://doi.org/10.1371/journal.pone.0248301.g012
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subplots illustrate the same morphological patterns with just small differences in the minimum

and maximum ALTs. Finally, Fig 13 presents the B&A plots for all pairs of ALT estimations,

and the corresponding correlation coefficients. In all cases, the correlation coefficients are

larger than 0.94, which highlights high consistency among all BDE techniques.

Fig 13. Bland-Altman plots for estimated average lifetimes for lesion sample No. 82 in 3rd spectral channel and

correlation coefficients: (a) BDELME vs BDEGME, (b) BDELME vs BDELB, (c) BDELME vs BDEEL, (d) BDEGME vs

BDELB, (e) BDEGME vs BDEEL, and (f) BDELB vs BDEEL.

https://doi.org/10.1371/journal.pone.0248301.g013
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Conclusions

In this work, we introduced two new BDE algorithms based on a linear combination of multi-

exponential functions for the FluoIRs modeling. Hence, the proposed algorithms estimate the

FluoIRs in all the spatial points of the dataset and, simultaneously, the InstR for the fluores-

cence excitation. The InstR is assumed with a free-form and a sparcity condition. The local

perspective of the BDE methodology (BDELME) assumes that the characteristic parameters of

the exponential functions (time constants and scaling coefficients) are estimated for each spa-

tial point of the dataset, i.e. pixel-by-pixel. On the other hand, for the global perspective, the

exponential functions are assumed common to all the points in the dataset, and just their scal-

ing coefficients are updated for each spatial point. By using a convolution modeling between

the FluoIRs and InstR for the measured FluoDs, the time samples of the InstR and the scaling

coefficients of the exponential functions exhibit a linear dependence in the observation model,

but for the exponentials time constants, the dependence is nonlinear. To overcome the nonlin-

ear interaction on the decision variables, an alternating least squares (ALS) methodology itera-

tively solves both estimation problems based on non-negative and constrained optimizations.

The validation stage considered synthetic datasets at different noise types and levels, and a

comparison with the standard deconvolution techniques: DELME and DEGME, as well as,

two more BDE methodologies in the state of the art: BDELB and BDEEL. In the validation

with experimental datasets, fluorescent dyes and oral tissue samples were considered. Our

results show that BDELME and BDEGME reached the fastest convergence with the best com-

promise in FluoIRs and InstR estimation errors compared to BDELB and BDEEL. Also, the

estimation performance of BDELME and BDEGME was consistent with the standard decon-

volution techniques that assume the InstR is available: DELME and DEGME. For future work,

we will develop parallel implementations of all the BDE methodologies to reduce computa-

tional time, as well as design a more comprehensive comparison with diverse tissue samples.
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