
SOFTWARE Open Access

A lightweight, flow-based toolkit for parallel and
distributed bioinformatics pipelines
Marcin Cieślik1,2, Cameron Mura1,2*

Abstract

Background: Bioinformatic analyses typically proceed as chains of data-processing tasks. A pipeline, or ‘workflow’,
is a well-defined protocol, with a specific structure defined by the topology of data-flow interdependencies, and a
particular functionality arising from the data transformations applied at each step. In computer science, the
dataflow programming (DFP) paradigm defines software systems constructed in this manner, as networks of
message-passing components. Thus, bioinformatic workflows can be naturally mapped onto DFP concepts.

Results: To enable the flexible creation and execution of bioinformatics dataflows, we have written a modular
framework for parallel pipelines in Python (’PaPy’). A PaPy workflow is created from re-usable components
connected by data-pipes into a directed acyclic graph, which together define nested higher-order map functions.
The successive functional transformations of input data are evaluated on flexibly pooled compute resources, either
local or remote. Input items are processed in batches of adjustable size, all flowing one to tune the trade-off
between parallelism and lazy-evaluation (memory consumption). An add-on module (’NuBio’) facilitates the creation
of bioinformatics workflows by providing domain specific data-containers (e.g., for biomolecular sequences,
alignments, structures) and functionality (e.g., to parse/write standard file formats).

Conclusions: PaPy offers a modular framework for the creation and deployment of parallel and distributed data-
processing workflows. Pipelines derive their functionality from user-written, data-coupled components, so PaPy also
can be viewed as a lightweight toolkit for extensible, flow-based bioinformatics data-processing. The simplicity and
flexibility of distributed PaPy pipelines may help users bridge the gap between traditional desktop/workstation and
grid computing. PaPy is freely distributed as open-source Python code at http://muralab.org/PaPy, and includes
extensive documentation and annotated usage examples.

Background
Workflows are a natural model of how researchers pro-
cess data [1], and will therefore only gain in relevance
and importance as science continues becoming more
data- and information-intensive. Unlike business work-
flows, which emphasize process modeling, automation
and management, and are control-flow oriented [2,3],
scientific pipelines emphasize data-flow, and fundamen-
tally consist of chained transformations of collections of
data items. This is particularly true in bioinformatics
(see, e.g., [4] and references therein), spurring the recent
development of workflow managment systems (WMS)
to standardize, modularize, and execute in silico

protocols. Such systems generally enable the construc-
tion, automation, deployment, exchange, re-use, and
reproducibility of data-processing/analysis tasks [5]; cat-
alogs of bioinformatically-capable WMS and web service
(WS)-related systems can be found in relatively recent
reviews [6,7].
The feature sets of existing WMS solutions vary in

terms of monitoring, debugging, workflow validation,
provenance capture, data management and scalability.
While some WMS suites (e.g., BIOWMS [8], ERGATIS
[9]) and pipelining solutions (e.g., CYRILLE2 [10]) are tai-
lored to the bioinformatics domain, many serve as either
general-purpose, domain-independent tools (e.g.,
KEPLER[3] and its underlying PTOLEMYII system [11],
TAVERNA[12], KNIME[13]), frameworks for creating
abstracted workflows suitable for enactment in grid
environments (e.g., PEGASUS[14]), high-level “enactment

* Correspondence: cmura@virginia.edu
1Department of Chemistry, University of Virginia, Charlottesville, VA 22904-
4319, USA
Full list of author information is available at the end of the article

Cieślik and Mura BMC Bioinformatics 2011, 12:61
http://www.biomedcentral.com/1471-2105/12/61

© 2011 Cieślik and Mura; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

http://muralab.org/PaPy
mailto:cmura@virginia.edu
http://creativecommons.org/licenses/by/2.0

portals” that require less programming effort by users
(e.g., BIOWEP[15]), or flower-level software libraries (e.g.,
the Perl-based BIOPIPE[16]). Indeed, the recent prolif-
eration of WMS technologies and implementations led
Deelman et al. [5] to systematically study a taxonomy of
features”, particularly as regards the four stages of a typi-
cal workflow’s lifecycle - creation, mapping to resources,
execution, and provenance capture. The division into
task-based versus service-based systems appears to be
fundamental [5]. Systems of the first kind emphasize the
orchestration and execution of a workflow, while the lat-
ter focus on service discovery and integration. With its
emphasis on enabling facile creation of Python-based
workflows for data processing (rather than, e.g., WS dis-
covery or resource brokerage), PaPy is a task-based tool.
Traditional, non-WMS solutions for designing, editing,

and deploying workflows are often idiosyncratic, and
require some form of scripting to create input files for
either a Make-like software build tool or a compute
cluster task scheduler. Such approaches are, in some
regards, simpler and more customizable, but they lack
the aforementioned benefits of workflow systems; most
importantly, manual approaches are brittle and in flex-
ible (not easily sustainable, reconfigurable, or reusable),
because the data-processing logic is hardwired into ‘one-
off ‘ scripts. At the other extreme, a common draw-back
of integrated WMS suites is that, for transformations
outside the standard repertoire of the particular WMS, a
user may need to program custom tasks with numerous
(and extraneous) adaptor functions (’shims’ [17,18]) to
finesse otherwise in-compatible data to the WMS-speci-
fic data-exchange format. This, then, limits the general
capability of a WMS in utilizing (’wrapping’) available
codes to perform various, custom analyses. PaPy is a
Python programming library that balances these two
extremes, making it easy to create data-processing pipe-
lines. It provides many of the benefits of a WMS (mod-
ular workflow composition, ability to distribute
computations, monitoring execution), but preserves the
simplicity of the Make-style approach and the flexibility
of a general-purpose programming language. (PaPy-
based workflows are written in Python.) The application
programming interface (API) of PaPy reflects the under-
lying flow-based programming paradigm [19], and there-
fore avoids any impedance mismatch” [20] in expressing
workflows. This enables PaPy to expose a compact, yet
flexible and readily extensible, user interface.
Flow-based programming (FBP) and related approaches,

such as dataflow programming languages [2], define soft-
ware systems as networks of message-passing components.
Discrete data items pass (as ‘tokens’) between components,
as specified by a connection/wiring diagram; the runtime
behavior (concurrency, deadlocks, etc.) of such systems
may be analyzed via formal techniques such as Petri nets

[21]. Most importantly for bioinformatics and related
scientific domains, the individual pipeline components are
coupled only by virtue of the pattern of data traversal
across the graph and, therefore, the functions are highly
modular, are insulated from one another, and are re-
usable. The connections are defined independently of the
processing components. Thus, flow-based programs can
be considered as (possibly branched) data-processing
assembly lines. Dataflow programming lends itself as a
model for pipelining because the goal of modular data-
processing protocols maps naturally onto the concept of
components and connections. The input stream to a com-
ponent consists of self-contained (atomic) data items; this,
together with loose coupling between processing tasks, all
flows for relatively easy parallelism and, consequently, fea-
sible processing of large-scale datasets.
In PaPy, workflows are built from ordinary, user-

definable Python functions with specific, well-defined sig-
natures (call/return semantics). These functions define
the operations of an individual PaPy processing node,
and can be written in pure Python or may ‘wrap’ entirely
non-Python binaries/executables. Thus, there are literally
no arbitrary constrains on these functions or on a PaPy
pipeline, in terms of functional complexity, utilized
libraries or wrapped third-party programs. In this respect,
PaPy is agnostic of specific application domains (astron-
omy, bioinformatics, cheminformatics, etc.). An auxiliary,
independent module (’NuBio’) is also included, to provide
data-containers and functions for the most common
tasks involving biological sequences and structures.

Implementation
Overview
PaPy has been implemented as a standard, cross-platform
Python (CPython 2.6) package; the Additional File 1
(§3.1) provides further details on PaPy’s platform inde-
pendence, in terms of software implementation and
installation. PaPy’s dataflow execution model can be
described, in the sense of Johnston et al. [2], as a
demand-driven approach to processing of data streams.
It uses the multiprocessing package [22] for local paralle-
lism (e.g., multi-core or multi-CPU workstations), and a
Python library for remote procedure calls (RPyC [23]) to
distribute computations across networked computers.
PaPy was written using the dataflow and object-oriented
programming paradigms, the primary design goal being
to enable the logical construction and deployment of
workflows, optionally using existing tools and code-bases.
The resulting architecture is based on well-established
concepts from functional programming (such as higher-
order ‘map’ functions) and workflow design (such as
directed acyclic graphs), and naturally features paralle-
lism, arbitrary topologies, robustness to exceptions, and
execution monitoring. The exposed interface all flows

Cieślik and Mura BMC Bioinformatics 2011, 12:61
http://www.biomedcentral.com/1471-2105/12/61

Page 2 of 11

one to define what the data-processing components do
(workflow functionality), how they are connected (work-
flow structure) and where (upon what compute
resources) to execute the workflow. These three aspects
of PaPy’s functionality are orthogonal, and therefore
cleanly separated in the API. This construction promotes
code re-use, clean workflow design, and alllows de-
ployment in a variety of heterogenous computational
environments.

Modular design
The PaPy toolkit consists of three separate packages
(Table 1) - PaPy, NuMap, NuBio - that provide Python
modules (papy, numap, nubio) with non-overlapping
functionality, and which can be utilized independently.
The ‘papy’ module provides just four classes (Worker,
Piper, Plumber, Dagger) to enable one to construct,
launch, monitor and interact with workflows (Table 2
and Additional File 1 §3.2). To facilitate the construction
of bioinformatics workflows with only minimal external
dependencies, a ‘nubio’ module provides general data
structures to store and manipulate biological data and
entities (e.g., sequences, alignments, molecular struc-
tures), together with parsers and writers for common file
formats. (This functionality is further described below.)
The ‘numap’ module supplies a parallel execution

engine, using a flexible worker-pool [24] to evaluate
multiple map functions in parallel. Used together with
papy, these maps comprise some (or all) of the proces-
sing nodes of a pipeline. Like a standard Python ‘imap’,
numap applies a function over the elements of a
sequence or iterable object, and it does so lazily. Lazi-
ness can be adjusted via ‘stride’ and ‘buffer’ arguments
(see below). Unlike imap, numap supports multiple
pairs of functions and iterable tasks. The tasks are not
queued, but rather are interwoven and share a pool of
worker ’processes’ or ‘threads’, and a memory ‘buffer’.
Thus, numap’s parallel (thread- or process-based, local
or remote), buffered, multi-task functionality extends
standard Python’s built-in ‘itertools.imap’ and ‘multipro-
cessing.Pool.imap’ facilities.

Workflow construction
A generic pipeline (Figure 1A) consists of components
and connections. Components define data-processing

tasks, while the topology of inter-connections coordi-
nates the dataflow. Basic workflow patterns that have
emerged [4] include those which are sequential (linear/
unbranched or branched) or parallel (scatter/gather,
MapReduce), those which incorporate decision logic
(conditional branching), intricate loops or cyclic pat-
terns, and so on. In PaPy, a workflow is a directed acyc-
lic graph (DAG), with data-processing nodes and data-
flow edges. The components are instances of a ‘Piper’
class, which are nodes of a ‘Dagger’ graph instance. A
Dagger, in turn, is the DAG that literally defines the
workflow connectivity. Processing nodes are constructed
by wrapping user-provided functions into Worker
instances. Together with a NuMap, the Worker is then
wrapped to define a Piper (Figure 1C), instances of
which are added as the nodes when composing a work-
flow graph. A function can be used within multiple
nodes, and multiple functions can be chained or nested
into higher-order functions within a single node
(((f, g,...)) in Figure 1A). Functions are easily
shared between pipelines, and can be executed by
remote processes because dependencies (import state-
ments) are effectively ‘attached’ to the source-code spe-
cifying the function via Python decorators [25].
Execution engines are represented by NuMap objects
(Figure 1B). Piper instances are optionally assigned to
(possibly shared) NuMap instances that enable parallel
execution. In terms of cloud computing, abstraction of
compute resources in this manner should make PaPy
workflows cloud-compatible (see Additional File 1 §3.3).

Bioinformatics workflows
Because the architecture of PaPy is generalized, it is
more of a software library than a single, domain-specific
program, and it is therefore able to drive arbitrary work-
flows (bioinformatic or not). To enable rapid, consistent
development, and facile deployment, of bioinformatics
workflows, a lightweight package (’NuBio’) is provided.
NuBio consists of data structures to store and manipu-
late biological entities such as molecular sequences,
alignments, 3 D structures, and trees. The data contain-
ers are based on a hierarchical, multi-dimensional array
concept. Raw data are stored in at arrays, but the opera-
tional (context-dependent) meaning of a data-item is
defined at usage, in a manner akin to NumPy’s view

Table 1 Overview of the PaPy package

Package Purpose

papy Provides the core objects and methods for workflow construction and deployment, including the Worker, Piper, Dagger, and Plumber
classes (see Table 2).

numap Supplies an extension of Python’s ‘imap’ facility, enabling parallel/distributed execution of tasks, locally or remotely (see Fig. 1B).

nubio Provides data-structures and methods specific to bioinformatic data (molecular sequences, alignments, phylogenetic trees, 3 D structures)

PaPy is comprised of three packages, independently providing the set of functionalities described in this table.

Cieślik and Mura BMC Bioinformatics 2011, 12:61
http://www.biomedcentral.com/1471-2105/12/61

Page 3 of 11

casting” approach to subclassing n-dimensional arrays
(see [26] and Example 2 below). For example, the string
object ‘ATGGCG’ can act as a ‘NtSeq’ (sequence of six
nucleotides) or as a ‘CodonSeq’ (sequence of two
codons) in NuBio. This alllows one to customize the
behaviour of objects traversing the workflow and the
storage of metadata at multiple hierarchical levels. Func-
tions to read and write common file formats are also
bundled in PaPy (PDB for structural data, FASTA for
sequences, Stockholm for sequence alignments, etc.).

Parallelism
Parallel data-processing is an important aspect of work-
flows that either (i) deal with large datasets, (ii) involve
CPU-intensive methods, or (iii) perform iterated,
loosely-coupled tasks, such as in “parameter sweeps” or
replicated simulations. Examples in computational biol-
ogy include processing of raw, ‘omics’-scale volumes of
data (e.g. [27]), analysis/post-processing of large-scale
datasets (e.g. molecular dynamics simulations in [28]),
and computational approaches that themselves generate
large volumes of data (e.g. repetitive methods such as
replica-exchange MD simulations [29,30]). PaPy enables
parallelism at the processing node and data-item levels.
The former (node-level) corresponds to processing inde-
pendent data items concurrently, and the latter (item
level) to running parallel, independent jobs for a single
data item.
PaPy’s parallelism is achieved using the worker-pool

[24] design pattern, which is essentially an abstraction
of the lower-level producer/consumer paradigm (see,
e.g., [31,32]). Originally devised to address issues such as
concurrency and synchronization in multi-programming,
the produce/spawn/-consume idiom is useful at higher
levels (such as dataflow pipelines), involving generation/
processing of streams of data items (Figure 2). As sche-
matized in Figure 1B, a NuMap instance uses a collec-
tion of local or remote computational resources (i.e., it
abstracts a worker-pool) to evaluate, in parallel, one or
several map functions. (A Piper instance becomes paral-
lel if associated with a NuMap instance specifying

parallel evaluation, or Python’s itertools.i map.) Multiple
pipers within a workflow can share a single worker-
pool, and multiple worker-pools can be used within a
workflow. This, together with the possibility of mixing
serial and parallel processing nodes, allows for perfor-
mance tuning and load-balancing. To benefit from par-
allel execution, the data-processing function should have
a high granularity i.e., the amount of time spent per cal-
culation is large compared to periods of communication.
Note that this general approach bears similarity to the
MapReduce model of distributed computing [33], and
could be suitable for replicated, loosely-coupled tasks,
such as in Monte Carlo sampling, replica-exchange MD
simulations, or genome-wide motif searches (e.g. [34]).

Dataflow
The flow of data through a pipeline is intimately linked
to the issue of parallelism. In PaPy, data traverse a pipe-
line in batches of a certain size, as defined by an adjus-
table ‘stride’ parameter (Figure 3). The stride is the
number of data items processed in parallel by a node in
the workflow. The larger the stride the higher the scal-
ability, as this results in fewer idle processes and greater
speed-ups. However, memory requirements increase
with batch size, as potentially more temporary results
will have to be held in memory. Thus, the adjustable
memory/speedup trade-off allows PaPy to deal with
datasets too large to fit into resident memory and to
cope with highly variable processing times for individual
input items. Note that the order in which data items are
submitted to the pool for evaluation is not the same as
the order in which results become available; because of
synchronization of processing nodes, this may cause a
pipeline to incur idle CPU cycles. PaPy circumvents this
potential inefficiency by (optionally) relaxing any
requirement of ordered dataflow within a pipeline, as
further described in the software documentation.

Data-handling and serialization issues
Pipers must communicate the results computed by
their wrapped functions. In PaPy’s execution model,

Table 2 PaPy’s core components (classes) and their roles

Component Description & function

Piper,
Worker

The core components (processing nodes) of a pipeline. User-defined functions (or external programs) are wrapped as Worker
instances; a Piper wraps a Worker and, in conjunction with numap, further species the mode of evaluation (serial/parallel, local/remote,
etc.); these key pipeline elements also provide exception-handling, logging, and produce/spawn/consume functionality.

Dagger Defines the data-flow pipeline in the form of a DAG; allows one to add, remove, connect pipers, and validate topology. Coordinates
the starting/stopping of NuMaps.

Plumber High-level interface to run & monitor a pipeline: Provides methods to save/load pipeline code, alter and monitor state (initiate/run/
pause/stop/etc.), and save results. (See Additional file 1 §3.2 for more information on the subtle differences between the Plumber and
Dagger classes.)

NuMap Implements a process/thread worker-pool. Allows pipers to evaluate multiple, nested map functions in parallel, using a mixture of
threads or processes (locally) and, optionally, remote RPyC servers.

Cieślik and Mura BMC Bioinformatics 2011, 12:61
http://www.biomedcentral.com/1471-2105/12/61

Page 4 of 11

synchronization and message passing within a work-
flow are achieved by means of queues and locked pipes
in the form of serialized Python objects. (Serialization
refers to a robust, built-in means of storing a native
Python object as a byte-string, thereby achieving object
persistence.) Unlike heavyweight WMS suites such as
KNIME (see the Additional File 1 §4), PaPy does not

enforce a specific rigorous data exchange scheme or
file format. This intentional design decision is based
on the type system [35] of the Python programming
language, whereby the valid semantics of an object are
determined by its dynamic, user-modifiable properties
and methods ("duck typing”). Such potentially poly-
morphic data structures cannot be described by, e.g.,
XML schema [36], but serialization offers a method
of losslessly preserving this flexible nature of Python
objects. In PaPy, component interoperability is
achieved by adhering to duck-typing programming pat-
terns. By default, no intermediate pipeline results are
stored. This behavior can be easily changed by expli-
citly adding Piper nodes for data serialization (e.g.
JSON) and archiving (e.g. files) anywhere within a
workflow.

Input A B

Output

NuMap

P(W(f1, f2, ...))

RPyC

NuMap
NuMapNuMap

D
Pn Pn+1Pn-1

collapsible into single composite piper ((Pn-1PnPn+1))

multi-processormulti-
threaded

C

N
uM

apf1 f2 fn
PiperWorker-

NuMap instance speci-
fies the execution mode

wrapped functions

Figure 1 A generic PaPy workflow. Any generic workflow that is
expressible as a directed graph can be implemented as a PaPy
pipeline (A). As indicated by the pipes linking separate processing
streams in (A), workflow construction in PaPy is flexible, not
restrictive. Because of the methods that PaPy’s NuMap objects can
use to parallelize or distribute calculations (text, Table 3), a workflow
can utilize a variety of available computational resources, such as
threads, multi-processor architectures, and remote resources (B).
PaPy’s Dagger objects, representing the entire pipeline, are
comprised of Piper nodes (colored squares) inter-connected via pipes
(black arrows); ‘pipes’ can, equivalently, be considered as edges that
represent data-flow dependencies (gray arrows ‘pulling’ data through
the left branch of (A)). Colors are used to match sample Pipers (A)
with their NuMap instances (B), and the conceptual relationship
between Piper, Worker, and NuMap concepts is shown in (C).
Parallelism is achieved by pulling data through the pipeline in
adjustable batches, and overall performance may be improved by
collapsing unbranched linear segments into a single node (D).

A produce

s1 s1 s1 s1 s1 s1 s1

s2 s2 s2 s2 s2 s2 s2

consume

B

s1

s2

p

c consume = 7

produce
= 7

spawn
= 7

spawn
= 7

Figure 2 The produce/spawn/consume idiom. This workflow design
pattern, used to process a single input node in parallel, arises in many
contexts, such as in replica exchange simulations (see text). In this and
remaining workflow diagrams (Figs. 3, 4), the sequence of Piper nodes is
shown on the left (A), while the discrete data transformations that will
implicitly occur (at the data-item level) are schematized on the right (B).

10 3 5 7 82 4 6 9

10 3 5 7 82 4 6 9

strid
e = 5

stride = 3 (t1)(t0)

(t1)(t0)

Pn+1

Pn

P n-1

Pn+1

(t2)

Pn

Pn-1

A B

Figure 3 The ‘stride’ as a control parameter. PaPy’s adjustable
stride modulates the trade-off between high memory consumption
and parallelism (high stride) versus less aggressive paralellism and
lower memory consumption (lower stride). This diagram un-winds
PaPy’s parallelism to show the interplay between the stride and
item-level processing as pipeline execution proceeds (main blue
arrow directed rightward). The relevent pipers are shown to the left
(A), and traversal of the workflow graph by data-batches is shown
in (B). Execution progress is also indicated by broken arrows
progressing to the right, each arc representing equal incremenets of
time (t0, t1,.... assuming a uniform processing time per data-item) for
strides of 3 (orange) or 5 (green).

Cieślik and Mura BMC Bioinformatics 2011, 12:61
http://www.biomedcentral.com/1471-2105/12/61

Page 5 of 11

Inter-process communication (IPC)
IPC may occur between a single local manager process
(Figure 4), local pool processes/threads and, potentially,
any remote processes (if operating in distributed mode,
across networked machines). Data serialization and trans-
mission is an important aspect, and often bottleneck, in
parallel computing [37], because of the involved compu-
tational cost and utilized bandwidth. PaPy provides func-
tionality for direct connections between processing nodes
in order to mostly bypass the manager process (Figure 4).
In essence, the mechanism is that the source component
makes data available (e.g. by storing it as a file or opening
a network socket) and communicates only the informa-
tion needed to locate and access it by the destination
component. PaPy provides a few mechanisms of direct
IPC (files, Unix pipes, network sockets) as described in
Table 3; an earlier implementation of PaPy, utilizing the
posix_ipc shared memory library for direct IPC, was
found to be no faster than Unix pipes. It is also possible
to avoid IPC altogether, by grouping data-processing
functions: A PaPy processing node is guaranteed to eval-
uate a single data item within the same process, meaning
that no IPC occurs between functions within a single
Piper instance. Thus, any linear, non-branching segment
of a workflow can be easily collapsed into a single Piper
node, as illustrated in Figure 1D. Default automation of
this locality-enforcing behavior (i.e., automatically collap-
sing consecutive nodes in a linear segment of a pipeline)
may be implemented in future versions of PaPy.

Monitoring
Interactive, real-time viewing of execution progress is
valuable for parallel programs in general (e.g. for pur-
poses of debugging), and it is particularly useful in
workflow execution and editing to be able to log com-
ponent invocations during the workflow lifecycle [5].

The information should be detailed enough to allow
troubleshooting of errors and performance issues or
auditing, and is a key aspect of the general issue of data
provenance (data and metadata recording, management,
workflow reproducibility). The process of capturing
information about the operation of an application is
often called ‘logging’. For this purpose, PaPy utilizes the
Python standard library’s ‘logging’ facility, and automati-
cally records logging statements emitted at various
(user-specifiable) levels of detail or severity - e.g.,
DEBUG, INFO, WARNING, ERROR can be logged by
the papy and numap modules. Python supplies rich
exception-handling capabilities, and user-written func-
tions need only raise meaningful exceptions on errors in
order to be properly monitored.

Robustness
Sooner or later in the life-cycle of a workflow, an error or
exception will occur. This will most likely happen within a
Worker-wrapped function as a result of bogus or unforseen
input data, timeouts, or bugs triggered in external libraries.
PaPy is resilient to such errors, insofar as exceptions raised
within functions are caught, recorded and wrapped into
‘placeholders’ that traverse the workflow down-stream
without disrupting its execution. The execution log will
contain information about the error and the data involved.

Results & Discussion
While a thorough description of PaPy’s usage, from
novice to intermediate to advanced levels, lies beyond
the scope of this article, the following sections (i) illus-
trate some of the basic features of PaPy and its accom-
panying NuBio package (Examples 1, 2, 3), (ii) provide
heavily-annotated, generic pipeline templates (see also
Additional File 1), (iii) outline a more intricate PaPy
workflow (simulation-based loop refinement, the details
of which are in the Additional File 1), and (iv) briefly
consider issues of computational efficiency.

Example 1: PaPy’s Workers and Pipers
The basic functionality of a node (Piper) in a PaPy pipe-
line is literally defined by the node’s Worker object

remote process

P2

P1

remote process

local process

local process

manager process

IPC

IPC

IPC

IPC

d
ir

e
ct

 I
P

C

(p
ip

es
, T

CP
, fi

le
s)

A B

e.g., the local
Python inter-
preter used to
initiate the
workflow

Figure 4 Inter-process communication in PaPy. The possible
means of IPC between two linked pipers (1, 2) in a PaPy
graph are indicated (A), and the dashed allow (B) denotes the
possibility of direct IPC via sockets, pipes, shared memory, etc. (Table
3). Communication between local and remote processes utilizes
RPyC, as described in the text.

Table 3 PaPy’s interprocess communication (IPC)
methods

Method OS Remarks

socket all Communication, via TCP sockets, between hosts
connected within a computer network

pipes Unix
like

Communication between processes on a single host

files all The file storage location must be accessible by all
processes (e.g., over an NFS or Samba share).

PaPy provides the following direct IPC methods (see also Fig. 4), valid on
operating systems as indicated.

Cieślik and Mura BMC Bioinformatics 2011, 12:61
http://www.biomedcentral.com/1471-2105/12/61

Page 6 of 11

(Table 2 and the ’W ’ in Figure 1A). Instances of the
core Worker class are constructed by wrapping func-
tions (user-created or external), and this can be done in
a highly general and flexible manner: A Worker instance
can be constructed de novo (as a single, user-defined
Python function), from multiple pre-defined functions
(as a tuple of functions and positional or keyworded
arguments), from another Worker instance, or as a com-
position of multiple Worker instances. To demonstrate
these concepts, consider the following block of code:
from papy import Worker
from math import radians, degrees, pi
def papy_radians(input): return radians

(input[0])
def papy_degrees(input): return degrees

(input[0])
worker_instance1 = Worker(papy_radians)
worker_instance1([90.]) # returns 1.57

(i.e., pi/2)
worker_instance2 = Worker(papy_degrees)
worker_instance2([pi]) # returns 180.0
Note double parentheses (tuple!) in the

following:
worker_instance_f1f2 = Worker((papy_ra-

dians, papy_degrees)) worker_instan-
ce_f1f2([90.]) # returns 90. (rad/deg
invert!)
Another way, compose from Worker

instances:
worker_instance_w1w2 = Worker((worker_-

instance1,\worker_instance2))
Yields same result as worker_instan-

ce_f1f2([90.]): worker_instance_w1w2
([90.])
In summary, Worker objects fulfill several key roles in

a pipeline: They (i) standardize the input/output of
nodes (pipers); (ii) allow one to re-use and re-combine
functions into custom nodes; (iii) provide a pipeline
with graceful fault-tolerance, as they catch and wrap
exceptions raised within their functions; and (iv) wrap
functions in order to enable them to be evaluated on
remote hosts.
The following block of Python illustrates the next

‘higher’ level in PaPy’s operation - Encapsulating
Worker-wrapped functions into Piper instances. In addi-
tion to what is done (Workers), the Piper level wraps
NuMap objects to define the mode of execution (serial/
parallel, processes/threads, local/remote, ordered/unor-
dered output, etc.); therefore, a Piper can be considered
as the minimal logical processing unit in a pipeline
(squares in Figure 1, 2A, 3A, 4A).
from papy import Worker, Piper from numap

import NuMap
from math import sqrt

Square-root worker:
def papy_sqrt(input): return sqrt(input

[0])
sqrt_worker = Worker(papy_sqrt)
my_local_numap = NuMap() # Simple

(default) NuMap instance
Fancier NuMap worker-pool:
my_local_numap = NuMap(worker_type

="thread”,\
worker_num = 4, stride = 4)
my_piper_instance = Piper(worker = sqrt_

worker, \ parallel = my_local_numap)
my_piper_instance([1,2,3]).start() list

(my_piper_instance)
returns [1.0, 1.414..., 1.732...]
following will not work, as piper hasn’t

been stopped:
my_piper_instance.disconnect()
...but nflow the call to disconnect will

work:
my_piper_instance.stop() my_piper_in-

stance.disconnect()
The middle portion (lines 7-12) of the above block of

code illustrates two examples of NuMap construction,
which, in turn, defines the mode of execution of a PaPy
workflow - Either a default NuMap (line 7), or one that
specifies multi-threaded parallel execution using four
workers (lines 9-12).

Example 2: Basic sequence objects in NuBio
As outlined in the earlier Bioinformatics workflows sec-
tion, the NuBio package was written to extend PaPy’s
feature set by including basic support for handling bio-
molecular data, in as flexible and generalized a manner
as possible. To this end, NuBio represents all biomole-
cular data as hierarchical, multidimensional entities, and
uses standard programming concepts (such as ‘slices’) to
access and manipulate these entities. For instance, in
this frame-work, a single nucleotide is a scalar object
comprised of potentially n-dimensional entities (i.e., a
character), a DNA sequence or other nucleotide string
is a vector of rank-1 objects (nucleotides), a multiple
sequence alignment of n sequences is analogous to a
rank-3 tensor (an (n-dim) array of (1-dim) strings, each
composed of characters), and so on. The following
blocks of code tangibly illustrate these concepts (output
is denoted by ‘- > ’):
from nubio import NtSeq, CodonSeq
from string import upper, lower
A sequence of eight codons:
my_codons_1 = CodonSeq(’GUUAUUAGGGGUAU

CAAUAUAGCU’)
...and the third one in it, using the

‘get_child’ method:

Cieślik and Mura BMC Bioinformatics 2011, 12:61
http://www.biomedcentral.com/1471-2105/12/61

Page 7 of 11

my_codons_1_3 = my_codons_1.get_child(2)
...and its raw (internal) representa-

tion as a byte string
(ASCII char codes):
print my_codons_1_3
-> Codon(’b’, [65, 71, 71])
Use the ‘tobytes’ method to dump as a char

string: print my_codons_1_3.tobytes()
-> AGG
‘get_items’ returns the codon as a Python

tuple: print my_codons_1.get_item(2)
-> (’A’, ‘G’, ‘G’)
The string ‘UGUGCUAUGA’ isn’t a multi-

ple of 3 (rejected
as codon object), but is a valid NT

sequence object:
my_nts_1 = NtSeq(’UGUGCUAUGA’)
To make its (DNA) complement:
my_nts_1_comp = my_nts_http://1.comple-

ment() print my_nts_1_complement ()
-> ACACGATACT
Sample application of a string method,

rendering the
original sequence lowercase (in-place

modification):
my_nts_1.str(method="lower”)
print my_nts_1.tobytes() -> ugugcuauga
Use NuBio’s hierarchical representa-

tions and data conta-
iners to perform simple sequence

(/string) manipulation:
grab nucleotides 3-7 (inclusive) from

the above NT string:
my_nts_1_3to7 = my_nts_1.get_chunk

((slice(2, 7), slice(0,1))) print my_nt-
s_1_3to7.tobytes()
-> ugcua
Get all but the first and last (-1) NTs

from the above NT
string:
my_nts_1_NoEnds = my_nts_1.get_chunk

((slice(1, -1), \ slice(0,1)))
print my_nts_1_NoEnds.tobytes()->

gugcuaug
Get codons 2 and 3 (as a flat string)

from the codon string:
my_codons_1_2to3 = my_codons_1.get_ch-

unk((slice(1,3,1), \
slice(0,3,1)))
print my_codons_1_2to3.tobytes() -> AUUAGG
Grab just the 3rd (wobble) position NT

from each codon:
my_codons_1_wobble = my_codons_1.

get_chunk((slice(0,10,1), n

slice(2,10,1)))
print my_codons_1_wobble.tobytes() ->

UUGUCUAU
For general convenience and utility, NuBio’s data

structures can access built-in dictionaries provided by
this package (e.g., the genetic code). In the following
example, a sequence of codons is translated:
Simple: Methionine codon, followed by

the opal stop codon:
nt_start_stop = NtSeq("ATGTGA”)
Instantiate a (translate-able) Codon-

Seq object from this:
codon_start_stop = CodonSeq(nt_start_-

stop.data)
...and translate it:
print(codon_start_stop.translate()) ->
-> AaSeq(M*)
print(codon_start_stop.translate(strict

= True))
-> AaSeq(M)
The follflowing block illustrates manipulations with

protein sequences:
from nubio import AaSeq, AaAln
Define two protein sequences. Associate

some metadata (pI,
MW, whatever) with the second one, as

key/value pairs:
seq1 = AaSeq(’MSTAP’)
seq2 = AaSeq(’M-TAP’,

meta=’my_key’:’my_data’)
Create an ‘alignment’ object, and print

its sequences:
aln = AaAln((seq1, seq2))
for seq in aln: print seq
-> AaSeq(MSTAP)
-> AaSeq(M-TAP)
Print the last ‘seq’ ("M-TAP”), sans

gapped residues
(i.e., restrict to just the amino acid

ALPHABET):
print seq.keep(seq.meta[’ALPHABET’])
-> AaSeq(MTAP)
Retrieve metadata associated with

‘my_key’: aln[1].meta[’my_key’]
-> ‘my_data’

Example 3: Produce/spawn/consume parallelism
Loosely-coupled data can be parallelized at the data
item-level via the produce/consume/spawn idiom
(Figure 2). To illustrate how readily this workflow pat-
tern can be implemented in PaPy, the source code
includes a generic example in doc/examples/hel-
lo_produce_spawn_consume.py. The ‘hello_*’
files in the doc/examples/ directory provide

Cieślik and Mura BMC Bioinformatics 2011, 12:61
http://www.biomedcentral.com/1471-2105/12/61

Page 8 of 11

numerous other samples too, including creation of par-
allel pipers, local grids as the target execution environ-
ment, and a highly generic workflow template.

Generic pipeline templates
To assist one in getting started with bioinformatic pipe-
lines, PaPy also includes a generic pipeline template
(Additional File 1 §1.1; ‘doc/workflows/pipeline.
py’) and a sample workflow that illustrates papy/nubio
integration (Additional File 1 §1.2; ‘doc/examples/
hello_workflow.py’). The prototype pipeline
includes commonly encountered workflow features,
such as the branch/merge topology. Most importantly,
the example code is annotated with descriptive com-
ments, and is written in a highly modular manner (con-
sisting of six discrete stages, as described in Additional
File 1). The latter feature contributes to clean workflow
design, aiming to decouple those types of tasks which
are logically independent of one another (e.g, definitions
of worker functions, workflow topology, and compute
resources need not be linked).

Advanced example: An intricate PaPy workflow
In protein homology modelling, potentially flexible
loop regions that link more rigid secondary structural
elements are often difficult to model accurately (e.g.
[38]). A possible strategy to improve the predicted 3 D
structures of loops involves better sampling the acces-
sible conformational states of loop backbones, often
using simulation-based approaches (e.g. [39]). Though
a complete, PaPy-based implementation of loop refine-
ment is beyond the scientific scope of this work, we
include a use-case inspired by this problem for two
primary reasons: (1) The workflow solution demon-
strates how to integrate third-party software packages
into PaPy (e.g., Stride [40] to compute loop boundaries
as regions between secondary structural elements,
MMTK [41] for energy calculations and simulations);
(2) Loop-refinement illustrates how an intricate struc-
tural bioinformatics workflow can be expressed as a
PaPy pipeline. This advanced workflow demonstrates
constructs such as nested functions, forked pipelines,
the produce/s-pawn/consume idiom, iterative loops,
and conditional logic. The workflow is schematized in
Figure 5 and a complete description of this case study,
including source code, can be found in Additional
File 1 (§2 and Fig. S1, showing parallelization over
loops and bounding spheres).

Computational efficiency
Achieving speed-ups of workflow execution is non-trivial,
as process-based parallelism involves (i) computational
overhead from serialization; (ii) data transmission over
potentially low-bandwidth/high-latency communication

channels; (iii) process synchronization, and the associated
waiting periods; and (iv) a potential bottelneck from the
sole manager process (Figure 4). PaPy allows one to
address these issues. Performance optimization is an activ-
ity that is mostly independent of workflow construction,
and may include collapsing multiple processing nodes that
preserves locality and increase granularity (Figure 1),
employing direct IPC (Figure 4 Table 3), adjustments of
speedup/memory trade-off parameter (Figure 3), allowing
for unordered flow of data and, finally, balanced distribu-
tion of computational resources among segments of the
pipeline. The PaPy documentation further addresses these
intricacies, and suggests possible optimization solutions
for common usage scenarios.

Further information
In addition to full descriptions of the generic PaPy pipe-
line template and the sample loop-refinement workflow
(Additional File 1), further information is available. In
particular, the documentation distributed with the
source-code provides extensive descriptions of both con-
ceptual and practical aspects of workflow design and
execution. Along with overviews and introductory
descriptions, this thorough (≈50-page) manual includes

Refined homology models

MD1
loop

MD2
loop

MDn-1
loop

MDn
loop

equilibrate_model()

ModPipe XML file (initial homology models)

create_model()

create_loop_models()

make_refined_model()

combine_loop_models()

minimize()

equilibrate()

define_loops()

call_stride()

1

2

3
4

5
6

7.1 7.n

8

9

10

Figure 5 MD-based loop refinement. This pipeline illustrates a
series of steps to perform MD simulation-based refinement of
homology model loops, using the workflow paradigm. Piper nodes
are numbered in this figure (for ease of reference), and can be
classified into (i) those that handle input/output (grey; 1, 10); (ii)
those that execute calculations serially (light blue; 2, 4, 5, 6, 8, 9);
and (iii) more compute-intensive nodes, which utilize a parallel
NuMap (orange; 3, 7). A detailed description of this use-case is
available in the Additional File (§2).

Cieślik and Mura BMC Bioinformatics 2011, 12:61
http://www.biomedcentral.com/1471-2105/12/61

Page 9 of 11

(i) complete, step-by-step installation instructions for the
Unix/Linux platform; (ii) a Quick Introduction describing
PaPy’s basic design, object-oriented architecture, and
core components (classes), in addition to hands-on illus-
trations of most concepts via code snippets; (iii) an
extensive presentation of parallelism-related concepts,
such as maps, iterated maps, NuMap, and so on; (iv) a
glossary of PaPy-related terms; and (v) because PaPy is
more of a library than a program, a complete description
of its application programming interface (API).
Although a thorough analysis of PaPy’s relationship to

existing workflow-related software solutions lies beyond
the scope of this report, Additional File 1 (§4) also
includes a comparative overview of PaPy, in terms of its
similarities and differences to an example of a higher-
level/heavyweight WMS suite (KNIME).

Conclusions
PaPy is a Python-based library for the creation and
execution of cross-platform scientific workflows. Aug-
mented with a ‘NuMap’ parallel execution engine and a
‘NuBio’ package for generalized biomolecular data struc-
tures, PaPy also provides a lightweight tool for data-pro-
cessing pipelines that are specific to bioinformatics.
PaPy’s programming interface reflects its underlying
dataflow and object-oriented programming paradigms,
and it enables parallel execution through modern con-
cepts such as the worker-pool and producer/consumer
programming patterns. While PaPy is suitable for pipe-
lines concerned with data-processing and analysis (data
reduction), it also could be useful for replicated simula-
tions and other types of workflows which involve com-
putationally-expensive components that generate large
volumes of data.

Availability and requirements
• Project name: PaPy
• Project homepage: http://muralab.org/PaPy
• Operating system: GNU/Linux
• Programming language: Python
• Other requirements: A modern release of Python

(≥2.5) is advised; the standard, freely-available Python
package RPyC is an optional dependency (for distributed
computing).
• License: New BSD License
• Any restrictions to use by non-academics: None; the

software is readily available to anyone wishing to use it.

Additional material

Additional file 1: This supplementary file provides the following
material, along with complete and fully annotated source-code for
each example: (§1). Two simple examples of workflows (useful as
pipeline templates), one showing a generic forked pipeline and the other

focusing on the usage of NuBio; (§2) A detailed description of our more
complicated case-study (simulation-based refinement of homology
model loops); (§3) Further notes on PaPy’s platform independence, as
well as the relationship between the Dagger and Plumber classes; (§4) A
brief overview of PaPy’s scope and implementation, in relation to a fully-
integrated WMS suite(KNIME).

List of abbreviations
API: application programming interface; DAG: directed acyclic graph; FBP:
flow-based programming; IPC: inter-process communication; MD: molecular
dynamics; RPyC: remote Python calls; shm: shared memory; WMS: workflow
management system.

Acknowledgements
The Univ of Virginia and the Jeffress Memorial Trust (J-971) are gratefully
acknowledged for funding this work.

Author details
1Department of Chemistry, University of Virginia, Charlottesville, VA 22904-
4319, USA. 2Structural, Computational Biology & Biophysics, University of
Virginia Health Sciences, Charlottesville, VA 22908, USA.

Authors’ contributions
MC wrote PaPy; MC and CM tested the code and wrote the paper. All
authors read and approved the final manuscript.

Received: 20 December 2010 Accepted: 25 February 2011
Published: 25 February 2011

References
1. Gil A, Deelman E, Ellisman M, Fahringer T, Fox G, Goble C, Livny M,

Moreau L, Myers J: Examining the Challenges of Scientific Workflows. IEEE
Computer vol 2007, 40:24-32.

2. Johnston WM, Hanna JRP, Millar RJ: Advances in dataflow programming
languages. ACM Comput Surv 2004, 36:1-34.

3. Ludäscher B, Altintas I, Berkley C, Higgins D, Jaeger E, Jones M, Lee EA,
Tao J, Zhao Y: Scientific workflow management and the Kepler system.
Concurrency and Computation: Practice & Experience 2006, 18(10):1039-1065.

4. Halling-Brown M, Shepherd AJ: Constructing Computational Pipelines. In
Bioinformatics, Methods in Molecular Biology™. Volume 453. Edited by: Keith
JM. Totflowa, NJ: Humana Press; 2008:451-470.

5. Deelman E, Gannon D, Shields M, Taylor I: Workflows and e-Science: An
overview of workflow system features and capabilities. Future Gener
Comput Syst 2009, 25(5):528-540.

6. Tiwari A, Sekhar AKT: Workflow based framework for life science
informatics. Comput Biol Chem 2007, 31(5-6):305-319.

7. Romano P: Automation of in-silico data analysis processes through
workflow management systems. Brief Bioinform 2008, 9:57-68.

8. Bartocci E, Corradini F, Merelli E, Scortichini L: BioWMS: a web-based
Workflow Management System for bioinformatics. BMC Bioinformatics
2007, 8(Suppl 1):S2.

9. Orvis J, Crabtree J, Galens K, Gussman A, Inman JM, Lee E, Nampally S,
Riley D, Sundaram JP, Felix V, Whitty B, Mahurkar A, Wortman J, White O,
Angiuoli SV: Ergatis: a web interface and scalable software system for
bioinformatics workflows. Bioinformatics 2010, 26(12):1488-1492.

10. Fiers MWEJ, van der Burgt A, Datema E, de Groot JCW, van Ham RCHJ:
High-throughput bioinformatics with the Cyrille2 pipeline system. BMC
Bioinformatics 2008, 9:96.

11. Eker J, Janneck JW, Lee EA, Liu J, Liu X, Ludvig J, Neuendorffer S, Sachs S,
Xiong Y: Taming heterogeneity - the Ptolemy approach. Proceedings of
the IEEE 2003, 91:127-144.

12. Oinn T, Addis M, Ferris J, Marvin D, Senger M, Green-wood M, Carver T,
Glover K, Pocock MR, Wipat A, Li P: Taverna: a tool for the composition
and enactment of bioinformatics workflows. Bioinformatics 2004,
20(17):3045-3054.

13. Berthold MR, Cebron N, Dill F, Gabriel TR, Kötter T, Meinl T, Ohl P, Thiel K,
Wiswedel B: KNIME - The Konstanz Information Miner. SIGKDD
Explorations 2009, 11.

Cieślik and Mura BMC Bioinformatics 2011, 12:61
http://www.biomedcentral.com/1471-2105/12/61

Page 10 of 11

http://muralab.org/PaPy
http://www.biomedcentral.com/content/supplementary/1471-2105-12-61-S1.PDF
http://www.ncbi.nlm.nih.gov/pubmed/17931570?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17931570?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18056132?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18056132?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17430564?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17430564?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20413634?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20413634?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18269742?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15201187?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15201187?dopt=Abstract

14. Deelman E, Singh G, hui Su M, Blythe J, Gil A, Kessel-man C, Mehta G,
Vahi K, Berriman GB, Good J, Laity A, Jacob JC, Katz DS: Pegasus: a
framework for mapping complex scientific workflows onto distributed
systems. Scientific Programming Journal 2005, 13:219-237.

15. Romano P, Bartocci E, Bertolini G, Paoli FD, Marra D, Mauri G, Merelli E,
Milanesi L: Biflowep: a workflow enactment portal for bioinformatics
applications. BMC Bioinformatics 2007, 8(Suppl 1):S19.

16. Hoon S, Ratnapu KK, Chia JM, Kumarasamy B, Juguang X, Clamp M,
Stabenau A, Potter S, Clarke L, Stupka E: Biopipe: a flexible framework for
protocol-based bioinformatics analysis. Genome Res 2003, 13(8):1904-1915.

17. Radetzki U, Leser U, Schulze-Rauschenbach SC, Zimmer-mann J, Lüssem J,
Bode T, Cremers AB: Adapters, shims, and glue-service interoperability for
in silico experiments. Bioinformatics 2006, 22(9):1137-1143.

18. Lin C, Lu S, Fei X, Pai D, Hua J: A Task Abstraction and Mapping
Approach to the Shimming Problem in Scientific Workflows. SCC ‘09:
Proceedings of the 2009 IEEE International Conference on Services Computing
Washington, DC, USA: IEEE Computer Society; 2009, 284-291.

19. Morrison JP: Flow-Based Programming: A New Approach to Application
Development CreateSpace; 2010.

20. Object-relational impedance mismatch. [http://en.wikipedia.org/wiki/
Object-relational_impedance_mismatch].

21. Van der Aalst W: The application of Petri nets to workflow management.
Journal of Circuits Systems and Computers 1998, 8:21-66.

22. Python multiprocessing interface. [http://docs.python.org/library/
multiprocessing.html].

23. RPyC - Remote Python Calls. [http://rpyc.wikidot.com].
24. Google Labs’ WorkerPool API. [http://code.google.com/apis/gears/

api_workerpool.html].
25. Python decorators. [http://wiki.python.org/moin/PythonDecorators].
26. NumPy’s View casting. [http://docs.scipy.org/doc/numpy/user/basics.

subclassing.html#view-casting].
27. Schatz MC: CloudBurst: highly sensitive read mapping with MapReduce.

Bioinformatics 2009, 25(11):1363-1369.
28. Tu T, Rendleman CA, Borhani DW, Dror RO, Gullingsrud J, Jensen MO,

Klepeis JL, Maragakis P, Miller P, Stafford KA, Shaw DE: A scalable parallel
framework for analyzing terascale molecular dynamics simulation
trajectories. SC ‘08: Proceedings of the 2008 ACM/IEEE conference on
Supercomputing Piscataway, NJ, USA: IEEE Press; 2008, 1-12.

29. Earl D, Deem MW: Parallel tempering: Theory, applications, and new
perspectives. Physical Chemistry Chemical Physics 2005, 7(23):3910-3916.

30. Luckow A, Jha S, Kim J, Merzky A, Schnor B: Adaptive distributed replica-
exchange simulations. Philos Transact A Math Phys Eng Sci 2009,
367(1897):2595-2606.

31. Misra J: A Discipline of Multiprogramming: Programming Theory for
Distributed Applications Springer; 2001.

32. Jeffay K: The real-time producer/consumer paradigm: A paradigm for the
construction of efficient, predictable real-time systems. SAC ‘93:
Proceedings of the 1993 ACM/SIGAPP symposium on Applied computing New
York, NY, USA: ACM; 1993, 796-804.

33. Dean J, Ghemawat S: MapReduce: Simplified data processing on large
clusters. Communications of the ACM 2008, 51:107-113.

34. Yao Z, Barrick J, Weinberg Z, Neph S, Breaker R, Tompa M, Ruzzo WL: A
computational pipeline for high-throughput discovery of cisregulatory
noncoding RNA in prokaryotes. PLoS Comput Biol 2007, 3(7):e126.

35. Pierce BC: Types and programming languages Cambridge, MA, USA: MIT
Press; 2002.

36. Vandervalk BP, McCarthy EL, Wilkinson MD: Moby and Moby 2: creatures
of the deep (web). Brief Bioinform 2009, 10(2):114-128.

37. Liu P, Wu JJ, Yang CH: Locality-Preserving Dynamic Load Balancing for
Data-Parallel Applications on Distributed-Memory Multiprocessors.
Journal of Information Science and Engineering 2002.

38. Soto CS, Fasnacht M, Zhu J, Forrest L, Honig B: Loop modeling: Sampling,
filtering, and scoring. Proteins 2008, 70(3):834-843.

39. Kannan S, Zacharias M: Application of biasing-potential replica-exchange
simulations for loop modeling and refinement of proteins in explicit
solvent. Proteins 2010.

40. Frishman D, Argos P: Knflowledge-based protein secondary structure
assignment. Proteins 1995, 23(4):566-579.

41. Hinsen K: The molecular modeling toolkit: A new approach to molecular
simulations. Journal of Computational Chemistry 2000, 21(2):79-85.

doi:10.1186/1471-2105-12-61
Cite this article as: Cieślik and Mura: A lightweight, flow-based toolkit
for parallel and distributed bioinformatics pipelines. BMC Bioinformatics
2011 12:61.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

Cieślik and Mura BMC Bioinformatics 2011, 12:61
http://www.biomedcentral.com/1471-2105/12/61

Page 11 of 11

http://www.ncbi.nlm.nih.gov/pubmed/17430563?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17430563?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12869579?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12869579?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16481335?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16481335?dopt=Abstract
http://en.wikipedia.org/wiki/Object-relational_impedance_mismatch
http://en.wikipedia.org/wiki/Object-relational_impedance_mismatch
http://docs.python.org/library/multiprocessing.html
http://docs.python.org/library/multiprocessing.html
http://rpyc.wikidot.com
http://code.google.com/apis/gears/api_workerpool.html
http://code.google.com/apis/gears/api_workerpool.html
http://wiki.python.org/moin/PythonDecorators
http://docs.scipy.org/doc/numpy/user/basics.subclassing.html#view-casting
http://docs.scipy.org/doc/numpy/user/basics.subclassing.html#view-casting
http://www.ncbi.nlm.nih.gov/pubmed/19357099?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19810318?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19810318?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19451113?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19451113?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17616982?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17616982?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17616982?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19151099?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19151099?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17729286?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17729286?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20635348?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20635348?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20635348?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8749853?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8749853?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Background
	Implementation
	Overview
	Modular design
	Workflow construction
	Bioinformatics workflows
	Parallelism
	Dataflow
	Data-handling and serialization issues
	Inter-process communication (IPC)
	Monitoring
	Robustness

	Results & Discussion
	Example 1: PaPy’s Workers and Pipers
	Example 2: Basic sequence objects in NuBio
	Example 3: Produce/spawn/consume parallelism
	Generic pipeline templates
	Advanced example: An intricate PaPy workflow
	Computational efficiency
	Further information

	Conclusions
	Availability and requirements
	Acknowledgements
	Author details
	Authors' contributions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

