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Abstract

Motivation: Inter-organ/inter-tissue communication is central to multi-cellular organisms including humans,
and mapping inter-tissue interactions can advance system-level whole-body modeling efforts. Large volumes of bio-
medical literature have fostered studies that map within-tissue or tissue-agnostic interactions, but literature-mining
studies that infer inter-tissue relations, such as between hormones and genes are solely missing.

Results: We present a first study to predict from biomedical literature the hormone–gene associations mediating
inter-tissue signaling in the human body. Our BioEmbedS* models use neural network-based Biomedical word
Embeddings with a Support Vector Machine classifier to predict if a hormone–gene pair is associated or not, and
whether an associated gene is involved in the hormone’s production or response. Model training relies on our
unified dataset Hormone-Gene version 1 of ground-truth associations between genes and endocrine hormones,
which we compiled and carefully balanced in the embedded space to handle data disparities, such as between
poorly- versus well-studied hormones. Our BioEmbedS model recapitulates known gene mediators of tissue–tissue
signaling with 70.4% accuracy; predicts novel inter-tissue communication genes in humans, which are enriched
for hormone-related disorders; and generalizes well to mouse, thereby holding promise for its extension to other
multi-cellular organisms as well.

Availability and implementation: Freely available at https://cross-tissue-signaling.herokuapp.com are our model
predictions & datasets; https://github.com/BIRDSgroup/BioEmbedS has all relevant code.

Contact: nmanik@cse.iitm.ac.in

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Inter-tissue communication forms the basis for life and health in
multi-cellular organisms, and multiple organs/tissues are often
affected in a systemic fashion in complex diseases [e.g. type 2 dia-
betes (Priest and Tontonoz, 2019) or cancer cachexia (Argilés et al.,
2018)]. A grand goal of systems biology is to develop whole-body
systemic models of healthy/disease conditions; and that calls for
mapping not only the within-tissue biomolecular interactions, but
also the crucial across-tissue interactions (Castillo-Armengol et al.,
2019). Within-tissue interactions are focused heavily in current
genomic or literature-mining studies—for instance, several recent
methods that examine single-cell/spatial omics data to predict
ligand-receptor-based cell–cell interactions (Armingol et al., 2021;

Türei et al., 2021) have focused largely on proximal inter-cell com-
munication within a single tissue/organ, and not on inter-tissue
interactions that are distal or endocrine in nature. Recently devel-
oped whole-body metabolic models for humans (Brul and Angione,
2019), such as the Harvey and Harvetta models [encompassing 26þ
organs and their metabolic interactions culled from literature and
refined by genomic or other experimental data (Thiele et al., 2020)]
are promising, but models of similar scale at the gene-level are
lacking.

Emerging multi-tissue genomic datasets [e.g. the Genotype-
Tissue Expression or GTEx (The GTEx Consortium, 2020) and
Human Cell Atlas (Regev et al., 2017) data] have encouraged some
gene-level efforts to address the dearth of studies on inter-tissue
signaling, and there is an urgent need to augment/validate such
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data-driven whole-body gene networks by literature-driven
approaches. An ideal literature-mining system would extract rela-
tions of the form ‘Gene X in Tissue A interacts with Gene Y in
Tissue B via a mediating signaling molecule’ from a literature cor-
pus, and importantly also predict new relations using the semantic/
syntactic attributes of the relevant genes and signaling molecules
mentioned in the corpus.

In this work, we harness the large volume of biomedical litera-
ture [present in repositories like PubMed (Westergaard et al., 2018)
with �23 million abstracts] to identify genes involved in inter-tissue
signaling mediated by hormones. We specifically focus on endocrine
hormones, as they are a popular class of signaling molecules and
endocrine biology has revealed and continues to reveal many hor-
mones and their regulating genes. For example, in the pancreas tis-
sue, gene INS produces the well-studied insulin hormone, which is
processed and secreted into the blood with the help of other gene
products and biomolecules; and the protein encoded by the INSR
gene is the primary receptor of the hormone in muscle and other tis-
sues, where INSR protein gets activated by the insulin hormone and
affects several other genes downstream to regulate glucose uptake
by body cells. A more recent example is a new type of vesicle-
mediated communication between liver and adipose tissues involv-
ing non-protein-coding (microRNA) genes (Chen and Pfeifer, 2017;
Zhao et al., 2020). The goal of this work is to extract all such hor-
mone–gene relations, and classifying the hormone-associated genes
as either source (genes aiding in hormone production/processing/se-
cretion at a source tissue) or target (genes responding to the hor-
mone directly via binding or as a downstream response at a target
tissue).

Several challenges stand in the way of our goal of extracting hor-
mone–gene relations from literature, including:

1. Lack of a unified database of ground-truth hormone–gene asso-

ciations, since current hormone databases like HMRbase

(Rashid et al., 2009) and EndoNet (Dönitz and Wingender,

2014) focus on the primary gene coding for a (peptide) hormone

and the primary receptor genes, and not on the many other genes

involved in hormonal processing/response.

2. Severe imbalance in known hormone–gene relations both in the

number of source versus target genes of each hormone, and of

associated genes per hormone, which varies widely across hor-

mones (e.g. insulin is better studied than many other hormones).

3. Lack of standard in silico strategies for large-scale validation of

novel hormone–gene predictions using independent data on

inter-tissue signaling.

Our work attempts to address the barriers above to characterize
inter-tissue signaling, and current studies have addressed only the se-
cond challenge above and that too in very different contexts/applica-
tions. Specifically, current literature-mining studies largely extracted
relations among entities that are tissue-agnostic (i.e. does not depend
on the tissue) or within-tissue (i.e. happens within one or more of
the tissues or cell types), and includes relations, such as disease–gene
(Bhasuran and Natarajan, 2018), gene–phenotype (Xing et al.,
2018), drug–drug (Yan et al., 2013), or protein–protein/gene–gene
(Szklarczyk et al., 2015; Yu et al., 2018) types, or subsets of them
(Bravo et al., 2015; Junge and Jensen, 2020). Besides using tradition-
al Natural Language Processing (NLP) features based on syntax/
semantics, these methods also exploit modern advances like word
embeddings, which are vector representations of words that are
learnt via deep learning models [Word2Vec (Mikolov et al., 2013)
or FastText (Bojanowski et al., 2017) or BioBERT (Lee et al.,
2020)] to capture the semantic similarities and relationships among
words. Examples include a joint ensemble learning approach by
Bhasuran and Natarajan (2018) for disease–gene predictions, which
builds upon a Support Vector Machine (SVM) classifier called
BeFree introduced earlier by Bravo et al. (2015); and an approach
by Park et al. (2019) that combines traditional NLP techniques with
Word2Vec embeddings.

Given this context, our work on systematic prediction of genes
mediating inter-tissue signaling makes three main contributions:

1. Our work is the first study to predict hormone–gene associations

from biomedical literature, with our focus on inter-tissue com-

munication setting it apart from earlier literature-mining studies

on predicting tissue-agnostic or within-tissue interactions.

2. Our work is enabled by expressly compiling a database of

ground-truth hormone–gene associations called Hormone-Gene

version 1 (HGv1), and balancing it in the space of mapped word

embeddings to avoid well-studied hormones and source-versus-

target genes’ imbalance from unduly influencing our model

predictions.

3. Our models BioEmbedS (Biomedical Word Embeddings þ
SVM) and BioEmbedS-TS (Biomedical Word Embeddings þ
SVM—Target versus Source), which are SVM classifiers trained

on these balanced word embeddings, not only corroborate exist-

ing hormone–gene links and hormone source versus target genes

(collated in HGv1, respectively at an average accuracy of 70.4%

and 79%), but also predict novel gene associations of hormones.

These novel genes are enriched for diseases known to be related

to the corresponding hormone, across many different hormones.

These contributions of our study, concretely demonstrated in the
human and generalized to the mouse organism, also bode well for
future works on other multi-cellular organisms. The set of hor-
mone–gene predictions from our study has varied applications from
accelerating literature curation efforts around whole-body modeling
to prioritizing new experiments to dissect inter-organ communica-
tion. For these applications, our model accuracies as reported above
are adequate, since we take our hormone–gene predictions as priori-
tized hypotheses that are then validated via manual literature cur-
ation or molecular biology experiments. Substantial time and cost
savings can result from employing a prioritized list of curation or
experimental tasks to build a whole-body gene network model of
normal physiology or various hormone-related disorders, since
without prioritization, the huge space of all pairwise interactions
among thousands of genes in tens of organs of interest would need
to be considered.

2 Results

2.1 Overview of our BioEmbedS* models and HGv1

ground-truth dataset
We develop two classification models—BioEmbedS to predict hor-
mone–gene associations, and BioEmbedS-TS to classify an associ-
ated gene into source versus target set of a hormone. These models,
referred jointly as BioEmbedS*, are SVM classifiers trained and
evaluated using our ground-truth dataset HGv1, and use word
embeddings as input features (Fig. 1). An embedding of a word,
such as a hormone name or gene symbol, is a vector representation
of the word that is learnt via a deep learning model to capture the
context of this word in a corpus. By using word embeddings, specif-
ically the 200-dimensional vectors called BioWordVec (Zhang et al.,
2019) derived from the PubMed corpus, we not only capitalize on
this modern advance in literature mining, but also importantly bal-
ance the skew in our HGv1 dataset using established balancing tech-
niques that can work only with feature vectors and not direct text
(see Section 4 for details). The balancing step is crucial to prevent
well-studied hormones with a large number of gene associations in
HGv1 from unduly skewing our model predictions [Fig. 1 (inset
histogram)].

Since a unified database of source and target genes for known
hormones was not available, we expressly assembled such a data-
base for 51 endocrine hormones, primarily ones listed in a
Endocrine Society website (see Section 4), by integrating data from
several sources (Dönitz and Wingender, 2014; Rashid et al., 2009;
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The Gene Ontology Consortium, 2018). We manually went through
all Gene Ontology (GO) (The Gene Ontology Consortium, 2018) term
names mentioning a given hormone and identified the GO terms that
could be unambiguously added to source and target sets for the hor-
mone (Table 1). Every GO term we considered represents a species-
agnostic biological process or molecular function, and can hence be tail-
ored to any species by taking the appropriate set of genes annotated to
the term. We compiled a human dataset HGv1.human of about 2000
hormone–gene associations (Table 2) derived from the appropriate GO
terms and augmented with primary genes (genes encoding a peptide
hormone or hormone-binding receptors) from other sources (Dönitz
and Wingender, 2014; Rashid et al., 2009). Similarly, we constructed
HGv1.mouse dataset by collecting mouse genes annotated to the GO
terms collected in the first phase, and by taking the mouse homologs of
the primary human genes. This work focuses on HGv1.human (simply
referred to as HGv1 in the text), with HGv1.mouse dataset being used
to study generalizability of our models.

2.2 Word embeddings are informative of relationship

among hormones and genes
We first assess the quality of literature-based BioWordVec (Zhang
et al., 2019) embeddings of hormone names and gene symbols using
simple unsupervised learning methods. Hierarchical clustering of the
word embeddings of the 51 hormones in our HGv1 dataset (Fig. 2a)
revealed that functionally similar hormones often group together
into clusters—for instance, neurotransmitter hormones like sero-
tonin and dopamine are clustered together; and so are steroid hor-
mones with sexual and reproductive functions, such as testosterone,
estradiol and progesterone.

To evaluate the quality of embeddings of both hormones and
genes, we predicted hormone–gene associations using the popular co-
sine similarity measure between word embeddings of a hormone and
a gene, and obtained an average area under the receiver operating
characteristics curve (ROC-AUC) of 0.69 (Supplementary Fig. S1).
This result confirms the good quality of BioWordVec embeddings,
seen in earlier studies on extracting relations among proteins and
drugs (Zhang et al., 2019), in our new context of extracting hor-
mone–gene relations from biomedical literature. This result also pro-
vides a baseline performance from a simple unsupervised method,
against which we can compare the performance of our supervised
BioEmbedS model. Furthermore, cosine similarity can aid interpret-
ability of the hormone–gene pairs predicted by BioEmbedS—for in-
stance, BioEmbedS-predicted genes GSTP1 and BRCA2 for the
hormone estradiol, and Figure 2b shows how similar the embeddings
of key estradiol receptor genes (ESR1 and ESR2) and estradiol-

related disorders are to both the hormone and the predicted genes’
embeddings.

2.3 BioEmbedS strategy on disease–gene predictions is

competitive with other methods
Due to lack of existing tools for hormone–gene predictions and due
to several tools available for disease–gene predictions, we first vali-
dated our BioEmbedS strategy (of an SVM classifier trained on
word embeddings) on predicting disease–gene associations from a

Fig. 1. BioEmbedS model overview: our BioEmbedS model predicts if a hormone–gene pair is associated or not from D-dimensional word embedding vectors of the hormone

name and the gene symbol. Our HGv1 dataset is crucial for systematic training/evaluation of our model, after its proper balancing to handle variability in available informa-

tion for different hormones (see inset histogram; ‘assoc.’ stands for associated). In the toy-example shown, circles and triangles indicate hormone–gene pairs for two illustrative

hormones; and below-the-boundary blue and above-the-boundary red symbols, respectively, denote the positive (associated) and negative (non-associated) genes for each hor-

mone. The positive/negative classes are balanced across the two hormones, before separating them in a higher dimensional space using a SVM classifier. BioEmbedS-TS model

has source and target genes for a hormone in place of positive and negative genes (A color version of this figure appears in the online version of this article.)

Table 1. Example snapshot of our HGv1 dataset: glucagon and

adiponectin hormones along with their dominant source/target

tissue(s) and GO terms

Hormone source

fi target tissue(s)

Source terms Target terms

Glucagon

pancreas! liver

GO: 0070091

(glucagon secretion)

GO: 0033762

(response to glucagon)

GO: 0004967

(glucagon receptor

activity)

GO: 0120116

(glucagon processing)

GO: 0031769

(glucagon receptor

binding)

Adiponectin

adipose! skeletal

muscle, ooctyes,

pre-implantation

embryos

GO: 0070162

(adiponectin secretion)

GO: 0055100

(adiponectin binding)

GO: 0033211

(adiponectin-activated

signaling pathway)

Table 2. HGv1 dataset overview: summary of the 2009 hormone–

gene associations in our HGv1.human dataset

Number (#) of hormones/genes 51/1453

Mean # of genes associated with a hormone 39.39 (678.37)

Mean # of hormones associated with a gene 1.38 (60.87)

# of source/target genes across all hormones 519/1082

Mean # of source genes for a hormone 12.9 (632.03)

Mean # of target genes for a hormone 28.24 (653.66)

Note: 6 denotes standard deviation here and elsewhere in the text.
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corpus called EU-ADR (Erik et al., 2012). For performance com-
parison, we used results reported by the BioBERT, BeFree and Joint
Ensemble methods discussed before in Section 1; and our BioEmbedS
approach is able to obtain a comparable F1-score of 85.84% relative
to these methods (Table 3). This is promising as our approach,
originally conceived for predicting hormone–gene links, performs
reasonably well for a disease–gene prediction task. We do not
delve further into these specific disease–gene predictions, as our main
focus is to predict hormone–gene relations mediating inter-tissue
signaling.

2.4 BioEmbedS predicts hormone–gene pairs reliably,

and better than available alternatives
In our 5-fold cross-validation (CV) framework described in
Methods, an SVM model with a third-degree polynomial kernel was
chosen as a consistent classifier, and the resulting BioEmbedS mod-
els predicted hormone–gene associations with a reasonably good ac-
curacy of 70.4%61.8% and F1-score of 71.4%62.7%
(Supplementary Table S1). The SVM-based model also achieved bet-
ter or comparable results than other classifier choices, such as logis-
tic regression and decision trees (Supplementary Table S2). We also
note that in our baseline comparison, our supervised BioEmbedS
performed better than the unsupervised cosine similarity approach
seen above (Supplementary Fig. S1).

Since there are no direct hormone–gene prediction tools avail-
able to which we can compare our method, the closest alternative
was to match a (peptide) hormone to its primary gene encoding the
hormone, and then use predicted associations of this gene to other
genes. Predicted protein–protein and corresponding gene–gene asso-
ciations are available in a widely used resource called STRING
(Szklarczyk et al., 2015), and we found that our BioEmbedS’
hormone–gene scores were consistently better than STRING’s
literature-mining-based scores for the corresponding (mapped)
gene–gene pairs (Fig. 3a). We reiterate that STRING is not a direct
hormone–gene prediction tool, rather it serves as a generic
literature-mining baseline that is used to test if BioEmbedS can pre-
dict hormone–gene relations from literature relatively better. To

Fig. 2. Similarity of hormone embeddings and hormone–gene context: (a; top)

hierarchical clustering dendrogram of the 200D hormone embeddings using

complete linkage method and one minus cosine similarity (cosine of the angle

between two vectors) as the distance measure. (b; rest) For the predicted hor-

mone–gene pair (estradiol—GSTP1, and estradiol—BRCA2), the gene symbols

(middle) or disease terms (bottom) that exhibit cosine similarity of at least 0.35

with the predicted hormone or gene are shown. Cosine similarity is indicated

proportionally by edge thickness, with maximum and minimum values shown

alongside the corresponding edges

Algorithm 1: Pseudocode for nested 5-fold CV.

Table 3. Performance on disease–gene predictions: our BioEmbedS

approach’s 10-fold CV-based result is compared against existing

methods’ reported results on the EU-ADR disease–gene corpus

Model Precision (%) Recall (%) F1-score (%)

BioEmbedS 77.13 6 1.41 96.84 6 2.67 85.84 6 1.26

BioBERT v1.0 81.05 93.90 86.51

BioBERT v1.1 77.86 83.55 79.74

BeFree 75.10 97.70 84.6

Joint Ensemble learning 76.43 98.01 85.34

Note: BioBERT results are obtained from Lee et al. (2020); results on

BeFree and Joint Ensemble learning models are obtained from Bravo et al.

(2015) and Bhasuran and Natarajan (2018), respectively.

Bold-faced values indicate the best performance achieved in the corre-

sponding column.
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illustrate a bit more with insulin hormone as an example, whereas
BioEmbedS would directly predict ‘Insulin–gene’ relations, STRING
would predict ‘INS–gene’ associations where INS is the primary
gene encoding the peptide hormone insulin, and using gene–gene
scores from its ‘text mining’ evidence channel alone (i.e. ignoring
STRING’s other evidence channels based on genomic context, ex-
perimental assays, etc., to allow STRING to be used as a literature-
mining baseline; see Section 4 for more details).

We also evaluated our BioEmbedS model using word embed-
dings from the state-of-the-art BioBERT model (Lee et al., 2020) as
input features. BioEmbedS using our default BioWordVec embed-
dings performed better than using the original BioBERT embeddings
having 768 dimensions (downloaded from https://github.com/naver/
biobert-pretrained) and the same embeddings reduced to 200 dimen-
sions to match the dimension of BioWordVec embedding vectors
(Supplementary Table S3).

2.5 BioEmbedS-TS classifies source versus target genes

across different classes of hormones
For genes known to be associated with a hormone, we next classify
it they are source or target genes for the hormone. The performance
of our BioEmbedS-TS model was also reasonably good with accur-
acy of 79%61.9%, and F1-score of 84.8 6 1.3% for target genes
and 66 6 3.5% for source genes (see Table 4 and Fig. 3c). Superior
performance in predicting target genes could be because of the

disparity between the number of genes in the source and target sets.
Table 2 shows that in source versus target classification, source
genes constitute the minority class leaving us with fewer samples in
the training data to learn underlying patterns.

To test if hormones with a large number of associated genes
dominated our results, we grouped the hormones into bins based on
the number of each hormone’s associated genes and calculated the
bin-wise performance for BioEmbedS-TS as well as BioEmbedS.
These results, reported in Supplementary Table S4 for BioEmbedS
(with hormone-wise details in Supplementary File D1) and
Supplementary Table S5 for BioEmbedS-TS, show that bin-wise per-
formance is similar to the overall performance for most bins, thereby
suggesting that our BioEmbedS* models perform well across a range
of hormones.

2.6 BioEmbedS* models generalize reasonably to

unseen hormones and well to another species
While previous results are already based on an unseen test set of hor-
mone–gene links performed within a sound 5-fold CV framework,
we also wanted to test how well our models would predict for fresh
hormones that were never seen in the training/testing part of the CV
framework. In other words, we tested BioEmbedS on an independ-
ent dataset of hormone–gene pairs pertaining to ‘unseen’ external
hormones that were not used to train/evaluate the model (as these
hormones had too few gene associations to be considered eligible in

Fig. 3. Performance of our BioEmbedS* models in different settings: (a) ROC curves of BioEmbedS (solid lines) and STRING (dashed lines) for hormone–gene predictions

based on 5-fold CV. (b) ROC curve of BioEmbedS for unseen external hormones’ predictions. (c) PR curves of BioEmbedS-TS for source/target gene predictions based on

5-fold CV. (d) PR curve of BioEmbedS-TS for unseen external hormones’ predictions. AUC of a perfect classifier is one, and of a random classifier is 0.5 for ROC curves.

Random classifiers are denoted by black dashed lines in these plots
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the final model building step and hence also every inner/outer CV it-
eration; see Materials and methods for details). This dataset con-
tained 17 hormones forming 151 associated hormone–gene pairs
and 148 non-associated hormone–gene pairs. Although, this dataset
does not belong to the same distribution as the one used to train our
model due to very few gene associations per hormone, BioEmbedS
performed reasonably on this dataset obtaining accuracy of 65%,
F1-score of 59% and ROC-AUC of 0.72 (Fig. 3b). Similarly, we
applied BioEmbedS-TS on a set of hormone–source/target gene pairs
from 40 unseen hormones, forming 501 hormone–target gene pairs
and 188 hormone–source gene pairs. It was able to correctly classify
these pairs with 69% accuracy and area under precision-recall curve
(PR-AUC) of 0.43 (Fig. 3d). This PR-AUC of 0.43 is a drop from the
average 0.722 seen in CV assessments in Table 4, however, it is
higher than the random classifier’s PR-AUC of 0.27 (Fig. 3d), and
hence in this regard, our model generalizes reasonably to unseen
hormones with few known gene associations.

We also assessed how well our model trained on one species
(human) generalizes to make predictions in another species (mouse).
That is, we applied BioEmbedS model trained on hormone–gene pairs
from the HGv1.human dataset (referred to as HGv1 so far) to predict
mouse hormone–gene associations. Our BioEmbedS model was able to
predict hormone–gene relations in the HGv1.mouse dataset at a rea-
sonable accuracy of 71% and F1-score of 73%. Similarly, when
BioEmbedS-TS model trained on HGv1.human was used to classify
hormone-associated genes in mouse into source and target genes, we
achieved 83% accuracy, and a F1-score of 78% for source genes and
87% for target genes. Since many human and mouse homologs have
identical gene symbols (after converting to lower-case, which is also
done prior to getting word embeddings), we wanted to test if the good
cross-species performance of our models could be driven solely by
gene-symbols-based similarity of the HGv1.human and HGv1.mouse
datasets—Figure 4 shows this is not the case. These results together
show that our BioEmbedS* models trained using human data general-
ize well to an organism other than human.

2.7 Novel gene predictions are enriched for the

corresponding hormone-related diseases, and

experimentally validated hormone-responsive genes
The promising performance of BioEmbedS seen so far encouraged us
to apply BioEmbedS to predict association between each hormone in
HGv1 and all 19 318 human protein-coding gene symbols (Braschi
et al., 2019). We were able to predict many novel hormone–gene
links not captured in HGv1, comprising new links to any of the 1453
genes in HGv1 (Table 2) or the remaining ‘out-of-HGv1’ genes,
which were never seen during training/testing of our model. To valid-
ate these predictions, we tested whether the set of predicted genes for
a hormone (at a default SVM probability score cutoff; see Section 4)
was enriched for diseases already known [according to Pi~nero et al.
(2020)] to be related to the hormone. We found this was indeed the
case for 16 of the 34 primary hormones (Supplementary File D2a,
with primary indicating hormones in HGv1 considered eligible for
training the final model as defined in Section 4), and 9 of the 17

unseen external hormones (Supplementary File D2b, with unseen
referring to the remaining hormones in HGv1 with very few gene
associations). These results pertaining to hormones affecting a subset
of tissues is shown in Figure 5. For instance, all the insulin predicted
genes are indeed significantly enriched for ‘Diabetes Mellitus’, a

Table 4. BioEmbedS-TS results: classification of source versus target genes across the five test sets

Test fold Gene type Precision Recall F1-score Accuracy ROC-AUC PR-AUC Kappa score

1 Target 84 88 86 80 0.84 0.73 0.54

Source 72 64 68 – – – –

2 Target 83 87 85 79 0.83 0.69 0.49

Source 69 60 64 – – – –

3 Target 82 84 83 76 0.8 0.65 0.44

Source 63 59 61 – – – –

4 Target 86 85 86 81 0.86 0.78 0.56

Source 69 71 70 – – – –

5 Target 84 84 84 79 0.86 0.76 0.51

Source 67 67 67 – – – –

Fig. 4. Cross-species translatability of BioEmbedS: accuracy of our HGv1.human-

trained BioEmbedS model on each hormone in the HGv1.mouse dataset is plotted

against the Jaccard similarity between the known human and mouse gene symbols

of the hormone (i.e. the hormone’s positive associated genes in the HGv1.human/

mouse datasets, after converting gene symbols to lower-case)

Fig. 5. Inter-tissue communication: example of a multi-tissue system with inter-tissue edges

indicating hormonal signaling. BioEmbedS predictions for different hormones are enriched

for the indicated diseases (top two are shown, along with disease enrichment P-values).

Shown alongside each tissue–tissue link are examples of known disease genes that are also

genes we predicted for a hormone (with darker-shade black marking the genes in HGv1

dataset, and lighter-shade red the novel out-of-HGv1 genes). The hormones shown may

have other source!target tissue pairs besides the tissue pair shown here (A color version of

this figure appears in the online version of this article.)
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disease term that is also recorded as insulin-related in the two hor-
mone–disease ‘ground-truth’ sources that we considered [Endocrine
Society (https://www.hormone.org) and DisGeNET (Pi~nero et al.,
2020) resources; see Supplementary File D2a].

For well-studied hormones, such as insulin, we repeated the
above analysis on only the novel predictions (i.e. predicted hor-
mone–gene links not in HGv1) to test if the disease term enrich-
ments were driven not just by known hormone-specific genes in
HGv1 but also by the novel predicted genes. For insulin,
BioEmbedS-predicted genes overlapped with 691 of the 1507
Diabetes Mellitus genes recorded in DiSGeNET (disease enrichment
P ¼ 9:55� 10�40), and 534 of these 691 overlapping disease genes
were novel predictions (disease enrichment P ¼ 4:85� 10�9). This
trend of enrichment of predicted novel genes for the corresponding
diseases can also be seen visually in Figure 6 across a range of cutoffs
applied on the SVM score to call predictions—specifically, the curve
for novel gene predictions is better than that of a random classifier
for insulin and other hormones, and follows closely the overall gene-
curve for the most part. Furthermore, a more stringent subset of
novel BioEmbedS predictions involving totally unseen out-of-HGv1
genes also got validated by a similar disease enrichment analysis
(Supplementary Fig. S2).

Besides disease enrichment analysis, we can also test our novel
hormone–gene predictions using a more direct evidence: experimen-
tally validated ‘reference’ set of genes linked to a hormone.
Experimental studies aimed at finding target rather than source
genes of hormones are simpler to conceive, since a single transcrip-
tomic (microarray or RNAseq) experimental study can reveal all the

genes that are up/down-regulated in specific cell lines in response to
treatment with a hormone. We could find such published experi-
ments and associated hormone-responsive reference genesets for two
of the four hormones in Figure 6 (see Section 4). For both these hor-
mones, insulin and estrogen, the novel target gene predictions made
by our BioEmbedS* models did indeed overlap with the tested ex-
perimentally derived reference genesets with high statistical signifi-
cance (Table 5).

3 Discussion

This work elucidates the computational problems and challenges in
the emerging area of inferring cross-tissue signaling interactions
from biomedical literature, and presents a first approach
BioEmbedS to specifically predict hormone–gene associations from
biomedical literature with reasonably good absolute accuracy, and
also comparable or better performance than other popular alterna-
tives, such as STRING. Our BioEmbedS and BioEmbedS-TS models
are enabled by a ground-truth dataset HGv1 that we carefully com-
piled and balanced across different stratifications of the training
data in the space of mapped word embeddings of hormone names
and gene symbols. The better performance of our method over other
alternatives follows from our models being the first systematically
developed ones to make hormone–gene predictions, and other meth-
ods being literature-mining-based relation extraction methods that
are generic or designed for other prediction tasks, such as disease–
gene prediction.

(a) (b) (c) (d)

Fig. 6. Disease enrichment in novel gene predictions: curves showing the number (no.) of known disease genes (as per DisGeNET; y-axis) recovered in top-k predicted genes (as

per SVM score ranking; x-axis) of the corresponding hormone; focusing on all (lighter-shade red) versus novel (darker-shade black) predicted genes of the hormone. Our model

(solid curves) performs better than chance recovery of disease genes by a random classifier (dashed lines). Only genes predicted for a hormone with SVM score>0 are consid-

ered here; all protein-coding genes are considered in Supplementary Figure S2 (A color version of this figure appears in the online version of this article.)

Table 5. Experimental validation of novel predictions: predicted (pred.) gene set refers to the set of novel (out-of-HGv1) target genes of a

hormone predicted by our BioEmbedS* models (at default SVM probability cutoffs; see Section 4), and we compute its overlap with an ex-

perimentally derived reference (ref.) set of hormone-responsive differentially expressed genes (DEGs, including both up/down-regulated

genes) already available for two well-studied hormones via gene expression omnibus (GEO) and Enrichr resources

Hormone Ref. geneset name

(data source and identifiers)

Ref. experiment description

(Condition 1 versus 2 in DEG

analysis)

Ref. geneset

size

Pred. geneset

size

Overlap size

(overlap P-value)

Insulin Insulin Receptor Associates Promoters

GSE107336 (Hancock et al., 2019) (GEO

DEG FDR 5% via subseries GSE107334)

HepG2 cells treated with 10 nM

insulin versus no insulin for 4 h

4137 3424 1002 (2:74� 10�33)

Insulin Insulin Receptor Associates Promoters

GSE107336 (Hancock et al., 2019)

(Enrichr geneset)

HepG2 cells treated with 10 nM

insulin versus no insulin for 4 h

457 3424 103 (0.00471)

Estrogen Estrogen human MCF-7 cells GSE11324

(Carroll et al., 2006) (Enrichr genesets ligand:

89,90,91)

MCF7 cells exposed to 100 nM

estrogen for 3, 6 or 12 h versus 0 h

953 9276 607 (1:40� 10�23)

Estrogen Estradiol human estrogen receptor (ER)-positive

MCF7 breast cancer cells GDS3217 (Lin

et al., 2007) (Enrichr genesets ligand: 39,40,41)

MCF7 cells exposed to 10 nM

estradiol versus vehicle-only at 12,

24 and 48 h

869 9276 487 (7:54� 10�7)

Note: GEO study identifiers are prefixed by ‘GSE’ or ‘GDS’. For insulin, besides the ref. geneset from Enrichr, the DEG table in GEO was used to derive

another ref. geneset for the same experimental study at 5% false discovery rate (FDR). For estrogen, the DEGs in all timepoints of a study are combined to get a

single ref. geneset per study.
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Our HGv1 dataset can be viewed as a two-layered/bipartite
graph (with HGv1 hormone–gene relations being the edges/links be-
tween nodes in the hormone layer and the gene layer), hence our
hormone–gene prediction task can be viewed as a link prediction
problem in bipartite graphs (Kunegis et al., 2010). Current link pre-
diction methods for bipartite or more general graphs (Kumar et al.,
2020; Lü and Zhou, 2011), such as ones based on pairwise node
similarity, utilize attribute data available at the nodes and/or the
structural connectivity/neighborhood of nodes based on existing
links in the graph to predict new links. We decided to utilize only
the attribute data (word embeddings) of nodes to do hormone–gene
bipartite link prediction, since our HGv1 graph does not have rich
structural connectivity. In detail, a large number of genes in our
HGv1 dataset (1102 of the 1453) are uni-hormone genes connected
to only one hormone, and removing the few other multi-hormone
genes disconnects the HGv1 bipartite graph into several connected
components (one per hormone).

A caveat in this work worth mentioning is that randomly selected
genes for a hormone need not be truly negative examples. Our model
may also predict false associations based on high co-occurrence or
context word similarity but no functional relationship, and a careful
set of negative examples can help mitigate this issue. Our balancing
strategy using Synthetic Minority Oversampling Technique
(SMOTE) is also not without its pitfalls, especially when applied to
high-dimensional data (Fernández et al., 2018), and we coupled it
with under-sampling to carefully balance our training data across dif-
ferent hormones that are represented in the literature to different
extents and to address imbalance in the number of source versus tar-
get genes. Also, we use relatively well-studied ‘primary’ hormones
(with a higher number of known hormone-gene associations) for
training the model. So when validating the method on independent
test set comprising poorly studied hormones with fewer known hor-
mone–gene associations, there is an expected drop in performance.
Nevertheless, reasonably good accuracy of our model on different
unseen test sets and on an organism other than human, and our dis-
ease enrichment and experimental validation analysis of novel gene
predictions taken together suggest that our model predictions are in-
deed generalizable to make novel predictions about inter-tissue gene
signaling mediated by a hormone.

Future work could focus on integrating literature information
with independent omics data, such as multi-tissue genomic data
(The GTEx Consortium, 2020) or rapidly accumulating single-cell/
spatial transcriptomics data (Armingol et al., 2021). This literature-
omics integration could not only improve model performance, but
also help interpret further our novel hormone–gene predictions. For
instance, a location (tissue or celltype) where a hormone–gene asso-
ciation happens could be predicted using the corresponding loca-
tion’s omic data. As another example, systematic interpretation/
validation of non-coding gene predictions for hormones [such as the
preliminary long non-coding RNA (lncRNA) predictions, we pro-
vide in our website] using independent omics data could potentially
reveal unexplored routes of inter-tissue communication. Finally, a
special feature of our ground-truth hormone–gene dataset HGv1 is
its applicability to organisms beyond human and mouse as it is
based on species-agnostic GO terms, and this bodes well for extend-
ing our work to other multi-cellular organisms in the future. We
hope our work on inter-organ hormone–gene network models, dem-
onstrated concretely for the human and mouse organisms, stimulates
more work along these lines on cross-tissue signaling for different
organisms and thereby advances the field of whole-body, cross-
tissue gene network modeling.

4 Materials and methods

4.1 Our BioEmbedS and BioEmbedS-TS approach
Word-embeddings-based classifiers: To proceed with the classifica-
tion models, we need to represent our data (genes and hormones) in
a way that can be used by a classifier. There are several ways of
doing it, the most recent and efficient methods being from the deep
learning community, known as word embeddings. Specifically, we

use word embeddings for gene symbols and hormones from a
FastText model pre-trained on the PubMed biomedical corpus
called BioWordVec (Zhang et al., 2019) (BioWordVec model/
embeddings are downloaded from https://github.com/ncbi-nlp/
BioSentVec). FastText (Bojanowski et al., 2017) is a neural network
model learned by minimizing cross-entropy loss between each word
and its predicted context within a fixed window size. We used 200D
embeddings obtained using a skip-gram-based implementation with
window size 20. This ensures the embedding vectors of not only
co-occurring entities in a document but also entities with similar
word neighborhoods exhibit high similarity (Park et al., 2019).
BioWordVec actually uses subword information to obtain embed-
dings of words (including out-of-vocabulary words), i.e. the embed-
ding of each word is represented by the sum of embeddings of all
n-grams (3 � n � 6) in the word (after converting the words,
including hormones and gene symbols, to lower-case) (Bojanowski
et al., 2017; Zhang et al., 2019). Please note that BioWordVec is al-
ready trained using the PubMed corpus and so our HGv1 dataset is
not used to obtain the word embeddings; HGv1 (training/testing
splits) is instead used along with the pre-trained word embeddings
to build our BioEmbedS* classifiers.

Existing studies on prediction of disease–gene associations have
shown that SVM classifiers perform well when used with word
embeddings (Bhasuran and Natarajan, 2018). So we explored SVM
along with Random Forest (RF) classifiers as our primary classifiers,
and compared them with other secondary choices of classifiers as
well, and found SVMs to perform well (see Section 2). Hence, we
decided on an SVM-based model to predict hormone–gene relations
and call it BioEmbedS (with S denoting SVM). Similarly, we use an
SVM-based model to classify source versus target genes for associ-
ated genes for a given hormone and call it BioEmbedS-TS (with -TS
denoting Target versus Source).

Stratified/nested CV: We explored the parameter space (both
hyper-parameter tuning and parameter learning) of our SVM and
RF models using a 5-fold CV strategy that is stratified to ensure
even distribution of each hormone’s genes across the different folds,
and nested to allow proper partitioning of the HGv1 data into train-
ing, validation and test sets. In detail, a stratified split amounts to
considering each hormone with a certain number of associated genes
in HGv1 (denoted n), and putting randomly chosen bn5c genes into
each of the 5-folds, and the remainder genes randomly (one each)
into any of the 5-folds. This procedure done for the BioEmbedS
model ensures that each fold has genes belonging to each hormone
proportional to their presence in the overall dataset. A similar pro-
cedure to distribute the number of source (and separately target)
genes of each hormone evenly across the 5-folds was done for the
BioEmbedS-TS model also. For BioEmbedS, we also created a nega-
tive class (non-associations) dataset of the same size across hor-
mones and folds as the positive class (hormone–gene associations)
dataset described above. In detail, for each hormone, we excluded
its set of positive/associated genes (of size denoted by n) from all
genes present in HGv1, and randomly chose from the remaining
genes a set of n ‘negative’ genes, which are then split across the five
CV folds in the same manner as the positive genes for this hormone.
In the nested 5-fold CV strategy that we use to build both
BioEmbedS and BioEmbedS-TS models, we make a train/validation/
test split using 3/1/1-folds, respectively, and identify the classifier’s
parameters by using only train and validation splits. The test split is
kept aside from the training process, and used solely to report the
model performance.

Over/under-sampling (balancing) training set embeddings: Our
HGv1 dataset has a skewed distribution of the number of genes
associated with different hormones [Fig. 1 (inset histogram);
Table 2]; so it is important to prevent well-studied hormones with a
large number of gene associations in HGv1 from unduly influencing
our model. To address the problem of class imbalance, oversampling
techniques like SMOTE (Chawla et al., 2002) synthesize new exam-
ples from existing ones for the minority class, whereas under-
sampling techniques like Condensed Nearest Neighbours (Hart,
1968), TOMEK Links (Tomek, 1976), etc. selectively remove exam-
ples from the majority class. A combination of oversampling and
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under-sampling techniques is shown to perform better than using ei-
ther alone (Chawla et al., 2002). We strategically apply a combin-
ation of SMOTE and TOMEK Links on the mapped embeddings of
only genes with exactly one hormone association in HGv1. Working
in the space of embeddings of such ‘uni-hormone’ genes is both de-
sirable in facilitating SMOTE oversampling of our data, and permis-
sible as a large fraction of all genes in HGv1, 1102 of all 1453, are
uni-hormone (i.e. associated uniquely with some hormone, as
opposed to being multi-hormone or associated with more than
one hormone within HGv1). This technique applied to BioEmbedS
and a similar technique applied to BioEmbedS-TS handle the large
variation in HGv1 in the number and type (source versus target) of
genes respectively across hormones.

For BioEmbedS, we assign a unique class ID to every hormone,
and all the genes uniquely associated with the hormone belong to
the class indicated by its class ID (with all multi-hormone genes dis-
carded). We then use a combination of SMOTE oversampling and
TOMEK Links under-sampling [with the number k of nearest neigh-
bors in SMOTE set to two in the implementation used (Lemaı̂tre
et al., 2017)] to get an approximately equal number of genes/exam-
ples (same as the highest number of genes associated with a hormone
among all the hormones in HGv1) for every hormone. We now have
a dataset with approximately equal numbers of the genes related to
every hormone that forms hormone–gene pairs of positive class for
our binary classification problem. The following strategy is applied
to create the negative class (set of non-associated hormone–gene
pairs). For every hormone, we construct a set that contains the
‘genes’ (synthesized examples from oversampling and under-
sampling) associated with all the hormones except the one under
consideration. We randomly select from this negative set as many
examples as in the positive set of this hormone, in order to maintain
class balance between the positive and negative associations for the
hormone. Repeating this process for each hormone finally results in
a dataset that is balanced across the different hormones and posi-
tive/negative class.

For BioEmbedS-TS, we define two unique IDs for every hor-
mone; one maps to the source genes and the other maps to the target
genes for that hormone (again all multi-hormone genes, defined
exactly the same way as above for BioEmbedS, are discarded, along
with the small set of genes that are annotated as both source and tar-
get for the same hormone). The source and target genes associated
with a hormone belong to classes indicated by their IDs. This makes
the number of classes equal to twice the number of hormones pre-
sent in our dataset. We use SMOTE and TOMEK Links strategy as
for BioEmbedS to get an approximately equal number of source and
target genes (same as the highest number of source/target genes asso-
ciated to a hormone among all the hormones in HGv1) for every
hormone. Finally, we have a dataset that is balanced across the dif-
ferent hormones and source/target class.

Putting it all together—balancing and model selection within
nested CV: The overall careful application of our balancing and
model selection steps to the 3/1/1 train/validation/test folds is shown
in Algorithm 1, along with what constitutes the training and testing
sets of each inner/outer CV iteration (e.g. validation and test folds
are the respective testing sets for inner and outer CV loops). As for
the genes considered by Algorithm 1, training sets are restricted to
contain only uni-hormone genes to facilitate application of SMOTE
and TOMEK Links as discussed before, whereas testing sets are
allowed to contain both uni- and multi- hormone genes to reflect a
real-world setting where any gene may be queried for its association
to a hormone. As for the hormones considered for the BioEmbedS
model, the overall algorithm considers only hormones with at least
five gene associations to permit 5-fold CV; additionally, each inner/
outer CV iteration considers only hormones with sufficient gene
associations as ‘eligible’ for further analysis. In detail, every hor-
mone with at least three associations to uni-hormone genes in an
iteration’s training set is considered eligible for this iteration (to per-
mit two-nearest-neighbor SMOTE), and the remaining hormones
are removed from this iteration’s training as well as testing sets.
Similarly for the BioEmbedS-TS model, hormones with at least five
source and five target gene associations are considered for 5-fold

CV. In each inner/outer CV iteration’s training set, only the hor-
mones with at least three uni-hormone–source gene and three uni-
hormone–target gene associations are considered ‘eligible’, and the
remaining hormones are removed from training as well as the test
set for this iteration.

SVM and RF models with different hyper-parameter combina-
tions are trained on the resulting balanced training folds, and
Cohen’s Kappa score of these trained models on the validation folds
is used to select the best model. In each iteration, the test fold is
never used for training or choosing hyper-parameters for the classi-
fier. For BioEmbedS, an SVM model with a third-degree polynomial
kernel was chosen as the best classifier by Algorithm 1 (Step 10)
consistently in all five outer CV iterations (Supplementary Table
S1). This SVM model was later trained using the entire HGv1 data-
set, after applying similar restrictions and balancing as in Step 11 of
Algorithm 1, to obtain the final BioEmbedS model—this final model
was used for making all protein-coding gene predictions (including
novel ones discussed in Section 2). Hormones found eligible for
building the final BioEmbedS model amounted to 34 and are known
as primary hormones hereafter; the remaining 17 ineligible hor-
mones would also have been ineligible (and hence discarded or un-
seen when choosing/training models) in each of the inner/outer CV
iterations of Algorithm 1 due to these hormones’ insufficient gene
associations. For BioEmbedS-TS, SVM classifiers with different
kernels/hyper-parameters were chosen as the best classifier in the
different outer CV iterations of Algorithm 1 (Step 10). Among these
best classifiers, we chose the simplest model: an SVM classifier with
a third-degree polynomial kernel. We then trained this SVM model
using the entire HGv1 dataset of source versus target hormone–gene
relations, after applying similar restrictions and balancing as in Step
11 of Algorithm 1, to obtain the final BioEmbedS-TS model—this
final model was applied to classify all hormone–gene associations
predicted by BioEmbedS as source versus target type (using cutoffs
shown below at the end of Section 4). Only 14 hormones with suffi-
cient source and target gene associations were found to be eligible
for building the final BioEmbedS-TS model.

4.2 Evaluation framework: performance metrics and

enrichment/clustering analysis
We evaluate our model on five different unseen test sets (as shown
in Algorithm 1), by reporting the performance of classifiers on these
test sets using standard performance metrics like precision, recall,
F1-score, accuracy, Kappa score, ROC-AUC and PR-AUC. All these
metrics take values in the range 0–1 and hence can be expressed as
percentages (with the exception of Kappa score that can take nega-
tive values), with higher values indicating better performance.
Supplementary Methods S1.1 provides definitions for these metrics
assuming the two classes in our binary classification problems are as
follows: for BioEmbedS, we naturally let positive and negative class
to refer respectively to association and non-association of a hor-
mone–gene pair; for BioEmbedS-TS that starts with an associated
hormone–gene pair, we arbitrarily let positive and negative class
refer to hormone–source gene pair and hormone–target gene pair as-
sociation, respectively. Given these class definitions, a false positive
for instance, for BioEmbedS would be a non-associated hormone–
gene pair that is wrongly predicted as associated by our method; and
for BioEmbedS-TS would be a hormone–target gene pair that is
wrongly predicted as hormone–source gene pair by our method.

Hormone–gene predictions are called using the final BioEmbedS
model described above at an SVM probability score of at least 0.7,
with this default cutoff value chosen so as to get a reasonable num-
ber of predictions for each hormone. To validate the predicted genes
of a hormone, we perform a disease enrichment analysis using the
Enrichr tool (Chen et al., 2013) and DisGeNET (Pi~nero et al., 2020)
collection of known disease-related genes. All reported disease en-
richment P-values from this analysis are corrected for multiple test-
ing of different DisGeNET disease terms. For validation of novel
predictions, besides enrichment for disease genesets, we also tested
for overlap with experimentally derived reference genesets. We
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obtained these reference sets by searching the names of each of the
four hormones in Figure 6 against all terms in the following Enrichr
libraries of reference genesets (Chen et al., 2013): ‘Ligand
Perturbations from GEO’ (‘down’ and ‘up’ genesets combined,
since, we do not make distinction between down/up-regulated target
genes in our predictions), and ‘RNAseq Automatic GEO Signatures
Human’ (again ‘down’ and ‘up’ genesets combined) (https://maayan
lab.cloud/Enrichr/#libraries, accessed Jun 30, 2022). We excluded
studies where the hormone was used in conjunction with some other
stimuli to treat the cells, and we also chose cell line over disease
studies (e.g. for insulin, we preferred HepG2 cell line hormone-
treatment over insulinoma-tumor-related studies). These choices
helped avoid any unwanted influence from non-hormonal stimuli or
disease factors when identifying a hormone’s target genes.
Hypergeometic distribution is used to obtain the Overlap P-values
reported in Table 5.

Also, as part of validating our predictions, we inspected the pair-
wise overlap between the highly significant gene sets predicted for
hormones, and found that biologically related hormones, such as in-
sulin, leptin and glucagon, indeed group together in a hierarchical
clustering-based dendrogram (Supplementary Fig. S3), due to their
higher pairwise similarities than most other hormone pairs.

In comparison of STRING (Szklarczyk et al., 2015) to our
BioEmbedS model within the 5-fold CV framework, STRING is
used as a generic literature-mining baseline as it is not a direct hor-
mone–gene prediction tool. We evaluated STRING on the following
14 peptide hormones alone (primary gene encoding the hormone
shown in parenthesis): calcitonin (CALCA), cholecystokinin (CCK),
glucagon (GCG), insulin (INS), leptin (LEP), parathyroid hormone/
parathyrin (PTH), thyrotropin-releasing hormone (TRH), antidiu-
retic hormone/vasopressin (AVP), prolactin (PRL), somatostatin
(SST), gastrin (GAST), ghrelin (GHRL), growth hormone-releasing
hormone (GHRH) and oxytocin (OXT). A ranked list of STRING’s
hormone–gene predictions were obtained using the text-mining
scores (in the 9606.protein.links.detailed.v11.0.txt file downloaded
from the STRING website) of genes associated by STRING to each
hormone’s primary gene (and assuming the lowest score of zero for
non-associated genes). The same five CV folds derived from the
HGv1 dataset were used to evaluate both BioEmbedS and STRING,
after excluding positive/negative examples involving (i) hormones
that were not eligible in the fold (see Algorithm 1) when evaluating
both BioEmbedS and STRING, and (ii) hormones not present in the
above peptide hormones list when evaluating STRING alone.

4.3 Implementation details and data/code availability
Implementations are done using Python Scikit-learn framework using
decision_function() and predict_proba() methods of support vector
classification in sklearn respectively to obtain the SVM model scores
for all hormone–gene pairs and the probability of association between
hormone–gene pairs (probability score of SVM). For reproducibility
purposes, we provide hyper-parameter choices in Supplementary
Methods S1.2 and open-source code and relevant data in a public re-
pository. Specifically, the proposed HGv1 dataset along with our
models’ predictions, and the code to reproduce this work are available
respectively at the web portal https://cross-tissue-signaling.herokuapp.
com/, and code repository https://github.com/BIRDSgroup/BioEmbedS.
In the web portal, we show BioEmbedS-predicted hormone–gene
associations at the default cutoff (of at least 0.7 for BioEmbedS SVM
probability), as well as BioEmbedS-TS-predicted type of the associ-
ation (i.e. source versus target type for hormones that were used to
train the BioEmbedS-TS model; as explained above, hormones with
insufficient number of source or target genes were not used to train
the BioEmbedS-TS model). In detail, a hormone-associated gene
whose BioEmbedS-TS SVM probability is: (i) at least 0.7 is predicted
as a source gene for the hormone; (ii) at most 0.3 is predicted as a tar-
get gene for the hormone; and (iii) the rest are called as inconclusive
or ‘don’t know’ genes. This association type of source or target can
then be used to select either the known source or target tissues re-
spectively of the hormone, as recorded in HGv1, to infer the potential
locations (tissues) of a hormone–gene association. Our web portal
also lists these predicted tissue locations. Furthermore, the target

genes obtained using the above default cutoffs were used toward the
experimental validation analysis reported in Table 5.

Acknowledgements

We thank Arjun Sarathi for help in assembling the HGv1 dataset, and

Bioinformatics and Integrated Data Science (BIRDS) group members for their

valuable suggestions and reviews of this work, and Sanga Mitra and Sugyani

Mahapatra in particular for their careful reviews, and Philge Philip for help with

the code repository. We thank Balaraman Ravindran and Harish Guruprasad

from IIT Madras, and Praveen Anand from inference for their valuable inputs on

earlier stages of the project. Human and mouse icons in Figure 4 were made by

Freepik from www.flaticon.com. Figure 5 was created in biorender.com.

Author contributions

A.J. and M.N. formulated the study and overall modeling approaches; A.J. imple-

mented the training/testing of all primary models and performed

associated analyses; T.K. and M.N. compiled the HGv1.human dataset, and pro-

vided inputs on the modeling approaches; T.K. assembled the HGv1.mouse dataset,

and studied novel gene predictions at the hormone and inter-tissue level; M.R. per-

formed associated analyses of secondary modeling approaches, visualized embed-

dings, and developed the website with inputs from A.J. and other co-authors; T.L.

performed disease and pathway enrichment, hierarchical clustering and exploratory

lncRNA analyses; A.J., M.N., T.K., T.L. and M.R. interpreted results; A.J., M.N.

and T.K. wrote the manuscript; M.N. guided and supervised the study.

Funding

This work was supported by the Wellcome Trust/DBT India Alliance

Intermediate Fellowship Grant [IA/I/17/2/503323 to M.N.].

Conflict of Interest: none declared.

References

Argilés,J.M. et al. (2018) Inter-tissue communication in cancer cachexia. Nat.

Rev. Endocrinol., 15, 9–20.

Armingol,E. et al. (2021) Deciphering cell-cell interactions and communica-

tion from gene expression. Nat. Rev. Genet., 22, 71–88.

Bhasuran,B. and Natarajan,J. (2018) Automatic extraction of gene-disease

associations from literature using joint ensemble learning. PLoS One, 13,

e0200699.

Bojanowski,P. et al. (2017) Enriching word vectors with subword informa-

tion. TACL, 5, 135–146.

Braschi,B. et al. (2019) Genenames.org: the HGNC and VGNC resources in

2019. Nucleic Acids Res., 47, D786–D792.
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