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Abstract: Papillomaviruses dysregulate the G1/S cell cycle transition in order to promote DNA
synthesis in S phase, which is a requirement for viral replication. The human papillomaviruses (HPV)
E6 and E7 oncoproteins mediate degradation of the cell cycle regulators p53 and Rb, which are two
of the most universally disrupted tumor-suppressor genes in all of cancer. The G1/S checkpoint
is activated in normal cells to allow sufficient time for DNA repair in G1 before proceeding to
replicate DNA and risk propagating unrepaired errors. The TP53 pathway suppresses a variety
of such errors, including translocation, copy number alterations, and aneuploidy, which are thus
found in HPV-associated tumors similarly to HPV-negative tumors with other mechanisms of TP53
disruption. However, E6 and E7 maintain a variety of other virus–host interactions that directly
disrupt a growing list of other DNA repair and chromatin remodeling factors, implying HPV-specific
repair deficiencies. In addition, HPV-associated squamous cell carcinomas tumors clinically respond
differently to DNA damaging agents compared to their HPV negative counterparts. The focus of this
review is to integrate three categories of observations: (1) pre-clinical understanding as to the effect
of HPV on DNA repair, (2) genomic signatures of DNA repair in HPV-associated tumor genomes,
and (3) clinical responses of HPV-associated tumors to DNA damaging agents. The goals are to try to
explain why HPV-associated tumors respond so well to DNA damaging agents, identify missing
pieces, and suggest clinical strategies could be used to further improve treatment of these cancers.
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1. Introduction

The high-risk human papillomaviruses (HR-HPV) infect the basal layer of epithelium
in the anogenital region and the oropharynx. While most infections are cleared, in some
individuals, HR-HPV infections and the introduction of oncoproteins E6 and E7 is the
founding carcinogenic event for the development of squamous cell carcinomas arising
from these anatomic locations. While sufficient for the immortalization of keratinocytes,
E6 and E7 are insufficient for transformation into malignancy, and the acquisition of
additional driver alterations is required. In murine models, the expression of HPV18
E6/E7 alone does not induce malignancy, which also requires an additional oncogene (ras
or fos) [1]. In human HPV-associated cervical, oropharyngeal, and anal cancers, these
additional drivers include copy number alterations and driver gene mutations affecting
tumor suppressor genes or oncogenes [2–4]. In addition, numerous passenger alterations
in non-driver elements are also acquired. Inferences about how these driver and passenger
alterations are formed can be gleaned by evaluating patterns or “signatures” of mutations
and structural rearrangements [5,6]. A signature is a reflection of an underlying genomic
insult (e.g., a pyrimidine dimer from UV light) and how the early cancer cell repairs
that insult. Since the E6/E7 oncoprotein expression is a first step in carcinogenesis, the
impact of these oncoproteins on fundamental processes such as DNA repair and genomic
stability can be discerned through measurement of the genomic signatures acquired in
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cancer genomes on the course from HPV infection to clinical tumor detection. Two of the
most important features of the oncoproteins E6 and E7 include the inactivation of p53 and
Rb; however, virtually all cancers also have acquired mechanisms of inactivation of these
targets as well. For instance, nearly all HPV− head and neck squamous cell carcinomas
have acquired TP53 mutations and loss of CDKN2A [2], providing an alternative means
of bypassing the Rb-mediated restriction point and the G1/S checkpoint enforced by p53.
Thus, evaluating genomic differences between HPV+ and HPV− cancer genomes can help
distinguish between E6/E7 effects on DNA repair and genomic stability other than simply
inactivation/loss of TP53. These comparisons between HPV+ vs. HPV− tumor genomes
comparison can best be done between head and neck squamous cell carcinomas as the
overwhelming majority of cervical cancers and most anal cancers are HPV+.

2. Radiosensitivity Differences between HPV+ and HPV− Tumors

Locoregionally advanced head and neck squamous cell carcinomas are often best man-
aged with concurrent chemoradiation, consisting of 70 Gy in 2 Gy fractions with concurrent
cisplatin either weekly or in three bolus doses over the course of radiotherapy [7,8]. The
value of the cisplatin in addition to radiotherapy was demonstrated in multiple randomized
trials, [7,8] including two recent dedicated HPV-associated oropharyngeal SCC trials [9,10].
Concurrent cisplatin is similarly supported by phase III trials in squamous cell carcinomas
of the cervix [11–13], and in the case of anal canal squamous cell carcinoma, the crosslink-
ing agent mitomycin C substituted for a platinum salt also improves outcomes [14,15].
However, the primary curative modality is the radiotherapy since chemotherapy alone is
non-curative, but the addition of concurrent cisplatin improves the 10-year locoregional
cure rate in HNSCC from 54 to 71% compared to radiation alone [8].

In 2008, a landmark analysis of a prospective Eastern Cooperative Oncology Group
(ECOG) trial of concurrent chemoradiation for head and neck cancers established supe-
rior outcomes for HPV-associated squamous cell carcinomas in terms of local control
following radiotherapy as well as overall survival [16]. The superior radiosensitivity of
HPV-associated HNSCC compared to HPV negative HNSCC has been confirmed in multi-
ple other trials [17,18] and is also observed in SCC of the cervix [19,20], vulva [21–23], and
anal canal [24–26], suggesting a consistent biology. Using HPV association as a biomarker,
multiple phase II trials have now supported radiation dose reductions to 60 Gy [27,28],
54 Gy [29,30], or even 30 Gy [31], which is not possible in HPV-negative HNSCC. However,
recent studies have shown that patients with integrated HPV genomes (a subset of 20% of
all HPV-positive patients) have poor clinical outcomes compared to patients with episomal
HPV; thus, we might need to further stratify patients before selecting them for de-escalation
therapy [32,33].

Pre-clinical models of HPV-associated HNSCC are few, but multiple groups have
replicated the demonstrated increased radiation sensitivity in collections of HPV+ HNSCC
cell lines compared to HPV− HNSCC cell lines using gold standard clonogenic survival
assays [34,35]. In patient-derived xenograft models, HPV+ HSNCC similarly are generally
more radiosensitive compared to HPV−models [36]. These comparisons are made between
collections of genetically heterogeneous cell lines, but isogenic comparisons of cell lines
with and without E6 and E7 expressed also demonstrated HPV oncogene-mediated radia-
tion sensitivity [37]. To compare radiation responses in implanted xenografts, Brezar et al.
constructed an isogenic pair of the commonly used HPV negative HNSCC cell line FaDu
and an FaDu line expressing E6/E7 [38]. Following 10 Gy of radiation, the E6/E7 FaDu
xenograft exhibited a five-fold growth delay relative to the parental FaDu xenograft [38].

3. Proposed Mechanisms for Increased Radiosensitivity in HPV+ Tumors

The cell-intrinsic radiosensitivity found in clonogenic survival assays has been linked
to a DNA double-strand break repair defect. Again using a comparison of cell line col-
lections in HPV+ and HPV− categories, the resolution of γH2AX foci after radiation is
delayed in HPV+ cell lines, suggesting a defect in DSBR (double strand break repair) [34,35].
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Isogenic comparisons also confirm a defect, and when E6/E7 or E7 alone are expressed
in immortalized keratinocytes or transgenetically introduced into skin keratinocytes in a
murine model, the resolution of γH2AX is delayed [37]. Finally, when E6/E7 are introduced
into a primary model of oral cancer, γH2AX is increased [39].

Both E6 or E7 individually and joint E6/E7 expression have been linked to DSBR
defects and multiple DSBR pathways are proposed to be abrogated, including both ho-
mologous recombination [40,41] and nonhomologous end-joining [42,43]. Thus, there may
not be one single explanatory mechanism but rather multiple (see Figure 1). Both E6 and
E7 increased persistent γH2AX signal after radiation when expressed individually in the
HPV-negative FaDu cell line [44]. However, primarily E7 delayed resolution of γH2AX
in immortalized keratinocytes and transgenic models of E6 and E7 expression in skin [37]
and only E7 or E6/E7 led to a DSB defect in an isogenic U2OS cell line model [42].
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Figure 1. Double-strand break repair pathways and proposed mechanisms of HR-HPV mediated effects on pathway usage.
Figure created with Biorender.com.

Following a double-strand break created by irradiation, an estimated 70% of breaks
are repaired through nonhomologous end joining, a rapidly completed pathway consisting
of end recognition by the XRCC5/6 heterodimer and DNA-PK, which forms a synaptic
complex across the break site. Compatible ends can be directly ligated through Ligase IV,
or limited end processing can occur to remove oxidatively damaged residues before subse-
quent ligation. In S and G2 cells, CTIP and the MRN complex can initiate end-resection,
leaving a single strand 3′ prime end, which can invade a sister chromatid strand, find
homology, and complete homologous recombination. A less well-characterized pathway,
alternative end joining (Alt-EJ), also makes use of the exposed single stranded 3′ end from
each side of the break. Small stretches of homology between opposite strands of the break,
termed ‘microhomology’, can be annealed, initiating repair through polymerization and
the clipping of non-complementary tails.

HPV E6/E7 expression has been linked to homologous recombination deficiency. Liu
et al. have described an abrogation of TGF-β signaling in HPV+ HNSCCs and a subsequent
de-repression of miR-182, which in turn inhibits BRCA1 and FOXO3 expression, thereby
inhibiting homologous recombination directly through BRCA1 and indirectly through
FOXO3 effects on ATM activity [41]. Inhibition of TGF-β signaling suppressed homologous
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recombination, increasing alternative end joining. Furthermore, when the expression of
TGF-β genes are analyzed pan-cancer, this TGF-β signature is inversely correlated with ex-
pression of alt-EJ genes. An impact on ATM activation was also seen through E6-mediated
degradation of TIP60, which is an acetyltransferase involved in the activation of ATM [45].
E7 also activates STAT5, causing increased phosphorylation of both ATM and ATR [46,47].
Furthermore, this activation of the JAK/STAT pathway helps HPV evade the immune
system, and thus, targeting the JAK/STAT pathway could be another strategy to treat HPV-
associated tumors [48]. Wallace et al. similarly demonstrated the inhibition of homologous
recombination when E6 is expressed in a U2OS cell background, a 50% reduction in homol-
ogous recombination through an inappropriate initiation of homologous recombination in
G1, and mislocalization of Rad51 away from DNA damage foci [40]. Additionally, the E7
oncoprotein induces the overexpression of the p16ink4a (p16) cell cycle inhibitor protein,
and p16 may play indirect roles in homologous recombination [49]. p16 inhibits CCND1
expression, which in addition to its role in cell cycle progression also is proposed to have a
direct role in homologous recombination [50]. p16 overexpression also decreases TRIP12
expression, an E3 ubiquitin ligase, and subsequently the overaccumulation of RNF168 [51].
Finally, the Rb protein itself (which is degraded by E7) has been demonstrated to promote
HR through recruitment of the BRG1 ATPase, increasing end resection possibly through
reducing the density of nucleosomes surrounding a DSB [52]. Thus, a number of different
proposed mechanisms link E6/E7 oncoproteins to an HR defect.

In contrast, when comparing panels of HPV+ and HPV− cell lines that did exhibit
separable radiation sensitivities in the hands of multiple groups [34,35], no such difference
can be observed in cisplatin sensitivity [53]. Cisplatin mediates cytotoxicity through inter-
strand crosslinks, which require an active HR pathway to resolve. Response to platinum is
a hallmark feature of HR-deficient cancers such as germline mutated BRCA1/2 breast and
ovarian cancers.

The E6/E7 oncoproteins have also been proposed to influence repair through end
joining. Using three different methods, our group measured the impact of E7 on DSBR
and found an E7-mediated suppression of NHEJ, with a concomitant increase in Alt-EJ
and HR, similar to the phenotype of NHEJ-inhibiting drugs [42,54]. The mechanism may
be explained by the effect of E7 on viral replication centers, which are extrachromosomal
DNA structures formed during the life cycle of the virus. A number of DNA repair proteins
are recruited to viral replication centers, including ATM, the MRN complex, BRCA1, and
53BP1 [55–58]. Sitz et al. found that E7 binds RNF168, and the interaction is required
for viral replication [43]. RNF168 ubiquitinates the histone protein H2A [59], which is
one of two important histone markers that recruit 53BP1 to double-strand breaks. The
53BP1/RIF1/shieldin complex axis serves as the primary mechanism to protect the ends of
a double-strand break from resection, thus promoting nonhomologous end joining over
homologous recombination [60–63]. E7 expression substantially reduced 53BP1 foci in re-
sponse to radiation (a marker of NHEJ) and promoted homologous recombination through
a reporter cassette assay [43]. Another possible mechanism lies in the Rb protein itself. Rb is
also reported to mediate the recruitment of XRCC5/6, key NHEJ effectors, to double-strand
breaks, and Rb knockdown reduces NHEJ efficiency by cassette reporters [64].

While many studies have focused on how E6 and E7 modulate DSBR, viral replica-
tion itself requires DDR activation [56], including activation of ATM and ATR signaling
pathways [46,57,65,66]. Homologous recombination proteins are also required for produc-
tive replication [65], and various DSBR factors are recruited to viral replicating centers,
including ATM, BRCA1, RAD51, NBS1, ATM, WRN, and TOPBP1 [67–70]. The E1 and E2
proteins induce the DNA damage response as seen by increased γH2AX foci and DSBs
measured by COMET assay in S and G2 phases [67,71]. In addition, the E2 protein can
bind directly to several proteins involved in the DNA damage response and modulate their
function, including TopBP1 [68,72]. These observations imply that viral replication may
involve DNA structure complexity that requires DNA repair to proceed. A plurality of
HPV-associated cancers maintains episomal DNA copies of HPV genomes, which could be
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replication-competent [2,3,32,33], and E2, E4, and E5 can remain expressed in some HPV+
cancers [73]. How replication competence affects overall DSBR in HPV+ tumors is unclear,
and a worthwhile comparison would be episomal only vs. integrated HPV+ cancers in
terms of sensitivity to DNA damaging agents and DSBR pathway utilization.

In addition to the DNA repair related, cell-intrinsic radiosensitivity mechanisms,
other possibilities include incomplete TP53 inactivation [34], expression of radiosensitizing
E6 isoforms [74], or prolonged G2/M arrest [35]; there are also cell-extrinsic proposed
mechanisms involving the tumor microenvironment, such as decreased tumor hypoxia
and improved immunoreactivity, which are nicely reviewed elsewhere [39,75,76].

4. Genomics Signatures in HPV Cancers

A complementary approach to cell-based analyses of DSBR is to analyze cancer
genomes to measure characteristics DNA repair scars (“signatures”) that can reflect the
underlying DNA repair capacity of the tumor. Examples include cancers defective in
mismatch repair exhibiting microsatellite instability in the genome and cancers defective in
homologous recombination exhibiting a variety of associated genomic alterations. What
can the underlying genomics of HPV+ cancers teach us about DNA repair in these cancers?

First, we know that the expression of E6/E7 into cells can cause genomic instability,
which is reflected by rearrangements, translocations, and amplifications [77,78], and also
changes in ploidy [79]. Of course, all these measures of genomic and chromosomal instabil-
ity are associated with TP53 loss, which is also mediated through E6. HPV− tumors exhibit
near universal TP53 genetic inactivation. When HPV+ and HPV− HNSCC genomes are di-
rectly compared, HPV+ HNSCC actually exhibit fewer copy number alterations compared
HPV− HNSCC genomes (median 113 vs. 136, p = 0.026) and a higher percentage of HPV+
HNSCC genomes are classified as “M” type, driven by more mutations in cancer drivers
than copy number changes (58% vs. 27%) [2]. Thus, it is not clear from raw measures that
HPV+ genomes exhibit genomic instability over and above that of other tumors, such as
HPV− tumors with TP53 loss (see Table 1).

Table 1. Comparison of genomic characteristics and therapy response in HPV positive and negative
cancers.

Characteristic HPV+ HNSCC HPV− HNSCC

Dysregulated tumor suppressors Rb (E7), p53 (E6) p16(INK4A), p53
Copy number alterations (median) 113 136

“M” class tumors 58% 27%
Somatic mutation frequency Similar Similar

Single base substitutions signature APOBEC Smoking
Alt-EJ genomic scars Higher Lower

Second, the overall frequency of mutations does not differ between HPV+ and HPV−
HNSCC genomes. However, the mode of acquisition of single base substitutions does
differ substantially. HPV− genomes are dominated by C>A substitutions induced by
smoking, whereas HPV+ genomes exhibit dominance of the APOBEC signature involving
C>T and C>G mutations in TpCpN trinucleotides. The APOBEC cytidine deaminases
mediate anti-viral activity through deamination of T to U in single-stranded viral DNA. As
a harmful by-product, single-stranded DNA occurring in the genome during replication
can similarly be affected by APOBEC enzymes, inducing base substitutions.

Third, when focusing on genomic signatures present in cancer deficient in homologous
recombination, HPV+ tumors do not exhibit SBS3, the single base substitution pattern
found in BRCA1/2 biallelic mutated cancers defective in HR [80], and if anything, the
SBS3 contribution is slightly higher in HPV-negative HNSCCs [42,80,81]. Furthermore,
BRCA1/2 mutated cancers exhibit an increase in large-scale state transition (LST) score,
which is reflective of large rearrangements [82], but HPV+ HNSCC genomes do not exhibit
this hallmark, either [42].
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What is different between HPV+ and HPV− tumors is the frequency of deletions
associated with microhomology-based repair used in alternative end joining [42]. Those
HPV+ tumors with the highest levels of E7 expression exhibited a still higher percentage
of Alt-EJ like scars. Finally, HPV+ tumors with high levels with ALT-EJ genomic scars
exhibited improved disease-free survival following radiation (3-year DFS 60.1 vs. 41.2%,
p = 0.04) [42]. Subsequently a prevalence of Alt-EJ genomic scars (termed ID6 in this
case) without SBS3 was similarly demonstrated in cervical cancer whole genomes [83].
To reconcile the absence of HR-associated base substitution (SBS3) and large-scale state
transition (LST) signatures and the presence of Alt-EJ deletion signatures, one explanation
could be that the Alt-EJ signatures are reflective of defective NHEJ. Alternative end joining
was first discovered in V(D)J junctions within lymphocytes deficient in NHEJ [84,85] and
thus is a backup to canonical NHEJ, just as it is a backup to homologous recombination.
Finally, the Alt-EJ signature and its relation to clinical outcomes in HPV+ HNSCCs was
further confirmed in a prospective study [86].

5. Clinical Responses to Platinum in HPV+ Cancer

Another means of assessing real-world homologous recombination deficiency is to
compare the clinical response rates of recurrent and metastatic HPV+ tumors to platinum
salts and PARP inhibitors to those of HPV− tumors. Platinum and PARP inhibitor sensi-
tivity are largely determined by HR capacity. For instance, the overall response rates to
platinum in germline bi-allelic mutant BRCA1/2 cancers range from 65 to 95% [87–92]. In
germline BRCA1/2 pancreas cancers, the ORR to cisplatin/5-FU is 65% [87,88]. In prostate
cancer, these BRCA1/2 cases respond to carboplatin/taxol at a rate of 75% [89]. In breast
cancer, not typically treated with platinum salts, 68% of biallelic mutant BRCA1/2 cases
respond to cisplatin/gemcitabine [90]. Finally, in ovarian cancer, germline BRCA1/2 cases
respond in 87–96% of cases in prospective trials [91,92]. In HPV+ HNSCCs, the clinical
response rate was recently measured in the standard of care cisplatin/5-FU arm of the
practice changing EXTREME trial. For all HNSCCs, the ORR in HPV+ cases was only
22%, which is marginally different that the 17% response rate observed in HPV− cases.
When narrowed to only the oropharyngeal HPV+ cases, the ORR was 24% compared to
21% in HPV− disease [93]. Thus, the response rates of HPV+ tumors to platinum salts
are not similar to true HR-deficient cancers, although a smaller, relative HR defect cannot
be excluded.

6. Summary and Discussions

The radiosensitivity of HPV+ HNSCC, anal and vulvar cancers is a clinically impor-
tant topic, as few other biomarkers of radiation sensitivity exist. In pre-clinical models,
there is a considerable body of work supporting both HR and NHEJ deficiency induced
by E6/E7. HPV+ tumor genomes demonstrate an absence of canonical HR deficiency
signatures, such as SBS3 and LST, but they do exhibit increased Alt-EJ scars relative to
their HPV− counterparts, possibly supporting increased Alt-EJ in response to a partial
NHEJ deficiency. Finally, available clinical data strongly support a role for cisplatin in
concurrent chemoradiotherapy, but as a stand-alone agent, it does not result in the kind of
response rates common in true HR-deficient cancers. Opportunities for improvement in
this field include additional prospective validation of Alt-EJ signatures and clinical investi-
gation of DNA damage response inhibitors that can best take advantage of HPV-associated
DSBR defects.

7. Patents

JEL and DSH are listed inventors on a patent filed by Memorial Sloan Kettering Cancer
Center regarding the use of alternative end-joining genomic signatures to predict radiation
sensitivity in connection with prior work [42]. There are no licenses or royalties.
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