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Abstract

The study presented here considers the analysis of a medical dataset for the identification of the stage of onset of COVID-19
coronavirus. These data, presented in previous work by the authors, have been subjected to extensive analysis and additional
calculations. The data were obtained by analyzing blood samples of infected individuals at 1, 3, and 6 months after COVID-19
infection. Results were obtained from FTIR spectrometry experiments. The results indicate a very effective ability to identify
the different states of infection, and between 1 and 6 months even perfect. Specific spectrometry wavelength ranges can also be
distinguished as medical markers.
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1. Introduction

The development of new computer-based methods to aid the diagnosis of various types of medical conditions
has been an important stream of research in recent years. Such methods have been applied in many medical issues
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]. The development of information technologies, especially machine learning and
artificial intelligence ones, causes the emergence of new areas in which they can be applied. Such methods are also
combined with other physical, chemical or biotechnological approaches. One challenge that has recently appeared is
to develop effective methods to diagnose and treat COVID-19 coronavirus.

Coronavirus disease, COVID-2019, is an acute respiratory infectious disease caused by SARS-CoV-2 virus infec-
tion firstly recognized in November 2019, in central China (Wuhan city, Hubei province) during a series of illnesses
that initiated a pandemic of the disease [13]. The standard method for diagnosing infection is a real-time reverse
transcriptase polymerase chain reaction (RT-qPCR, real-time RT-PCR) test performed from a nasopharyngeal swab
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or sputum sample, which provides results in a few hours to two days. Antibody analysis from a blood serum sample
can also be used as a diagnostic method, providing a result within a few days. The disease can also be diagnosed by
evaluating a combination of symptoms, risk factors, and the result of a chest CT scan showing features of pneumonia
[14].

Fourier Transform Infrared (FTIR) spectroscopy is an analytical methodology used in industrial and academic lab-
oratories to study the structure of individual molecules and the composition of molecular mixtures. FTIR spectroscopy
uses modulated mid-infrared energy to examine samples. Infrared light is absorbed at specific frequencies directly re-
lated to the vibrational energies of the bonds between atoms in a molecule. When the vibrational bond energy and
the mid-infrared light energy are equal, the bond can absorb this energy. Different bonds in a molecule vibrate with
different energies and therefore absorb different wavelengths of infrared radiation. The position (frequency) and in-
tensity of these individual absorption bands make up the overall spectrum, creating a characteristic ”fingerprint” of
the molecule.

Previous works [1, 2] have confirmed that the Fourier-transform infrared spectroscopy (FTIR) and the Raman spec-
troscopy can be used to detect COVID-19. In addition to the ability to distinguish the blood serum of individuals with
COVID-19 from that of healthy individuals, the main focus has been on the use of spectroscopy methods to predict
the timing of SARS-CoV-2 antibody emergence, to estimate the risk of reinfection and the need for vaccination by pe-
riodically assessing total antibody levels in individuals who have recovered from COVID-19. This article presents an
extended analysis of the wave absorption data used, with particular emphasis on the selection of relevant wavebands
responsible for identifying diseased cases.

2. Materials and methods

The dataset contains 47 cases of patients ranging in age from 26 to 77 years. These are health care workers infected
with COVID virus. Infections were confirmed by SARS-CoV-2 RT-PCR test. Additional patient data, such as week,
sex, symptoms, so-called comorbidities, are described in detail in [1]. Blood samples from each patient were collected
at specific intervals: at 1 month after infection (M1), at 3 months (M3) and the last one at 6 months (M6). The number
of patients is 47, each patient was studied at 1, 3 and 6 months of illness. Hence, the dataset contained approximately
141 learning cases each described by 156 or 166 attributes (wavenumbers) depending on the range. To distinguish
between patient groups, 2 two-class subsets were created containing individuals at 1 and 3 months (Group M1 and
M3) and 1 and 6 months of illness (Group M1 and M6). Each contained approximately 81-85 cases. In machine
learning, we use the Leave-One-Out Cross Validation (LOOCV) approach in such a case. When the number of cases
in the dataset is less than 100, we perform as many model building processes as there are learning cases, and there
is one test case in each process. In the process of building learning models, six machine learning algorithms with
different operating methodologies were used: C5.0 Decision Trees [15], Random Forest [16], Deep Neural Networks
[17], k Nearest Neighbor clustering [18], XGBoost trees [19], and Support Vector Machine [20]. The results of the
analysis of these subsets are included in Tables 1 and 2. In addition, a feature (wavenumbers) selection process [8, 21]
of relevance was performed and thus the number of wavenumbers was limited to only relevant ones. The results for
these subsets are also included in Tables 1 and 2.

3. Results and conclusions

Data analysis consisted of inspecting and visualizing the ranges of absorption level values of each wavelength from
minimum values (e.g. minM1) to maximum values (e.g. maxM1). For groups M1 and M3, this is shown in Figures
1 and 6 in the wavelength range 1500-1800 and 2700-3000 respectively, while for groups M1 and M6, it is shown in
Figures 3 and 8. From these graphs, the difference between these ranges was calculated in order to find the wavelength
ranges that clearly distinguish two groups under consideration. Visualization of the difference of the ranges is shown
in Figures 4 and 9. These two graphs were obtained for groups M1 and M6 in the wavelength ranges 1500-1800
and 2700-3000. Comparing groups M1 and M3 no such graphs can be created. The final step of the analysis was to
determine the significance of individual features (wavelengths) in terms of distinguishing groups. This significance
was calculated using the Random Forest algorithm, which allows to assess the influence of individual attributes on the
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quality of classification. Significance for individual groups and two wavelength ranges is presented in Figures 2, 5, 7
and 10.

The presented graphs allow us to identify the wavelength ranges that have the greatest influence on the identification
of patient groups. In the range 1500-1800 for groups M1 and M3, the ranges of absorption values cannot be separated
(Figure 1). The range of values for M1 is practically within the range of M3, which translates into poorer classification
quality for both groups. However, feature (wavelength) significance analysis in the context of distinguishing M1
from M3 indicates 6 significant wavelength ranges, see Table 1. Similarly, for distinguishing M1 and M6 groups, 4
interesting significant wavelength ranges can be identified. The intervals in both cases are somewhat similar, but in
the case of the distinction between groups M1 and M6 they are much more clearly defined (see Figure 5). This can
also be seen in the value range analysis graph for groups M1 and M6 (see Figure 3). One can see clear wave ranges in
which the absorption value ranges are separable. By calculating the absorption difference we have obtained Figure 4
which shows these wavelength intervals.

Analogous conclusions are made when analyzing data obtained for the wavelength range 2700-3000. The distinc-
tion between M1 and M3 groups, taking into account the space of absorption values, is not so obvious (see Figure
6). This makes it difficult to determine the relevant wavelength intervals in Figure 7, but two distinct intervals can be
identified there (Table 1). In contrast, distinguishing the M1 and M6 groups is much easier because the absorption
value spaces are largely disjoint (see Figure 8). Hence, the feature significance intervals are very clearly defined (see
Figure 9 and 10 and Table 1).

Table 1. Regions of wavenumbers can be used as potential markers to discriminate M1 and M3, and M1 and M6 groups of patients by IR spectrum.

Wavelength spectrum (cm−1) Regions that distinguish M1 and M3 groups Regions that distinguish M1 and M6 groups
(wavenumbers, cm−1) (wavenumbers, cm−1)

1500-1800 1646-1652 1500-1542
1660-1681 1598-1616
1689-1695 1683-1716
1702-1712 1768-1799
1727-1762
1776-1789

2700-3000 2848-2859 2721-2846
2904-2964 2861-2904

2946-3019
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Fig. 1. Range of minimum and maximum wavelength absorption values in the 1500-1800 cm−1 wavelength range for patient groups M1 and M3.

The analysis of classification quality (accuracy) and related parameters: sensitivity, precision, and specificity, which
are known measures for assessing the accuracy of case diagnoses, are presented in Table 2. The table includes the
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value spaces are largely disjoint (see Figure 8). Hence, the feature significance intervals are very clearly defined (see
Figure 9 and 10 and Table 1).

Table 1. Regions of wavenumbers can be used as potential markers to discriminate M1 and M3, and M1 and M6 groups of patients by IR spectrum.

Wavelength spectrum (cm−1) Regions that distinguish M1 and M3 groups Regions that distinguish M1 and M6 groups
(wavenumbers, cm−1) (wavenumbers, cm−1)

1500-1800 1646-1652 1500-1542
1660-1681 1598-1616
1689-1695 1683-1716
1702-1712 1768-1799
1727-1762
1776-1789

2700-3000 2848-2859 2721-2846
2904-2964 2861-2904

2946-3019
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Fig. 1. Range of minimum and maximum wavelength absorption values in the 1500-1800 cm−1 wavelength range for patient groups M1 and M3.

The analysis of classification quality (accuracy) and related parameters: sensitivity, precision, and specificity, which
are known measures for assessing the accuracy of case diagnoses, are presented in Table 2. The table includes the
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Fig. 2. Mean importance value of attributes (wavelengths) in the wavelength range 1500-1800 cm−1 for patient group M1 and M3.
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Fig. 3. Range of minimum and maximum wavelength absorption values in the 1500-1800 cm−1 wavelength range for patient groups M1 and M6.
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Fig. 4. Difference between absorption levels in the wavelength range 1500-1800 cm−1 for patient group M1 and M6.

results obtained using six machine learning algorithms. The obtained values indicate that it is somewhat difficult for
the algorithms to distinguish between M1 and M3 groups. The classification quality for the full wavelength range
(156 wavelengths, from 1500 to 1800cm−1) ranges from 67.86% to 96.43% depending on the algorithm. Similarly,
for the 2700 to 3000cm−1 range, accuracy ranges from 75.00% to 96.43%. A similar case can be observed for other
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Fig. 5. Mean importance value of attributes (wavelengths) in the wavelength range 1500-1800 cm−1 for patient group M1 and M6.
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Fig. 6. Range of minimum and maximum wavelength absorption values in the 2700-3000 cm−1 wavelength range for patient groups M1 and M3.
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Fig. 7. Mean importance value of attributes (wavelengths) in the wavelength range 2700-3000 cm−1 for patient group M1 and M3.

parameters whose values are mostly above 0.9, but for DNN and SVM models they are slightly worse. On the other
hand, in the context of distinguishing M1 and M6 groups, the obtained results of classification quality and other
parameters are almost perfect. Most models seamlessly identify patients after 6 months of infection from patients
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Fig. 5. Mean importance value of attributes (wavelengths) in the wavelength range 1500-1800 cm−1 for patient group M1 and M6.
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Fig. 6. Range of minimum and maximum wavelength absorption values in the 2700-3000 cm−1 wavelength range for patient groups M1 and M3.
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Fig. 7. Mean importance value of attributes (wavelengths) in the wavelength range 2700-3000 cm−1 for patient group M1 and M3.

parameters whose values are mostly above 0.9, but for DNN and SVM models they are slightly worse. On the other
hand, in the context of distinguishing M1 and M6 groups, the obtained results of classification quality and other
parameters are almost perfect. Most models seamlessly identify patients after 6 months of infection from patients
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Fig. 8. Range of minimum and maximum wavelength absorption values in the 2700-3000 cm−1 wavelength range for patient groups M1 and M6.
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Fig. 9. Difference between absorption levels in the wavelength range 2700-3000 cm−1 for patient group M1 and M6.
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Fig. 10. Mean importance value of attributes (wavelengths) in the wavelength range 2700-3000 cm−1 for patient group M1 and M6.

after the first month. Accuracy is 100% while the other parameters are 1. This can be expected from the previous
analysis of the value space and wavelet absorption differences for two groups.

As part of the research described in [1], feature (wavelength) selection was also performed using the Random
Forest algorithm. As a result of the selection, the wavelengths having the highest relevance in terms of distinguishing
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groups were selected. This selection is based on the evaluation of the influence of removing a particular feature from
the set on the decrease in classification quality of the random forest model. The original number of wavelengths, i.e.,
156 for the range 1500-1800cm−1 and 166 for the range 2700-3000cm−1, for groups M1 and M3, decreased to 61 and
47 respectively, and after further analysis and selection of intervals from Table 1, it decreased to 53 and 39. At the
same time the quality parameters of classification did not change or turned out to be better. On the other hand, for
groups M1 and M6, the number of significant wavelengths decreased from the original to 78 and 138 and to 53 and 21
after further analysis and selection of intervals from Table 1. At the same time, the quality parameters remained ideal.

Table 2. Classification results of group of patients M1 with M3 and M1 with M6 (two-class dataset) with additional classification quality parameters
in the range of wavenumbers: Range 1 from 1500 to 1800cm−1; Range 2 from 2700 to 3000cm−1 using six different machine learning algorithms
with original and selected relevant sets of wavenumbers (Table 1).

Dataset Model Accuracy Precision Sensitivity Specificity
Range 1 Range 2 Range 1 Range 2 Range 1 Range 2 Range 1 Range 2

Groups M1 and M3 RF 96.43 96.43 0.98 0.95 0.95 0.97 0.98 0.96
original features C5.0 91.67 91.67 0.95 0.93 0.88 0.90 0.95 0.93
(156 for range 1, kNN (k-3) 96.43 91.67 1 0.98 0.93 0.87 1 0.97
166 for range 2) DNN 67.86 75.00 0.62 0.73 0.85 0.75 0.52 0.75

XGBoost 95.24 91.67 0.95 0.90 0.95 0.925 0.96 0.91
SVM 70.24 76.19 0.64 0.69 0.88 0.90 0.55 0.64

Groups M1 and M3 RF 95.24 95.24 0.98 0.95 0.93 0.95 0.98 0.96
selected features C5.0 91.67 92.86 0.95 0.93 0.88 0.93 0.95 0.93
(61 for range 1, kNN (k-3) 97.62 95.24 1 1 0.95 0.91 1 1
47 for range 2) DNN 67.86 58.33 0.63 0.59 0.8 0.4 0.57 0.75

XGBoost 95.24 90.48 0.95 0.88 0.95 0.93 0.96 0.89
SVM 71.43 77.38 0.63 0.71 0.95 0.88 0.5 0.68

Groups M1 and M3 RF 95.24 97.62 0.98 0.98 0.93 0.98 0.98 0.98
selected features C5.0 91.67 90.48 0.95 0.89 0.89 0.93 0.95 0.88
(53 for range 1, kNN (k-3) 98.81 95.24 1 1 0.98 0.91 1 1
39 for range 2) DNN 65.48 63.10 0.61 0.64 0.78 0.53 0.55 0.73

XGBoost 96.43 90.48 0.95 0.88 0.98 0.93 0.95 0.89
SVM 72.62 77.38 0.64 0.71 0.98 0.88 0.5 0.68

Groups M1 and M6 RF 100 100 1 1 1 1 1 1
original features C5.0 98.77 98.77 1 1 0.98 0.98 1 1
(156 for range 1, kNN (k-3) 100 100 1 1 1 1 1 1
166 for range 2) DNN 100 100 1 1 1 1 1 1

XGBoost 100 100 1 1 1 1 1 1
SVM 100 100 1 1 1 1 1 1

Groups M1 and M6 RF 100 100 1 1 1 1 1 1
selected features C5.0 98.77 98.77 1 1 0.98 0.98 1 1
(78 for range 1, kNN (k-3) 100 100 1 1 1 1 1 1
138 for range 2) DNN 100 100 1 1 1 1 1 1

XGBoost 100 100 1 1 1 1 1 1
SVM 98.77 100 1 1 0.98 1 1 1

Groups M1 and M6 RF 100 100 1 1 1 1 1 1
selected features C5.0 100 100 1 1 1 1 1 1
(53 for range 1, kNN (k-3) 98.77 100 1 1 0.98 1 1 1
21 for range 2) DNN 100 100 1 1 1 1 1 1

XGBoost 100 100 1 1 1 1 1 1
SVM 100 100 1 1 1 1 1 1
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SVM 72.62 77.38 0.64 0.71 0.98 0.88 0.5 0.68

Groups M1 and M6 RF 100 100 1 1 1 1 1 1
original features C5.0 98.77 98.77 1 1 0.98 0.98 1 1
(156 for range 1, kNN (k-3) 100 100 1 1 1 1 1 1
166 for range 2) DNN 100 100 1 1 1 1 1 1

XGBoost 100 100 1 1 1 1 1 1
SVM 100 100 1 1 1 1 1 1

Groups M1 and M6 RF 100 100 1 1 1 1 1 1
selected features C5.0 98.77 98.77 1 1 0.98 0.98 1 1
(78 for range 1, kNN (k-3) 100 100 1 1 1 1 1 1
138 for range 2) DNN 100 100 1 1 1 1 1 1

XGBoost 100 100 1 1 1 1 1 1
SVM 98.77 100 1 1 0.98 1 1 1

Groups M1 and M6 RF 100 100 1 1 1 1 1 1
selected features C5.0 100 100 1 1 1 1 1 1
(53 for range 1, kNN (k-3) 98.77 100 1 1 0.98 1 1 1
21 for range 2) DNN 100 100 1 1 1 1 1 1

XGBoost 100 100 1 1 1 1 1 1
SVM 100 100 1 1 1 1 1 1
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