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Abstract

Evolution drives changes in a protein’s sequence over time. The extent to which these changes in sequence lead to shifts in
the underlying preference for each amino acid at each site is an important question with implications for comparative
sequence-analysis methods, such as molecular phylogenetics. To quantify the extent that site-specific amino acid pref-
erences shift during evolution, we performed deep mutational scanning on two homologs of human influenza nucleo-
protein with 94% amino acid identity. We found that only a modest fraction of sites exhibited shifts in amino acid
preferences that exceeded the noise in our experiments. Furthermore, even among sites that did exhibit detectable shifts,
the magnitude tended to be small relative to differences between nonhomologous proteins. Given the limited change in
amino acid preferences between these close homologs, we tested whether our measurements could inform site-specific
substitution models that describe the evolution of nucleoproteins from more diverse influenza viruses. We found that
site-specific evolutionary models informed by our experiments greatly outperformed nonsite-specific alternatives in
fitting phylogenies of nucleoproteins from human, swine, equine, and avian influenza. Combining the experimental
data from both homologs improved phylogenetic fit, partly because measurements in multiple genetic contexts better
captured the evolutionary average of the amino acid preferences for sites with shifting preferences. Our results show that
site-specific amino acid preferences are sufficiently conserved that measuring mutational effects in one protein provides
information that can improve quantitative evolutionary modeling of nearby homologs.
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Introduction
Since the first comparative analyses of homologous proteins
by Zuckerkandl and Pauling (1965) 50 years ago, it has been
obvious that different sites in proteins evolve under different
constraints, with some sites substituting to a wide range of
amino acids, whereas others are constrained to one or a few
identities. Zuckerkandl and Pauling (1965) proposed, and de-
cades of subsequent work have confirmed (DePristo et al.
2005; Harms and Thornton 2013), that these constraints
arise from the highly cooperative interactions among sites
that shape important protein properties such as stability,
folding kinetics, and biochemical function.

The complexity and among-sites cooperativity of these
evolutionary constraints mean that a mutation at a single
site can in principle shift the amino acid preferences of any
other site—and numerous experiments have demonstrated
examples of such epistasis among sites (Weinreich et al. 2006;
Ortlund et al. 2007; da Silva et al. 2010; Lunzer et al. 2010;
Gong et al. 2013; Natarajan et al. 2013; Podgornaia and Laub
2015). However, experiments have also shown that despite
such epistasis, the amino acid preferences of many sites are
similar across homologs (Serrano et al. 1993; Ashenberg et al.
2013; Risso et al. 2015). For instance, protein structures

themselves are highly conserved during evolution (Chothia
and Lesk 1986; Sander and Schneider 1991), and sites in spe-
cific structural contexts often have strong propensities for
certain amino acids (Chou and Fasman 1974; Richardson
and Richardson 1988; Lim and Sauer 1991). Furthermore,
many of the most successful methods for identifying distant
homologs (e.g., PSI-BLAST) utilize site-specific scoring
models (Altschul et al. 1997; Henikoff S and Henikoff JG
1997), implying that amino acid preferences are at least some-
what conserved even among homologs with low sequence
identity.

A half-century of work has therefore made it abundantly
clear that site-specific amino acid preferences can in principle
shift arbitrarily during evolution, but nonetheless in practice
remain somewhat conserved among homologs. The impor-
tant remaining question is the extent to which site-specific
amino acid preferences are conserved versus shifted. This
question is especially important for the development of quan-
titative evolutionary models for tasks such as phylogenetic
inference. Initially, phylogenetic models unrealistically as-
sumed that sites within proteins evolved both independently
and under identical constraints. But more recent models have
relaxed the second assumption that sites evolve identically. At
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first, this relaxation only allowed sites to evolve at different
rates (Yang 1994). But newer models also accommodate var-
iation in the amino acid preferences among sites, either by
treating these preferences as parameters of the substitution
model (Lartillot and Philippe 2004; Le et al. 2008; Wang et al.
2008; Rodrigue et al. 2010) or by leveraging their direct mea-
surement by high-throughput experiments (Bloom 2014a,
2014b). Because these models retain the assumption of inde-
pendence among sites, they will outperform traditional non-
site-specific models only if site-specific amino acid
preferences are substantially conserved among homologs.

Here, we perform the first experimental quantification of
the conservation of the amino acid preferences at all sites in
two homologous proteins. We do this by using deep muta-
tional scanning (Fowler et al. 2010; Fowler and Fields 2014) to
comprehensively measure the effects of all mutations to two
homologs of influenza nucleoprotein (NP) with 94% se-
quence identity. We find that the amino acid preferences
are substantially conserved at most sites in the homologs,
but some sites have significant shifts in preferences. We
then test whether the experimentally measured site-specific
amino acid preferences can inform site-specific phylogenetic
substitution models that describe the evolution of more di-
verged NP homologs. We find that the experimentally in-
formed site-specific substitution models exhibit improved
fit to NP phylogenies containing diverged sequences from
human, swine, equine, and avian influenza lineages. Overall,
our work shows that site-specific amino acid preferences are
sufficiently conserved that measurements on one homolog
can be used to improve the quantitative evolutionary model-
ing of closely related homologs.

Results

Comparison of Amino Acid Preferences
between Two Homologs
Deep Mutational Scanning of Two Influenza NP Homologs
Our studies focused on NP from influenza A virus. NP per-
forms several conserved functions that are essential for the

viral life cycle, including encapsidation of viral RNA into ribo-
nucleoprotein complexes for transcription, viral-genome rep-
lication, and viral-genome trafficking (Eisfeld et al. 2015). NP’s
structure is highly conserved in all characterized influenza
strains (Ye et al. 2006; Das et al. 2010). Our studies compared
the site-specific amino acid preferences of NP homologs from
two human influenza strains, PR/1934 (H1N1) and Aichi/
1968 (H3N2) (fig. 1). These NPs have diverged by over
30 years of evolution, and differ at 30 of their 498 residues
(94% protein sequence identity).

We used our previously described approach for deep mu-
tational scanning of influenza genes (Bloom 2014a;
Thyagarajan and Bloom 2014) to measure the site-specific
amino acid preferences of the PR/1934 and Aichi/1968 NPs.
Briefly, this approach involved using a polymerase chain re-
action (PCR)-based technique to create mutant libraries of
plasmids encoding NP genes with random codon mutations,
using reverse genetics to incorporate these mutant genes into
influenza viruses, and then passaging these viruses at low
multiplicity of infection (MOI) to select for viruses carrying
functional NP variants. Deep sequencing was used to count
the occurrences of each mutation before and after selection,
and the amino acid preferences for each site were inferred
from these counts using dms_tools (Bloom 2015) (supple-
mentary files S1–S3 and figs. S1 and S2, Supplementary
Material online). Our mutagenesis randomized 497 of the
498 codons in NP (the N-terminal methionine was not muta-
genized), and so our libraries sampled all 497� 19 ¼ 9;443
amino acid mutations at these sites. Our mutagenesis intro-
duced an average of about two codon mutations per gene,
with the number of mutations per gene following a roughly
Poisson distribution (supplementary fig. S3, Supplementary
Material online), and so the effect of each mutation was as-
sayed both alone and in the background of variants that
contained one or more additional mutations.

Because deep mutational scanning is subject to substantial
experimental noise, we performed several full biological rep-
licates for each NP homolog, beginning with independent
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FIG. 1. Phylogenetic tree of influenza NPs. The two homologs used in this work are labeled on the human influenza lineage. A diverse set of sequences
was collected by sampling across years and hosts, and a maximum-likelihood tree was inferred using CodonPhyML (Gil et al. 2013) with the codon
substitution model of Goldman and Yang (1994). The tree was rooted using the avian clade as an outgroup. The scale bar is in units of codon
substitutions per site.

2945

Site-Specific Amino Acid Preferences . doi:10.1093/molbev/msv167 MBE

http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msv167/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msv167/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msv167/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msv167/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msv167/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msv167/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msv167/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msv167/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msv167/-/DC1


creation of the plasmid mutant library. In this work, we per-
formed three replicates of deep mutational scanning on the
PR/1934 NP and two replicates on the Aichi/1968 NP. In a
previous study (Bloom 2014a), we performed eight replicates
of deep mutational scanning on Aichi/1968 NP. We will refer
to these previous replicates of the Aichi/1968 NP deep mu-
tational scanning as the “previous study,” and the two new
replicates as the “current study.” When not otherwise noted,
we refer to the pooled data of all ten of these replicates simply
as Aichi/1968.

Amino Acid Preferences Are Well Correlated

between Homologs
For each homolog, we averaged the site-specific amino acid
preferences across all replicates and examined the correla-
tions of the preferences for each of the 20 amino acids at
each of the 497 sites we mutagenized (all sites can be unam-
biguously aligned between homologs). The mean preferences
for the two NP homologs have a Pearson’s correlation coef-
ficient of 0.78 (fig. 2A). In comparison, the correlation

between the preferences measured in the previous study
and current study on the Aichi/1968 homolog is 0.83
(fig. 2B). Therefore, the amino acid preferences correlate
nearly as well between the two homologs as they do between
different experiments on the same homolog. As expected,
there is no correlation between the preferences of the PR/
1934 NP and a nonhomologous protein (hemagglutinin, HA)
for which we have previously measured the site-specific
amino acid preferences using the same approach as in this
work (Thyagarajan and Bloom 2014) (fig. 2C).

We also asked whether the site-specific amino acid pref-
erences from each replicate showed the same pattern of cor-
relation between homologs that we observed when
comparing mean preferences. We again found that correla-
tion coefficients are just as high between NP homologs as
they are between replicate measurements on the same ho-
molog, and that there is no correlation between the prefer-
ences for NP and the nonhomologous protein HA (fig. 2D).
Overall, these results indicate that at the vast majority of sites,
any differences in the amino acid preferences between NP

FIG. 2. Site-specific amino acid preferences correlate nearly as well between NP homologs as between replicate measurements on the same homolog.
(A, B) The correlation between the mean of the preferences taken over all replicates on each NP homolog is nearly as large as that between the
preferences measured in the current study and previous study on the Aichi/1968 NP. (C) However, there is no correlation between the preferences
measured for NP and the nonhomologous protein HA. Each data point in (A)–(C) is the preference for one of the 20 amino acids at one of the 497 sites
in NP. R is the Pearson correlation coefficient. (D) The Pearson correlations between the preferences measured in all pairs of individual replicates.
Comparisons between NP and HA were made based on position in primary sequence for sites 2 through 498.
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homologs are smaller than the noise in our experimental
measurements, and vastly smaller than the differences be-
tween nonhomologous proteins.

Shifts in Amino Acid Preferences Are Small for Most Sites
The previous section shows that any widespread shifts in site-
specific amino acid preferences are smaller than the noise in
our experiments. However, it remains possible that a subset of
sites show substantial shifts in their amino acid preferences
that are masked by examining all sites together. We therefore
performed an analysis to identify specific sites with shifted
amino acid preferences between homologs.

This analysis needed to account for the fact that experi-
mental noise induced variation in the preferences measured
in each replicate. Figure 3 shows replicate measurements for
both homologs at several sites in NP. At many sites, such as
site 298, all replicate measurements yielded highly reproduc-
ible amino acid preferences both between and within homo-
logs. At many other sites, such as site 3, replicate
measurements were quite variable both between and
within homologs, probably due to fairly weak selection at
that site. Some sites, like site 254, exhibited reproducible mea-
surements within each homolog, and the most preferred
amino acid was the same in both homologs, but the tolerance
for mutations to other amino acids was distinct in each ho-
molog. Finally, at a few sites, most prominently site 470, rep-
licate measurements were highly reproducible within each
homolog but clearly differed in which amino acid was most
preferred between homologs. We therefore developed a
quantitative measure of the shift in preferences between ho-
mologs that accounts for this site-specific experimental noise.

We used the Jensen–Shannon distance metric (the square
root of the Jensen–Shannon divergence) to quantify the dis-
tance between the 20-dimensional vectors of amino acid
preferences for each pair of replicate measurements at each

site. This distance ranges from 0 (identical amino acid prefer-
ences) to 1 (completely different amino acid preferences). To
quantify experimental noise at a site, we calculated the root-
mean-square of the Jensen–Shannon distance for all pairwise
comparisons among replicate measurements on the same
homolog, and termed this quantity RMSDwithin. Sites with
large RMSDwithin have high experimental noise. We defined
an analogous statistic, RMSDbetween, to quantify the distance
in preferences between homologs by calculating the root-
mean-square of the Jensen–Shannon distance for all pairwise
comparisons between replicates of PR/1934 and replicates of
Aichi/1968. Figure 3 shows the values of these statistics for
example sites.

The fact that we had data from two independent sets of
experiments on the Aichi/1968 NP (the current study and
previous study) enabled us to perform a control analysis by
calculating RMSDbetween and RMSDwithin for the replicates
from these two experiments. As an additional control to
gauge the extent of amino acid preference differences be-
tween nonhomologous proteins, we also calculated
RMSDbetween and RMSDwithin for our experiments on Aichi/
1968 NP and our previous study on HA (note that because NP
and HA are nonhomologous, they cannot be meaningfully
aligned, so this control comparison simply pairs each site in
NP with the corresponding residue number in HA).

The relationship between RMSDbetween (the observed dif-
ference between homologs) and RMSDwithin (the observed
variation in repeated measurements on the same homolog)
for all sites is shown for several different comparisons in
figure 4A–C. Sites with low RMSDwithin exhibit highly repro-
ducible measurements between replicate experiments,
whereas sites with higher values of RMSDwithin exhibit sub-
stantial experimental noise, probably due to weak selection at
that site. Sites with large RMSDbetween exhibit amino acid pref-
erence differences between homologs, but at each site some

FIG. 3. Replicate measurements quantify the shift in amino acid preferences between homologs after correcting for experimental noise. The amino acid
preferences measured in multiple replicates of deep mutational scanning of both homologs are shown for selected sites ordered by the magnitude of
preference change observed after correcting for site-specific noise. RMSDbetween (the average difference between the two homologs) and RMSDwithin (the
average variation within replicates of each homolog) are shown to the right. RMSDcorrected is calculated by subtracting RMSDwithin from RMSDbetween.
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FIG. 4. Identification of sites with shifts in amino acid preferences. (A–C) Each plot shows statistics calculated for a comparison between two groups of
replicate experiments. Each point represents a site in NP. RMSDwithin quantifies the average difference in amino acid preferences within each of the two
groups (experimental noise), and RMSDbetween quantifies the average difference in preferences between the two groups. Points above the y = x diagonal
represent sites with preference changes between homologs greater than experimental noise. Sites in the RNA-binding groove are in purple; sites that
have different wild-type identities in PR/1934 and Aichi/1968 are in green. (D–F) The actual distribution of RMSDcorrected values is shown in blue, and the
distribution of RMSDcorrected from data randomized between comparison groups is shown in red. Comparisons are made between the two studies on
Aichi/1968 (A, D), between Aichi/1968 and PR/1934 (B, E), and between Aichi/1968 and the nonhomologous HA (C, F).
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of this observed variation is due to the site-specific experi-
mental noise (quantified by RMSDwithin) rather than a true
difference between the homologs.

When comparing two independent experiments on the
same NP (fig. 4A) or comparing experiments on two homo-
logs of NP (fig. 4B), the relationship between RMSDbetween and
RMSDwithin is approximately linear, indicating that the differ-
ence in amino acid preferences between homologs at a given
site is usually comparable to the experimental noise.
Deviations from this linear relationship are more frequent
in the comparison between PR/1934 and Aichi/1968
(fig. 4B) than in the comparison between the two studies
of Aichi/1968 (fig. 4A). These deviations mostly arise from
sites that have larger RMSDbetween than RMSDwithin, indicating
that these sites have shifts in their amino acid preferences
between homologs that exceed the experimental noise. These
results comparing NP homologs are in stark contrast with the
RMSDbetween and RMSDwithin calculated when comparing NP
to the nonhomologous HA (fig. 4C), where the difference
between proteins is almost always substantially greater than
the experimental noise.

To quantify the extent of amino acid preference shifts
between the two homologs in a way that corrects for the
experimental noise, we defined another statistic,
RMSDcorrected, by subtracting RMSDwithin from RMSDbetween

(fig. 3 and supplementary file S5, Supplementary Material
online). Sites with shifts in amino acid preferences greater
than the experimental noise have RMSDcorrected 4 0.
However, we also expect many sites to have positive
RMSDcorrected values due to statistical noise. To determine
the distribution of RMSDcorrected values expected due to
such statistical noise alone under the null hypothesis that
the amino acid preferences are the same in both groups
being compared, we generated null distributions of
RMSDcorrected using exact randomization testing by shuffling
which experimental replicates were assigned to which NP
homolog. For every possible shuffling of replicates, we com-
puted RMSDcorrected at every site and combined the results
across all shufflings.

The distribution of RMSDcorrected obtained experimentally
mostly overlaps the randomized distribution of RMSDcorrected

when comparing the two independent Aichi/1968 experi-
ments (fig. 4D). This overlap is consistent with the hypothesis
that the true amino acid preferences are the same in both
experiments on the Aichi/1968 NP. In contrast, when com-
paring PR/1934 with Aichi/1968, some RMSDcorrected values
are shifted in the positive direction substantially beyond the
null distribution (fig. 4E), indicating larger differences in pref-
erences at some sites than can be explained by experimental
noise alone. This shift in preferences is particularly notable for
site 470, which has an RMSDcorrected of 0.45 as illustrated in
figure 3. However, most sites still fall within the null distribu-
tion when comparing the two NP homologs. In contrast, if NP
is compared with the nonhomologous HA, the vast majority
of sites exhibit differences in preferences that vastly exceed
the values expected under the null distribution (fig. 4F).

As an alternative approach to generating null distributions
of RMSDcorrected, we performed simulations of observed amino

acid preferences in each replicate under a model where there
are no differences in the underlying preferences between the
two homologs, but varying levels of noise for each experi-
ment. We simulated amino acid preferences at each site by
drawing from a Dirichlet distribution, which is well-suited for
this purpose because its support is a normalized vector of
values, in this case corresponding to the vector of amino acid
preferences at a site. Our null hypothesis is that the amino
acid preferences are the same for both homologs, so we per-
formed simulations assuming that the true vector of amino
acid preferences at a site is equal to the average of our exper-
imental measurements for both homologs. We simulated the
amino acid preferences for each replicate by drawing from a
Dirichlet distribution centered on this vector of assumed true
preferences. The extent to which any given sample drawn
from this Dirichlet distribution differs from the true vector
can be tuned with a single scaling parameter (the concentra-
tion parameter). We identified a value for the concentration
parameter for each experiment (Aichi/1968 current study,
Aichi/1968 previous study, and PR/1934) that resulted in cor-
relation coefficients between replicates that matched those in
the actual experiment. We performed 1,000 replicate simula-
tions and combined the calculated RMSDcorrected values from
all simulations to build the null distribution. The distributions
of RMSDcorrected obtained by simulation are in supplementary
figure S5, Supplementary Material online, and are similar to
those obtained using exact randomization testing.

Sites with Clear Shifts in Amino Acid Preferences
Using either of the two null distributions, we were able to
identify specific sites with RMSDcorrected values significantly
larger than expected due to experimental noise alone (sup-
plementary file S5, Supplementary Material online). These are
sites for which we can reject the null hypothesis that there is
no shift in amino acid preferences. To control for multiple
hypothesis testing, we set a false discovery rate (proportion of
rejected null hypotheses expected to be falsely rejected) of
5%.

Using exact randomization as a null distribution, we could
reject the null hypothesis of no shift in amino acid preference
for 14 of the 497 sites. The simulated-data null distribution
appeared to afford greater statistical power, and allowed us to
reject the null hypothesis of no shift in preference for 76 sites
(the 14 identified by the exact randomization plus an addi-
tional 62). Many of these additional sites, however, exhibit
shifts that are small in magnitude; for instance, 30 of the
additional 62 sites show a pattern similar to that of site 254
(fig. 3), where the most preferred amino acid is unchanged,
but the tolerance for mutations to other residues is somewhat
larger in one homolog than the other.

Figure 4 provides a more visual way to gauge the magni-
tude of the shifts in amino acid preferences. If the preferences
are completely conserved among homologs, the actual distri-
bution in figure 4E should look roughly like that in figure 4D.
In contrast, if the preferences have completely shifted be-
tween homologs, the actual distribution should look more
like that in figure 4F. As is clear from visual inspection, only a
handful of sites have amino acid preferences that have shifted
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between the PR/1934 and Aichi/1968 homologs to be as dif-
ferent as is typical for pairs of sites from nonhomologous
proteins. The rest of the sites either exhibit a more modest
shift in preference (this is the case for 14 or 76 sites depending
on which null distribution is used) or no detectable shift in
preference.

An important question is whether there are common
characteristics of sites with shifted preferences. One rea-
sonable hypothesis is that sites with wild-type amino acid
identities that differ between the homologs are more likely
to have experienced shifts in their amino acid preferences.
Among the 14 sites identified as shifted by both null dis-
tributions, 5 have different wild-type amino acid identities
in PR/1934 and Aichi/1968 (fig. 5A). Therefore, of sites
with variable amino acid identity between the two homo-
logs, 17% exhibit clear shifts in preference identified by
both null distributions, whereas only 2% of conserved
sites exhibit comparable shifts.

Having identified evolutionarily variable sites as enriched
for the clearest shifts in amino acid preferences, we next
looked at sites with other special structural or functional
properties. One group of functionally important sites are
those that comprise the RNA-binding groove of NP. These
RNA-binding sites have low RMSDwithin (fig. 4A and B), indi-
cating below-average noise among replicates. RNA-binding
sites also have low RMSDcorrected (figs. 5B and 6A). These re-
sults are consistent with the expectation that RNA-binding
sites in NP are under strong and conserved functional con-
straint, as RNA binding is essential for viral genome packing,
transcription, and replication.

We next hypothesized that sites in structural proximity to
evolutionarily variable sites may experience shifts in amino
acid preferences due to changes in the surrounding biochem-
ical environment. We identified sites directly contacting the
evolutionarily variable residues, and found that they do not
have RMSDcorrected values that differ from other sites (fig. 5B).
Therefore, we are unable to identify any preferential tendency
for substitutions to drive shifts in amino acid preference at
other sites in direct contact with the substituted residue.

The 14 sites with the clearest shifts in amino acid prefer-
ences are distributed throughout the surface of NP in the
body, head, and tail loop domains (fig. 6). Six of the 14 sites
are located in the flexible tail loop, which inserts into a neigh-
boring monomer during NP oligimerization. This suggestive
clustering led us to test whether there was a significant ten-
dency for the 14 sites with clearest shifts in preferences to be
spatially clustered in NP’s structure. We calculated the dis-
tance between sites as the minimum distance between side
chain atoms (using the alpha carbon for glycine). Eleven of the
14 sites with clearest shifts in preferences are resolved in the
crystal structure, and of these 11 sites the median distance to
the nearest neighbor among the 10 remaining sites is 5.8 Å,
which is significantly less than expected by chance for
random selections of 11 sites (10.8 Å, P = 0.028). Thus, the
clearest shifts in preferences between these two homologs
occur in small clusters of proximal sites more often than in
single isolated sites. This pattern also holds when considering
the 76 sites identified by the simulation null distribution:
Among the 66 that are resolved in the crystal structure the
median distance to the nearest neighbor is 4.5 Å compared

FIG. 5. Evolutionarily variable sites are enriched for changes in amino acid preference. (A) Sites with shifts in amino acid preferences were identified by
RMSDcorrected values greater than expected under a null model assuming no difference between homologs (false discovery rate of 5% using a null model
generated by exact randomization testing). Variable sites have different wild-type residues in the two NP homologs. (B) The distributions of RMSDcorrected

for various groups of sites. The median is marked by a horizontal line, boxes extend from 25th to 75th percentile, and whiskers extend to data points
within 1.5 times the interquartile range. Outliers are marked with crosses. Contacting variable sites are conserved sites with side-chain atoms within
4.5 Å of a variable side-chain atom. RMSDcorrected distributions for each group of sites are shown for two comparisons: One comparing two independent
experiments on Aichi/1968, and one comparing Aichi/1968 with PR/1934. P values were determined using the Mann–Whitney U test and adjusted
using the Bonferroni correction.
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with a median distance to nearest neighbor among random
selections of 66 sites of 5.0 Å (P = 0.021). Therefore, sites with
shifted preferences appear to cluster in NP’s structure, even if
they are not usually in direct physical contact with variable
residues.

Overall, these results indicate that sites with evolutionarily
variable amino acid identity are more likely than conserved
sites to exhibit shifts in amino acid preferences, and that sites
with shifted preferences tend to cluster in NP’s structure.
However, the majority of sites with variable identity does
not exhibit large shifts in amino acid preference, and overall,
only between 3% and 15% (depending on the method used to
generate the null distribution) of sites in NP undergo shifts in
amino acid preferences that are sufficiently large to justify
rejecting the null hypothesis that the preferences are identical
between homologs. Importantly, statistical significance does
not necessarily imply a large magnitude in effect size—and
indeed, with just a handful of exceptions (most prominently
site 470), even the shifted sites are vastly more similar in their
preferences than typical pairs of sites in nonhomologous
proteins.

Experimentally Informed Site-Specific Substitution
Models Describe Vast Swaths of NP Evolution

We next quantitatively assessed how well our experimentally
measured amino acid preferences reflected the actual con-
straints on NP evolution. To do so, we used the amino acid
preferences to inform site-specific phylogenetic substitution
models. We have previously shown that substitution models
informed by experimentally measured site-specific amino
acid preferences greatly outperform common nonsite-specific
codon-substitution models (Bloom 2014a, 2014b;
Thyagarajan and Bloom 2014).

In the prior work, site-specific amino acid preferences were
experimentally measured in a single sequence context. Here,
we asked whether combining the preferences measured in
the two different sequence contexts of Aichi/1968 and PR/

1934 would more accurately describe NP sequence evolution.
Any improvement could be due to two effects: First, a com-
bined substitution model might better reflect the evolution-
ary average of the amino acid preferences at sites with
significant changes in preferences over time. Second, combin-
ing data from multiple experiments should reduce noise and
yield more accurate site-specific amino acid preferences.

Combining Deep Mutational Scanning Data Sets from NP
Homologs Improves Phylogenetic Fit
To compare the performance of different substitution
models, we used a likelihood-based framework. We first
built a maximum-likelihood tree for NP sequences from
human influenza using CodonPhyML (Gil et al. 2013) with
the codon-substitution model of Goldman and Yang (1994)
(GY94) (fig. 1). We fixed this tree topology and used HyPhy

to optimize branch lengths and model parameters for each
substitution model by maximum likelihood. The relative fits
of the substitution models were evaluated using the Akaike
information criterion (AIC) (Posada and Buckley 2004).

We tested experimentally informed substitution models
derived from the Aichi/1968 and PR/1934 mutational scans
either alone or in combination. The Aichi/1968 model used
amino acid preferences averaged across the current study
and the previous study. To build a combined substitution
model based on both NP homologs, we averaged the amino
acid preferences for the Aichi/1968 and PR/1934 homologs
(Aichi/1968 + PR/1934). Each substitution model had five
free parameters that were fit by maximum likelihood: Four
nucleotide mutation rates and a stringency parameter �
that accounts for the possibility of a different strength of
selection in natural sequence evolution compared with the
mutational-scanning experiments (Bloom 2014b).
Importantly, the amino acid preferences themselves are
not free parameters, as they are independently measured
by experiments that do not utilize information from the
naturally occurring NP sequences.
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FIG. 6. Magnitude of the shift in amino acid preferences mapped on the NP structure. RMSDcorrected values for each site are used to color space-filling
models for the indicated sites in the NP crystal structure (PDB ID 2IQH, chain C; Ye et al. 2006). Sites are shown as circles when in regions that are not
present in the crystal structure (dashed lines). Blue represents small shifts in amino acid preferences between PR/1934 and Aichi/1968; red represents
large shifts. “Variable amino acid” refers to sites where the wild-type residue differs between PR/1934 and Aichi/1968 NP. “Largest preference changes”
refers to sites where the null hypothesis is rejected using exact randomization testing with a false discovery rate of 5%.
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As a comparison to the experimentally informed substitu-
tion models, we also tested the nonsite-specific GY94 model.
Relative to the experimentally informed substitution models,
the GY94 model includes more free parameters including
equilibrium codon frequencies, a transition–transversion
ratio, and parameters describing gamma distributions of the
nonsynonymous–synonymous ratio and substitution rate
across sites (Yang 1994; Yang et al. 2000).

The Aichi/1968 and PR/1934 experimentally informed
models described the human NP phylogeny far better than
the nonsite-specific GY94 model (table 1). Strikingly, combin-
ing amino acid preferences from both NP homologs (Aichi/
1968 + PR/1934) resulted in a greatly improved substitution
model (table 1). For each experimentally informed model, the
stringency parameter � fit with value greater than 1 (average
� ¼ 2:5), consistent with the idea that selection during nat-
ural evolution is more stringent than our laboratory selection.

Experimentally Informed Models Also Describe the Evolution
of More Diverged Nonhuman Influenza Strains
Given the success of the experimentally informed substitu-
tion models in describing the human NP phylogeny, we asked
whether these models could be extended to more diverged
NPs from nonhuman influenza strains. We expect these
models to exhibit good fit if the NP site-specific amino acid
preferences are mostly conserved across these viral strains.
We examined NPs from influenza strains from three hosts:
Swine, equine, and avian. The average protein-sequence iden-
tity between human NPs and swine, equine, and avian NPs
was 91%, 91%, and 93% respectively.

We built a phylogenetic tree of NPs of influenza viruses
from human, swine, equine, and avian hosts (fig. 1 and sup-
plementary file S4, Supplementary Material online). As previ-
ously reported, the avian sequences could be divided into
western and eastern hemispheric clades, and the swine se-
quences consisted of the North American Classical H1N1
clade and the more recent Eurasian H1N1 clade (Worobey
et al. 2014). Using this tree, we performed a phylogenetic anal-
ysis similar to that described above for human influenza NPs.

Again, the experimentally informed models greatly out-
performed the nonsite-specific GY94 model, and combining
the Aichi/1968 and PR/1934 models resulted in a far superior
model (table 2). As the amino acid preferences were experi-
mentally measured for human NP, we wanted to ensure that
this superior performance was not driven solely by the human

clade of the tree. We separately fit subtrees consisting only of
swine, equine, or avian NP sequences (supplementary tables
S1–S3, Supplementary Material online). Each subtree showed
the same trend as the full tree: The experimentally informed
models were superior to the GY94 model, and combining
data from the two NP homologs resulted in large improve-
ments in likelihood. Therefore, site-specific amino acid pref-
erences of NP are sufficiently conserved across influenza A
lineages that substitution models informed by deep muta-
tional scanning of human influenza NP homologs can be
extended to the NPs of influenza from other hosts.

Combining Data from NP Homologs Improves Phylogenetic

Fit to Sites with Shifted Preferences
The results above show that the experimentally informed
substitution models improved phylogenetic fit relative to
the nonsite-specific model, and that combining data from
two NP homologs resulted in the best model. This increased
performance when combining data may come from more
accurate measurement of amino acid preferences due to
more replicates, or from averaging amino acid preferences
over multiple sequence contexts. To examine these possible
explanations, we analyzed which sites in NP were more accu-
rately modeled when the Aichi/1968 and PR/1934 experimen-
tal models were combined. This analysis was performed using
the full phylogenetic tree of NP sequences (fig. 1).

While fixing the branch lengths and model parameters to
their maximum-likelihood values for each model, we calcu-
lated for each site the difference in likelihoods (�log-
likelihood) when the site was modeled using the combined
Aichi/1968 + PR/1934 model compared with using the Aichi/
1968 model. We binned sites into quintiles of �log-likelihood.
Sites in the top quintile had the greatest increases in likeli-
hood when the Aichi/1968 and PR/1934 models were com-
bined. Overall 67% of sites in NP had increased likelihoods
under the Aichi/1968 + PR/1934 model.

To determine whether these improved likelihoods came
from lower noise in the combined experimental model, we
used the RMSDwithin statistic. Sites with greater variance in
amino acid preferences across experimental replicates have
higher RMSDwithin scores. We analyzed the distribution of the
RMSDwithin scores for sites within each quintile (fig. 7). The top
and bottom quintiles did not have significantly different
RMSDwithin distributions, indicating that sites prone to exper-
imental noise contributed both positively and negatively to

Table 1. Combining Experimental Data Improves Phylogenetic Fit to NPs from Human Influenza.

Model �AIC Log Likelihood Parameters
(optimized + empirical)

Optimized Parameters

Aichi/1968 + PR/1934 0.0 �4,395.8 5 (5 + 0) RA!G = 4.6, RA!T = 0.8, RC!A = 1.4, RC!G = 0.1, b = 3.0

PR/1934 322.3 �4,556.9 5 (5 + 0) RA!G = 4.9, RA!T = 0.8, RC!A = 1.4, RC!G = 0.1, b = 2.1

Aichi/1968 485.7 �4,638.6 5 (5 + 0) RA!G = 4.8, RA!T = 0.7, RC!A = 1.4, RC!G = 0.1, b = 2.4

GY94, gamma x, gamma rates 2,582.3 �5,678.9 13 (4 + 9) j = 6.2, x shape = 0.1, mean x = 0.1, rate shape = 2

NOTE.—Substitution models are sorted by �AIC, and the corresponding log likelihoods, number of free parameters, and values of optimized parameters are shown. Log
likelihoods for each model were calculated through maximum-likelihood optimization of branch lengths and model parameters given the fixed tree topology of human NPs
shown with blue lines in figure 1. The only parameters in the experimentally informed models are the four nucleotide mutation rates and the stringency parameter �. The
nonsite-specific GY94 model (Goldman and Yang 1994) has nine empirical nucleotide equilibrium frequencies (Pond et al. 2010), and optimized parameters describing the
transition–transversion ratio (�), the gamma distribution of the nonsynonymous–synonymous ratio (!) (Yang et al. 2000), and the gamma distribution of substitution rates
(Yang 1994). In the Aichi/1968 model, the preferences from current study and previous study have been averaged.
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the tree likelihood when experimental data sets were com-
bined. Thus, the improved modeling with the combined data
set was not chiefly due to reduced experimental noise.

Next, to determine whether the improved likelihoods were
driven by sites with different preferences between the two NP
homologs, we used the RMSDcorrected statistic (fig. 7). If the
improvements under the combined model came from sites
with different amino acid preferences between Aichi/1968
and PR/1934, then we would expect that the sites with the
greatest increases in likelihood would also have the greatest
RMSDcorrected values. This was indeed the case, as sites in the
top quintile of log-likelihoods had the highest median
RMSDcorrected. The RMSDcorrected scores in the top quintile
were significantly different from those in the lower quintiles
(Mann–Whitney U with Bonferroni correction P < 0:002),
whereas there were no significant differences in the
RMSDcorrected scores when comparing the lower quintiles.
Therefore, improvements in the combined model were
partly due to better describing those sites that had the largest
shifts in amino acid preferences over evolutionary time.

Discussion
Determining the extent to which site-specific amino acid
preferences shift during evolution is important for evaluating
how well experimental measurements can be extrapo-
lated across homologs, and for guiding the development of

site-specific phylogenetic substitution models. We have
performed the first comprehensive assessment of the conser-
vation of site-specific amino acid preferences by using deep
mutational scanning to measure the effects of all mutations
on two closely related homologs of influenza NP.

We found that for the majority of sites, any shift in amino
acid preferences between homologs was smaller than the
noise in our experiments. We could reject the null hypothesis
that the amino acid preferences were identical among homo-
logs for only between 3% and 15% of all sites, depending on
the method used to generate the null distribution.
Furthermore, even for those sites for which we could reject
the null hypothesis of identical preferences between homo-
logs, the magnitude of shifts tended to be small. Only a hand-
ful of the 497 sites exhibited shifts in preference between
homologs with a magnitude comparable to the average dif-
ference between sites in nonhomologous proteins. Sites that
varied in amino acid identity between the two homologs were
more likely to have a detectable shift in amino acid prefer-
ences—but even among variable sites, there was usually no
shift. Admittedly, our experiments had substantial noise, so it
is likely that other sites have undergone subtle shifts below
our limit of detection. However, the fact that the preferences
for the two NP variants are strongly correlated with each
other but completely uncorrelated with those for the nonho-
mologous HA shows that the site-specific amino acid

FIG. 7. NP sites that are better described by combining data from both homologs have shifted amino acid preferences. The change in per-site likelihood
in going from the Aichi/1968 model to the Aichi/1968 + PR/1934 model was plotted against the per-site RMSDwithin (A) or per-site RMSDcorrected (B).
Sites were ranked by �(log-likelihood), divided into quintiles, and the per-site RMSDwithin or per-site RMSDcorrected for sites in each quintile was displayed
as a box and whisker plot. Outlier sites beyond the interquartile range are omitted. Quintiles are ordered left to right from least improved likelihoods to
most improved likelihoods under the combined model. The median RMSDwithin or RMSDcorrected is shown as a horizontal, dashed line. Sites with the
most improved likelihoods did not have significantly higher variation in amino acid preferences (high RMSDwithin) across replicate measurements on the
same homolog. However, these sites did have significantly higher differences in amino acid preferences between Aichi/1968 and PR/1934 (high
RMSDcorrected).

Table 2. Combining Experimental Data Improves Phylogenetic Fit to NPs from Human, Swine, Equine, and Avian Influenza.

Model �AIC Log Likelihood Parameters
(optimized + empirical)

Optimized Parameters

Aichi/1968 + PR/1934 0.0 �17,507.9 5 (5 + 0) RA!G = 6.0, RA!T = 1.0, RC!A = 1.4, RC!G = 0.1, b = 2.7

PR/1934 700.2 �17,858.0 5 (5 + 0) RA!G = 6.3, RA!T = 1.0, RC!A = 1.4, RC!G = 0.1, b = 2.1

Aichi/1968 1,030.2 �18,023.0 5 (5 + 0) RA!G = 6.2, RA!T = 0.9, RC!A = 1.4, RC!G = 0.1, b = 2.3

GY94, gamma x, gamma rates 1,784.7 �18,392.2 13 (4 + 9) j = 6.9, x shape = 0.3, mean x = 0.1, rate shape = 3.1

NOTE.—This table differs from 1 in that it fits the combined tree of human, swine, equine, and avian NPs in 1.

2953

Site-Specific Amino Acid Preferences . doi:10.1093/molbev/msv167 MBE



preferences of homologs are tremendously more similar than
those of unrelated proteins.

This general conservation of site-specific amino acid pref-
erences does not imply an absence of epistasis during NP’s
evolution. For instance, our results show that some (as yet
mechanistically uncharacterized) epistatic interaction with
other sites has driven a strong shift in the amino acid prefer-
ences at site 470. At other sites, smaller shifts in amino acid
preferences are still certain to induce evolutionarily important
epistasis, as natural selection is highly discerning. Indeed, we
have previously demonstrated epistasis among mutations to
NP (Gong et al. 2013), indicating that NP is no different than
the many other proteins for which evolutionarily relevant
epistasis has been identified (Weinreich et al. 2006; Ortlund
et al. 2007; da Silva et al. 2010; Lunzer et al. 2010; Natarajan
et al. 2013; Podgornaia and Laub 2015). Our key result is not
that epistasis is absent, but rather that its frequency and
magnitude are sufficiently low that the amino acid prefer-
ences for most sites are still vastly more similar between ho-
mologs than between nonhomologous proteins.

The implications of this finding are illustrated by the
second part of our study, which shows that the experimen-
tally measured site-specific amino acid preferences can
inform phylogenetic substitution models that greatly outper-
form nonsite-specific models even for more diverged NP ho-
mologs. It is well known that the actual constraints on protein
evolution involve cooperative interactions among sites
(Zuckerkandl and Pauling 1965; DePristo et al. 2005; Harms
and Thornton 2013), and so substitution models that treat
sites either independently or identically are obviously imper-
fect. But computational biology must balance realism with
tractability. Site-independent but site-specific substitution
models are becoming feasible for real-world data sets
(Lartillot and Philippe 2004; Le et al. 2008; Wang et al. 2008;
Rodrigue et al. 2010; Bloom 2014a, 2014b), but approaches
that relax the assumption of independence among sites
remain in their infancy (Choi et al. 2007; Bordner and
Mittelmann 2014). Are amino acid preferences sufficiently
conserved for site-independent but site-specific models to
represent substantial improvements over existing nonsite-
specific alternatives? Both our experimental and computa-
tional results answer this question with a resounding yes.

Why are the site-specific amino acid preferences mostly
conserved? As is the case for virtually all proteins (Chothia
and Lesk 1986; Sander and Schneider 1991), the structure of
NP is highly conserved among homologs (Ye et al. 2006; Das
et al. 2010), and sites in specific structural contexts often have
propensities for certain amino acids (Chou and Fasman 1974;
Richardson and Richardson 1988; Lim and Sauer 1991). In
addition, selection for protein stability is a major constraint
on evolution (Bloom et al. 2005; DePristo et al. 2005), and
experiments on NP (Ashenberg et al. 2013) and other pro-
teins (Serrano et al. 1993; Risso et al. 2015) have shown that
the effects of mutations on stability are similar among homo-
logs. Therefore, conserved structural and stability constraints
probably naturally lead to substantial conservation of site-
specific amino acid preferences. We refer the reader to an

excellent recent study by Risso et al. (2015) for a more bio-
physically nuanced discussion of these issues.

The extent to which site-specific amino acid preferences
will be conserved among more distant homologs remains an
open question. Computational simulations of the divergence
of distant homologs have been used to argue that preferences
shift substantially (Pollock et al. 2012), but the reliability of
such simulations is unclear as computational predictions of
the effects of even single amino acid mutations are only mod-
estly accurate (Potapov et al. 2009; Kellogg et al. 2011). The
only direct experimental data come from a study showing
that the effects of a handful of mutations on stability are
mostly conserved among homologs with about 50% pro-
tein-sequence identity (Risso et al. 2015). More comprehen-
sive determination of the relationship between sequence
divergence and shifts in site-specific amino acid preferences
therefore remains an important topic for future work.

Materials and Methods

Availability of Data and Computer Code

FASTQ files can be accessed at the Sequence Read Archive
(SRA accession SRP056028). The computer code necessary to
reproduce all the analysis in this work is available at https://
github.com/mbdoud/Compare-NP-Preferences (last accessed
August 8, 2015).

Deep Mutational Scanning of Two Influenza NP
Homologs

We performed deep mutational scanning of influenza NP in
three biological replicates for A/PR/1934 (H1N1) and two
biological replicates for A/Aichi/1968 (H3N2) (termed here
as Aichi/1968 current study). We broadly followed the meth-
ods used for mutagenesis, viral rescue, deep sequencing, and
inference of amino acid preferences from sequence data de-
scribed in Bloom (2014a), with the following notable changes
to the protocol.

Codon Mutagenesis
For each replicate mutant library, we followed the mutagen-
esis protocol as previously described (Bloom 2014a), but per-
formed two rounds of mutagenesis instead of three to
decrease the average number of mutations per clone. After
ligation of mutagenized PCR products to the pHW2000
(Hoffmann et al. 2000) plasmid backbone, multiple parallel
transformations and platings were combined to ensure that
each replicate library contained more than 106 unique trans-
formants. Sanger sequencing of 30 clones from each homolog
revealed that the number of mutations per clone was approx-
imately Poisson distributed with an average of 1.7 mutations
per clone for the PR/1934 libraries and 2.1 mutations per
clone for the Aichi/1968 libraries, with mutations distributed
uniformly across the length of the gene.

Growth of Mutant Virus Libraries
We used reverse genetics (Hoffmann et al. 2000) to rescue
viruses carrying mutant NP genes. Cocultures of 293T and
MDCK-SIAT1 cells were plated 16 h prior to transfection in
D10 media (DMEM supplemented with 10% (fetal bovine
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serum), 100 U/ml of penicillin,100�g/ml of streptomycin,
and 2 mM L-glutamine) at cell densities of 3� 105 293T/ml
and 2.5� 104 MDCK-SIAT1/ml. Cocultures were transfected
using BioT transfection reagent (Bioland Scientific) with a
mixture of 250 ng of each of the eight reverse genetics plas-
mids per well in six-well plates. To circumvent the possibility
of rare mutants with exceptional replication fitness growing to
high frequencies and limiting the growth of other mutants, we
divided each transfection into multiple tissue-culture wells.

For the PR/1934 libraries, we rescued viruses containing the
mutagenized PR/1934 NP with the seven remaining PR/1934
viral gene segments, and each replicate mutant library was
transfected into the 12 wells of two 6-well plates. For the
Aichi/1968 libraries, we used a viral rescue protocol that in-
creases the number of parallel transfections and uses 293T
cells that constitutively express protein V from hPIV2. This
protein targets STATI for degradation, thereby inhibiting type
I interferon signaling (Andrejeva et al. 2002). We rescued these
Aichi/1968 virus libraries by transfecting the Aichi/1968 NP
mutant library along with PB1/PB2/PA from Nanchang/933/
1995 (using the plasmids in Gong et al. [2013]) and HA/NA/
M/NS from WSN/1933 into 48 wells of eight 6-well plates. For
both homologs, in parallel, we performed similar transfections
using the corresponding unmutated NP genes to grow unmu-
tated virus.

At 24 h after transfection, coculture media was aspirated,
cells were rinsed with (phosphate buffered saline), and the
media was changed to influenza growth media (OptiMEM I
media [Gibco] supplemented with 0.01% FBS, 0.3% BSA,
100 U/ml of penicillin,100�g/ml of streptomycin, 100�g/
ml calcium chloride, and 3�g/ml TPCK-trypsin). Coculture
supernatant was collected 72 h after transfection, clarified by
centrifugation at 2,000� g for 5 min, aliquoted and stored at
�80 �C.

As many of the virions obtained from transfection with
mutant NP library plasmids are likely to have originated in
cells that contained more than one mutant NP gene and
therefore might carry NP genes and NP proteins with different
mutations, we passaged viruses in MDCK-SIAT1 cells at a low
MOI to enforce genotype–phenotype linkage. We titered vi-
ruses from thawed transfection supernatant aliquots for each
replicate virus library using the TCID50 protocol described in
Thyagarajan and Bloom (2014). We then passaged viral librar-
ies in MDCK-SIAT1 cells. Cells were plated in D10 media at
2� 105 cells/ml. After 16 h, the media was changed to influ-
enza growth media containing diluted transfection superna-
tant virus. PR/1934 libraries were each passaged in 20 wells of
6-well dishes at an MOI of 0.05 TCID50/cell, and Aichi/1968
libraries were each passaged in eight 10-cm dishes at an
MOI of 0.1 TCID50/cell. After 48 h, supernatant was clarified
by centrifugation at 2,000� g for 5 min, aliquoted and
stored at �80 �C.

Sample Preparation and Deep Sequencing
For each virus sample to be sequenced, 10 ml of clarified viral
passage supernatant was centrifuged at 64,000� g for 1.5 h to
pellet viruses. RNA was extracted using the Qiagen RNEasy
kit by lysing viral pellets in buffer RLT and following the

manufacturer’s recommended protocol. The NP gene was
reverse transcribed using AccuScript High-Fidelity Reverse
Transcriptase (Agilent Technologies) from both positive-
sense and negative-sense viral RNA templates using the pri-
mers PR8-NP-RT-F (50-agcaaaagcagggtagataatcactcactgagt-
gac-30) and PR8-NP-RT-R (50-agtagaaacaagggtatttttcttta-30)
for PR/1934 viruses or the primers 50-BsmBI-Aichi68-NP (50-
catgatcgtctcagggagcaaaagcagggtagataatcactcacag-30) and 30-
BsmBI-Aichi68-NP (50-catgatcgtctcgtattagtagaaacaagggtatt
tttcttta-30) for Aichi/1968 viruses.

To ensure a sufficiently large number of unique RNA mol-
ecules were reverse transcribed, we used quantitative PCR
(SYBR Green Real-Time PCR Master Mix; Life Technologies)
using primers qWSN-NP-for (50-ACGGCTGGTCTGACTCAC
AT-30) and qPR8-NP-rev (50-TCCATTCCGGTGCGAACAAG-
30) to quantify the concentration of first-strand cDNA
molecules against a standard curve of linear NP amplicons
quantified by Quant-iT PicoGreen dsDNA Assay Kit (Life
Technologies). We then made PCR amplicons with KOD
DNA Polymerase (Merck Millipore) using at least 1� 109

first-strand cDNA molecules as template in each reaction for
viral gene sequencing. We also made PCR amplicons using
10 ng of the indicated plasmids for plasmid sequencing. For
each biological replicate, we generated these PCR amplicons
with 25 cycles of amplification using unmutated NP plasmid,
mutated NP plasmid, NP cDNA from unmutated virus, and
NP cDNA from mutated virus as template for the “DNA,”
“mutDNA,” “virus,” and “mutvirus” samples, respectively.

To reduce the sequencing error rate, we developed a se-
quencing sample preparation protocol that results in se-
quencing libraries with inserts approximately 150 bp long.
This allowed us to use paired-end 150 bp sequencing to
achieve mostly overlapping reads so that sequencing errors
resulting in mismatches between the two reads could be
identified and ignored during data analysis. To make these
sequencing libraries, we gel-purified the DNA, mutDNA, virus,
and mutvirus PCR amplicons and sheared 1�g of each ampli-
con using Covaris to a median size of approximately 150 bp.
We followed the modified Illumina paired-end library prepa-
ration protocol provided in Henikoff et al. (2011) for end
repair, 30 A overhang, and adapter ligation steps, using
Zymo DNA Clean & Concentrator columns (Zymo
Research) or Ampure XP (Beckman Coulter) magnetic
beads for DNA clean-up after shearing, end repair, and 30 A
overhang steps. Barcoded Y-adapters were made by annealing
10�l of 100�M PAGE purified universal adapter (50-AATGA
TACGGCGACCACCGAGATCTACACTCTTTCCCTACACGAC
GCTCTTCCGATC*T-30, where * indicates phosphorothioate
bond) to 10�l of 100�M PAGE-purified barcoded adapter
(50-PGATCGGAAGAGCACACGTCTGAACTCCAGTCACNNN
NNNATCTCGTATGCCGTCTTCTGCTT*G-30, where P indi-
cates 50 phosphorylation, * indicates phosphorothioate
bond, and NNNNNN indicates sample-specific barcode).
Each 20�l mixture (one mixture for each barcode sequence)
was annealed by heating to 95 �C for 5 min and cooling at
0.3 �C/s to 4 �C. The resulting Y-adapters were diluted to
25�M by adding 20�l 10 mM Tris pH 7.5 and stored in
4�l aliquots at �20 �C. Y-adapters with unique barcodes

2955

Site-Specific Amino Acid Preferences . doi:10.1093/molbev/msv167 MBE



(ATCACG, ACTTGA, TAGCTT, GGCTAC, TTAGGC, GATCAG,
ACTGAT, CGTACG, CGATGT, TGACCA, CAGATC, and CCGT
CC) were ligated to samples derived from each biological
replicate of each amplicon and ligation products were puri-
fied using 0.8� bead-to-sample ratio Ampure XP.

Purified adapter-ligated products for each sample were
quantified by Quant-iT PicoGreen dsDNA Assay Kit (Life
Technologies) and 25 ng was used as template for a four-
cycle PCR using Phusion High-Fidelity Polymerase (Thermo
Scientific) to amplify inserts with adapters properly ligated on
both sides. This amplification step was performed with the
following components: 25 ng template DNA, 5�l 5� Phusion
buffer, 2.5�l mixture of each dNTP at 2.5 mM, 2�l forward
primer at 10�M (50-AATGATACGGCGACCACCGAGATCTA
CACTCTTTCCCTACACGA-30), 2�l reverse primer at 10�M
(50-CAAGCAGAAGACGGCATACGAGAT-30), and 0.25�l
Phusion polymerase in a final reaction volume of 25�l. PCR
products were purified using 1.0� bead-to-sample ratio
Ampure XP and quantified using PicoGreen. Samples were
pooled in equal amounts and size-selected on a 2.0% agarose
gel for fragments between 240 and 300 bp, which contain
sequencing inserts in the size range of 120–180 bp. The size-
selected sample was then sequenced at the Fred Hutchinson
Genomics Core on an Illumina HiSeq 2500 using a paired-end
150-bp sequencing strategy in rapid run mode.

Analysis of Deep Sequencing Data
Sequencing data processing was performed using the soft-
ware package mapmuts (Bloom 2014a). Briefly, for each rep-
licate sample of DNA, mutDNA, virus, and mutvirus, paired
reads were stripped of any adapter sequence and aligned to
each other. Read pairs were discarded if any of the following
criteria were met: Less than 100 bp of overlap between reads,
average Q-score less than 25 across either read, more than 5
ambiguous nucleotides (N nucleotides) in either read, or
more than 1 mismatch in the overlap between reads.
Retained read pairs were then aligned to the appropriate
reference NP gene sequence for PR/1934 or Aichi/1968 NP,
and read pairs with more than ten mismatches to the refer-
ence sequence or with any gaps or insertions were discarded.
Once aligned to the reference sequence, codon identities at
every position were called only if all three nucleotides in the
codon matched unambiguously in both reads. The total
number of codon identities at every codon position in the
coding region was totaled for each sample (DNA, mutDNA,
virus, and mutvirus), separately for each biological replicate.

Inference of Amino Acid Preferences
We specify that at every site r in the protein, there is an
inherent preference �r;a for every amino acid a, and we

specify that
X

a

�r;a ¼ 1. The preference �r;a can be consid-

ered to be the expected frequency of amino acid a at site r in a
mutant virus library after viral growth from a starting plasmid
mutant library that contains equal numbers of every amino
acid encoded at site r. Thus, mutations to amino acids with
high preferences are beneficial and will be selected for during
viral growth, and mutations to amino acids with low prefer-
ences will inhibit viral growth and will be selected against. As

the plasmid mutant libraries we generated contain on average
more than one mutation per clone, the amino acid prefer-
ences we measure represent an average preference in a variety
of genetic backgrounds very similar to the starting sequence.

Let AðxÞ represent the amino acid encoded by codon x
and let C represent the set of all codons. The effect of the
preference �r;AðxÞ on the frequency f of observing codon x at
site r in the mutant virus library sample mutvirus is given by:

f mutvirus
r;x ¼ �r;x þ �r;x þ

�r;x � �r;AðxÞX
y2C

�r;y � �r;AðyÞ

; ð1Þ

where �r;x is the rate of PCR and sequencing errors at site r
resulting in codon x, �r;x is the rate of reverse transcription
errors at site r resulting in codon x, and �r;x is the frequency
of codon x at site r in the plasmid mutant library mutDNA.

We inferred the amino acid preferences independently for
each biological replicate using the Bayesian algorithm de-
scribed in Bloom (2015) as implemented in dms_tools

where codon counts in the DNA, virus, and mutDNA samples
are used to infer the unknown parameters �, �, and� at each
site.

Amino acid preferences for Aichi/1968 NP were previously
published in Bloom (2014a), where eight biological replicates
of the entire experiment were performed. In this work, we
report two additional biological replicates of the deep muta-
tional scanning experiment for Aichi/1968. We will distinguish
the two data sets when they are used separately for compar-
ison as Aichi/1968 previous study and Aichi/1968 current
study, and we will call the combined data set of all ten bio-
logical replicates for this homolog Aichi/1968.

Comparison of Site-Specific Amino Acid Preferences
between Homologs
Quantifying the Magnitude of Amino Acid Preference

Difference between Homologs
At every site in the protein, each replicate deep mutational
scanning experiment allows for the inference of an amino acid
preference distribution �

!
that provides the preference at

that site for all 20 amino acids. We used the Jensen–
Shannon distance metric (the square root of the Jensen–
Shannon divergence) to quantify the distance d between
two amino acid preference distributions:

dð�
!

1; �
!

2Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H
�
!

1 þ �
!

2

2

 !
�

Hð�
!

1Þ þ Hð�
!

2Þ

2

vuut ; ð2Þ

where Hð�
!
Þ is the Shannon entropy of the amino acid pref-

erence distribution �
!

. The Jensen–Shannon distance metric
quantifies the similarity between two amino acid preference
distributions, ranging from 0 (identical distributions) to 1
(completely dissimilar distributions). The average distance d
between amino acid preferences inferred from replicate ex-
periments in the same homolog varies across sites. In other
words, at some sites in the protein �

!
is measured with greater

precision than others. We therefore sought to develop, for
every site r, a quantitative measure of the magnitude of
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change in �
!

between homologs that corrects for the
variation in �

!
within replicate experiments of the same

homolog.
For two groups of replicate mutational-scanning experi-

ments A and B done in different homologs, each containing
several replicate inferences of �

!
for every site, we calculate the

root-mean-square distance at site r over all pairwise compar-
isons of �

!
measured in replicate experiments i (from group

A) and j (from group B):

RMSDr;between ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

NA;B

X
i2A

X
j2B

dð�
!

r;i; �
!

r;jÞ
2

s
; ð3Þ

where NA;B is the total number of nonredundant pairwise
comparisons between replicate preferences measured from
groups A and B. At the same site, to estimate the amount of
experimental noise within replicates of the same homolog, we
calculate the root-mean-square distance over all pairwise
comparisons of �

!
“within” the same group of replicate ex-

periments, and average this site-specific noise estimate across
the two groups:

RMSDr;within ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

NA;A

X
i;j2A;i<j

dð�
!

r;i; �
!

r;jÞ
2

s

þ
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

NB;B

X
i;j2B;i<j

dð�
!

r;i; �
!

r;jÞ
2

s
; ð4Þ

where NA;A and NB;B are the number of nonredundant pair-
wise comparisons between replicates within groups A and B,
respectively. We then subtract the magnitude of the noise at
this site observed within groups from our measurement of
the difference in amino acid preferences seen “between”
groups to obtain a corrected value for the change in �

!
at

site r between homologs:

RMSDr;corrected ¼ RMSDr;between � RMSDr;within: ð5Þ

It is possible that the observed variation within groups is
greater than the observed variation between groups, resulting
in negative RMSDcorrected.

Identifying Sites with Statistically Significant Changes

in Amino Acid Preference
To determine whether site-specific RMSDcorrected values are
significantly larger than expected if amino acid preferences
are unchanged between homologs, we applied two methods
to generate null distributions of RMSDcorrected values. First, we
used exact randomization testing to make all possible shuffles
of the replicate homolog data sets into the two groups A and
B. For each permutation, we calculated the RMSDcorrected at
every site, and the results are combined for all permutations. If
there are no differences in preferences between homologs,
the distribution of scores generated through randomization
should be similar to the distribution of scores from the actual
experiment.

We next observed that the overall correlation of amino
acid preferences across all sites between replicates can vary

between experiments. For instance, the average Pearson’s cor-
relation between PR/1934 replicates is 0.59, the correlation
between Aichi/1968 replicates in the previous study is 0.50,
and the correlation between Aichi/1968 replicates in the cur-
rent study is 0.74. We considered whether the varying preci-
sion between homologs might lead to biases in the calculated
RMSDcorrected.

To test this, we generated a second null distribution of
RMSDcorrected under the hypothesis that the “true” amino
acid preferences are the same for both homologs and can
be approximated by averaging the mean observed prefer-
ences for each homolog:

hh�
!

rii ¼
h�
!

r;homolog Ai þ h�
!

r;homolog Bi

2
: ð6Þ

Under this hypothesis, the observed differences in amino
acid preferences between homologs are solely due to the
different amounts of experimental noise between replicates
of each homolog. To model the effects of this noise on our
analysis, we drew replicate simulated amino acid preferences
at each site r from a Dirichlet distribution with mean centered
on the “true” amino acid preferences:

�
!

r;simulated A ¼ Dirðhh�
!

rii � �AÞ; ð7Þ

where �A is a scaling factor that is chosen to yield simulated
replicate preferences across the entire protein that have an
average Pearson’s correlation between replicates equal to the
correlation between experimental replicates. In other words,
we simulate replicate amino acid preference measurements
with noise tuned to match the actual noise in each experi-
ment. For each simulated experiment, we simulated the same
number of replicates that were performed experimentally,
and calculated RMSDcorrected for all sites. We ran the entire
simulation 1,000 times, combining all RMSDcorrected values to
obtain a null distribution.

We then separately used the two null distributions (gen-
erated through randomization or simulation) to assign P
values to site-specific RMSDcorrected at each site r:

Pr ¼
number of scores in null distribution � RMSDr;corrected

number of scores in null distribution
:

ð8Þ

To control the false discovery rate across the 497 sites
tested for significance, we used the procedure of Benjamini
and Hochberg (1995).

Structural Analysis of Sites with Preference Changes
We used the crystal structure of the influenza A H1N1 WSN/
1933 NP (PDB ID 2IQH, chain C; Ye et al. 2006) to calculate
distances between sites. Distances between sites were defined
as the minimum distance between any side chain atoms distal
to the alpha carbons of each site (the alpha carbon was used
for all glycine residues). A distance cutoff of 4.5 Å was used to
define sites that are in contact with evolutionarily variable
sites. To test for spatial clustering of a group of N sites, the
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distribution of N distances to the nearest neighbor of the
remaining N� 1 sites was compared with a null distribution
of distances calculated the same way for 1,000 random selec-
tions of sites of size N. One-sided P values were computed
using the Mann–Whitney U test.

Phylogenetic Analysis
Experimental Substitution Model Overview
We used a previously described approach to build site-specific
substitution models for influenza NP (Bloom 2014a, 2014b).
Briefly, this approach calculates the codon-substitution rate
at each site in NP based on the rate at which nucleotide
mutations arise and the level of selection acting on these
new mutations. The rate of codon substitution, Pr;xy, at site
r of codon x to a different codon y is described as,

Pr;xy ¼ Qxy � Fr;xy; ð9Þ

where Qxy is the rate of mutation from x to y, and Fr;xy is the
probability that a mutation from x to y at site r is selected and
reaches fixation. In this equation, the mutation rates Qxy are
assumed to be identical across sites whereas the selection is
modeled as site-specific and site-independent. The site-
specific fixation probabilities Fr;xy were calculated from the
experimentally measured amino acid preferences using the
relationship proposed by Halpern and Bruno (Halpern and
Bruno 1998; Bloom 2014b). The four mutation rate free pa-
rameters and the stringency parameter were defined as in
Bloom (2014b).

We then calculated the phylogenetic likelihood of the ob-
served NP sequences given the resulting experimental substi-
tution model Pr;xy, the NP phylogenetic tree, and the model
parameters. The tree consisted of influenza NPs from either
human, swine, equine, or avian hosts. While holding the tree
topology fixed, tree branch lengths, and any other model
parameters (discussed below), were optimized by maximum
likelihood.

To compare overall phylogenetic likelihoods calculated
under various substitution models, we calculated the differ-
ence in the Akaike Information Criteria (�AIC) between
models. We compared site-specific models derived from ex-
perimentally determined amino acid preferences with a non-
site-specific model. We tested separate site-specific models
using the amino acid preferences from PR/1934 and Aichi/
1968. The Aichi/1968 preferences were an average of the
amino acid preferences from the current study and previous
study. In addition, we tested a site-specific model where we
combined data from the separate Aichi/1968 and PR/1934
mutational-scanning experiments, by averaging amino acid
preferences for each amino acid at each site across the two
homologs, weighting each homolog equally.

The nonsite-specific model used the Goldman–Yang
(GY94) codon substitution model (Goldman and Yang
1994), with nucleotide equilibrium frequencies calculated
by the CF3�4 method (Pond et al. 2010). In this model,
the transition–transversion ratio was optimized by max-
imum likelihood, along with the mean and shape param-
eters describing gamma distributions of the

nonsynonymous–synonymous ratios (Yang et al. 2000)
and the substitution rates (Yang 1994) across sites. Each
gamma distribution was discretized with four categories.
In previous comparisons of nonsite-specific models, this
nonsite-specific model performed better than other var-
iants of the GY94 model (Bloom 2014a, 2014b). All anal-
yses were performed using the software packages
phyloExpCM (Bloom 2014a) and HyPhy (Pond et al.
2005), and the data, scripts, and descriptions to replicate
the results in this article are available at https://github.
com/mbdoud/Compare-NP-Preferences (last accessed
August 8, 2015).

Phylogenetic Trees for Different Influenza Hosts
We built phylogenetic trees for NP coding sequences from
strains of human influenza, swine influenza, equine influenza,
and avian influenza. Full-length NP sequences were down-
loaded from the Influenza Virus Resource (Bao et al. 2008),
and for each host, a small number of unique sequences per
year per influenza subtype were retained. For human influ-
enza, we retained one sequence every other year from each of
the H1N1, H2N2, and H3N2 lineages. For swine influenza, we
retained one sequence per year from either the North
American Classical H1N1 lineage or the Eurasian H1N1 line-
age. For equine influenza, we retained one sequence per year
from the H3N8 lineage. For avian influenza, one sequence
every other year per subtype was retained, and the examined
hosts were further restricted to only duck species, to make a
sequence set with a size manageable for phylogenetic
modeling.

Sequences from each host were aligned by EMBOSS
needle (Rice et al. 2000), and maximum-likelihood trees
were built by RAxML (Stamatakis 2006). Using these trees
and the program Path-O-Gen (http://tree.bio.ed.ac.uk/soft-
ware/pathogen/, last accessed August 8, 2015), we identified
and removed any sequences that were noticeable outliers
from the molecular clock. The final tree contained 37, 46,
29, and 24 sequences from human, swine, equine, and avian
hosts, respectively.

Maximum-likelihood phylogenetic trees were then built
from the NP sequence alignment using codonPhyML (Gil
et al. 2013). The GY94 model (Goldman and Yang 1994)
was run using the CF3�4 nucleotide equilibrium frequencies
(Pond et al. 2010) along with maximum-likelihood optimiza-
tion of a transition–transversion ratio and of a mean and
shape parameter describing a gamma distribution of non-
synonymous–synonymous ratios (Yang et al. 2000). This
gamma distribution was discretized with four categories. The
final, unrooted tree was visualized with FigTree (http://tree.
bio.ed.ac.uk/software/figtree/, last accessed August 8, 2015)
and rooted using the avian clade (Worobey et al. 2014).

Supplementary Material
Supplementary files S1–S5, tables S1-S3, and figures S1-S5 are
available at Molecular Biology and Evolution online (http://
www.mbe.oxfordjournals.org/.
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