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Abstract

Ketamine is a unique drug that has psychedelic and anesthetic properties in a dose-dependent 

manner. Recent studies have shown that ketamine anesthesia appears to maintain the 

spatiotemporal complexity of cortical activation evoked by transcranial magnetic stimulation, 

while a psychedelic dose of ketamine is associated with increased spontaneous 

magnetoencephalographic signal diversity. However, a systematic investigation of the dose-

dependent effects of ketamine on cortical complexity using the same modality is required. 

Furthermore, it is unknown whether the complexity level stabilizes or fluctuates over time for the 

duration of ketamine exposure. Here we investigated the spatiotemporal complexity of 

spontaneous high-density scalp electroencephalography (EEG) signals in healthy volunteers 

during alterations of consciousness induced by both subanesthetic and anesthetic doses of 

ketamine. Given the fast transient spectral dynamics, especially during the gamma-burst pattern 

after loss of consciousness, we employed a method based on Hidden Markov modeling to classify 

the EEG signals into a discrete set of brain states that correlated with different behavioral states. 

We characterized the spatiotemporal complexity specific for each brain state as measured through 

the Lempel-Ziv complexity algorithm. After controlling for signal diversity due to spectral 

changes, we found that the subanesthetic dose of ketamine is associated with an elevated 

complexity level relative to baseline, while the brain activity following an anesthetic dose of 

ketamine is characterized by alternating low and high complexity levels until stabilizing at a high 

level comparable to that during baseline. Thus, spatiotemporal complexity associated with 

ketamine-induced state transitions has features of general anesthesia, normal consciousness, and 

altered states of consciousness. These results improve our understanding of the complex 

pharmacological, neurophysiological, and phenomenological properties of ketamine.
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1. Introduction

Ketamine is a unique drug that, depending on its dose, has anesthetic, analgesic, anti-

depressant, and psychedelic properties (Berman et al., 2000; Corssen and Domino, 1966; 

Domino et al., 1965; Krystal et al., 1994). Ketamine differs from canonical anesthetics in 

that it (1) does not appear to work primarily through gamma-aminobutyric acid (GABA) 

receptors, (2) suppresses sleep-promoting regions of the hypothalamus, (3) activates arousal-

promoting regions of the brainstem and diencephalon, and (4) increases gamma activity in 

the cortex (Mashour, 2014). Like its GABAergic counterparts, ketamine anesthesia disrupts 

frontal-parietal connectivity in the human (Blain-Moraes et al., 2014; Bonhomme et al., 

2016; Lee et al., 2013; Vlisides et al., 2017) and nonhuman primate brain (Schroeder et al., 

2016), but appears to maintain spatiotemporal complexity, as measured through the 

perturbational complexity index (PCI) (Sarasso et al., 2015). The PCI measures the Lempel-

Ziv complexity (LZC) in a compressed spatiotemporal pattern of cortical activation evoked 

by transcranial magnetic stimulation (TMS), which has been demonstrated to be a reliable 

discriminator of the level of consciousness (Casali et al., 2013). It has been reported that the 

PCI is decreased during propofol, midazolam and xenon anesthesia (Casali et al., 2013) but 

maintains the baseline level (as observed during wakefulness) during ketamine anesthesia 

(Sarasso et al., 2015). This is not entirely unexpected given the activation of subcortical 

arousal-promoting nuclei in association with ketamine anesthesia (Lu et al., 2008).

As a psychoactive drug, ketamine differs from canonical psychedelics in that it does not 

appear to work primarily through 5-hydroxytrypta-mine receptors and induces a sense of 

disembodiment more prominently than classical serotonergic drugs such as psilocybin 

(Studerus et al., 2010). However, subanesthetic doses of ketamine do evoke typical features 

of psychedelic phenomenology and increase neural signal complexity in a manner similar to 

psilocybin and lysergic acid diethylamide. Specifically, Schartner et al. reported increased 

single-channel temporal LZC and spatiotemporal LZC in spontaneous magneto-

encephalographic (MEG) signals for psychedelic doses of ketamine (Schartner et al., 2017).

Despite this body of work, important questions remain unanswered. First, prior studies 

provide only a disjointed picture by investigating the effect of anesthetic dose in TMS-

evoked cortical activation (Sarasso et al., 2015) or subanesthetic dose in spontaneous MEG 

signals (Schartner et al., 2017). For a more complete understanding of ketamine’s psycho-

active effects, a systematic investigation of the dose-dependent effects of ketamine on 

cortical complexity using the same modality is required. Second, prior studies typically 

assessed the cortical complexity on average over the duration spanning several minutes, but 

temporal variation has not yet been examined. In particular, a number of 

electroencephalographic (EEG) studies have reported that slow delta oscillations that 

alternate with gamma oscillations (so-called “gamma-burst pattern”) occur during ketamine 
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anesthesia (Akeju et al., 2016; Schwartz et al., 1974). Since slow wave activity has been 

associated with depressed consciousness induced by GABAergic anesthetics such as 

propofol (Ni Mhuircheartaigh et al., 2013; Warnaby et al., 2017), it is unknown whether 

ketamine alters cortical dynamics in a way that is more similar to canonical anesthetics, 

canonical psychedelics, both or neither.

Here we investigate the spatiotemporal complexity of spontaneous high-density scalp 

electroencephalographic (EEG) signals during baseline consciousness, subanesthetic 

ketamine dosing (infusion of 0.5 mg kg−1), anesthetic dosing of ketamine (bolus of 1.5 mg 

kg−1), and recovery. We assessed the complexity during different states of ketamine-induced 

alterations of consciousness, with reference to baseline and recovery states and with special 

attention to complexity during the gamma-burst pattern after anesthetic dosing. Based on the 

unique pharmacology, neurophysiology, and phenomenology, we tested the hypothesis that 

what is typically referred to as “dissociative anesthesia” induced by ketamine (Corssen and 

Domino, 1966; Domino, 2010) has elements of general anesthesia, normal consciousness, 

and altered states of consciousness, in connection with the reduced, maintained, and elevated 

complexity level as measured through LZC.

2. Materials and methods

This study was approved by the Institutional Review Board (HUM00061087) of the 

University of Michigan Medical School, where all studies were conducted, and written 

informed consent was obtained from all participants after careful discussion. Fifteen healthy 

volunteers (7 males, 8 females, ages 20–35 years) were recruited using flyers posted 

throughout the medical school and main hospital. We published a distinct EEG analysis for 

10 of these participants that examined dose-dependent effects of ketamine on oscillatory and 

connectivity patterns (Vlisides et al., 2017) as well as a study of altered states of 

consciousness during subanesthetic exposure of ketamine in all 15 participants (Vlisides et 

al., 2018). The current study is unique because, unlike past investigations, it focuses on the 

dose-dependent effects of ketamine on complexity of spatiotemporal patterns.

2.1. Study population

Inclusion criteria were: American Society of Anesthesiologists Class 1 physical status, 20–

40 years of age, body mass index <30, and no predictors of a difficult airway. Exclusion 

criteria were: cardiovascular disease, cardiac abnormalities, hypertension, obstructive sleep 

apnea, asthma, respiratory illness, gastroesophageal reflux, history of drug use (or positive 

drug screen prior to ketamine exposure), family history of problems with anesthesia, 

neurologic disorders, psychiatric disorders or current pregnancy.

2.2. Experimental protocol

Details of the protocol can be found in prior publication (Vlisides et al., 2017). Ketamine 

administration was conducted as follows. The first period (baseline consciousness) was 5 

min of rest with eyes closed. The second period was 40 min with eyes closed during a 

continuous infusion of subanesthetic (0.5 mg kg−1 total) ketamine, followed by a brief 

physical examination, intravenous ondansetron (8 mg) administration for nausea 
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prophylaxis, and assessment for altered states of consciousness. We chose this subanesthetic 

dosing regimen for ketamine because of its common and safe use in psychiatry. The third 

period was initiated with a 1.5 mg kg−1 bolus dose of ketamine to induce general anesthesia, 

as assessed by loss of responsiveness to an audio command to squeeze left or right hands (in 

random order). The fourth period was defined by a return of consciousness, as evidenced by 

return of responsiveness to command.

2.3. EEG analysis

2.3.1. Acquisition and processing—Data were acquired with 128-channel EGI 

Hydrocel Nets (Eugene, OR, USA) digitized continuously at 500 Hz with a vertex reference; 

channel impedances were kept below 50 kΩ as recommended by the manufacturer. The raw 

EEG signals were exported into MATLAB (version 2017a; MathWorks, Inc., Natick, MA), 

and down-sampled to 250 Hz. Electrodes on the lowest parts of the face and head were 

removed, leaving 90 channels on the scalp for the analysis. Bad channels were detected and 

interpolated by using the spherical spline interpolation method in EEGLAB toolbox 

(Delorme and Makeig, 2004), and then the EEG signals were re-referenced to the average 

reference. Data segments with obvious noise or non-physiological artifacts were identified 

and removed by visual inspection of the waveform and spectrogram of the EEG signals. 

Prior to the analysis, the EEG signal was detrended using a local linear regression method 

with a 2-s window at a 1-s step size in Chronux analysis software (http://chronux.org/) 

(Mitra and Bokil, 2007), lowpass filtered at 50 Hz via butterworth filter of order 5.

For each participant, the preprocessed signals during the first 2-min of eyes-closed baseline, 

the last 5-min of subanesthetic ketamine, anesthetic ketamine, and the first 2-min of post-

recovery, eyes-closed period were concatenated for the analysis, as illustrated in Fig. 1 A. 

For the anesthetic period, the EEG data from loss of consciousness (LOC) to recovery of 

consciousness (ROC) (defined by loss or recovery of responsiveness, with acknowledgment 

that disconnected subjective experience could occur during ketamine anesthesia) was 

included in the analysis, with the duration of 10.1 ± 3.4 (mean ± SD) min across the 

participants. Only last 5-min was analyzed the for the subanesthesia period because, based 

on a pilot study with the same subanesthetic dosing regimen, we assume the ketamine 

infusion reached pharmacological steady-state conditions by that epoch and the data length 

is comparable to that analyzed for the anesthetic period. Finally, the 2-min period during 

baseline and recovery was analyzed because it was the shortest data length among the 

participants.

Brain activity exhibits fast transient spectral changes across the studied periods, especially 

during the gamma-burst patterns that appears after LOC (see the illustrative example in Fig. 

1 Ba and Ca-b). The presence of such alternating activities that have short and irregular 

duration time precludes a conventional analysis with fixed-length windows, since the 

analysis windows may be composed of intermingled delta- and gamma-dominant episodes. 

To investigate the complexity for these episodes separately, we adopted a method based on 

Hidden Markov model (HMM) (Vidaurre et al., 2016) to adaptively classify the EEG signals 

into a discrete set of states (i.e. transient brain activities with distinct spectral properties), 

with each correlated with different behavioral state induced by different doses of ketamine. 
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We extracted the EEG analysis epochs that correspond to each HMM state in each 

participant and then characterized the HMM state-specific complexity property using 

spatiotemporal LZC measures, with a control procedure employed to test if the LZC changes 

arise from more than just the changes in the power spectrum of the signal. The schematic 

diagram of the analysis pipeline is illustrated in Fig. S1, with each processing step described 

as following.

2.3.2. Hidden Markov modeling—The HMM (Juang and Rabiner, 1985) assumes that 

the time series can be described as a sequence of a finite number of states, where each state 

has its own model of the observed data and the probability of being in a given state at each 

time point depends on its state assignment at the previous time point. The observation model 

corresponds to a multivariate autoregressive (MAR) model (Penny and Roberts, 2002), 

which can capture the spectral dynamics of the data and characterize its behavior by linear 

historical interactions between multiple brain regions (Vidaurre et al., 2016). More 

explicitly, if yt represents the Nch -channel EEG signal and st ∈ {1, …, K} represents the 

hidden state at time point t, the MAR model is (Vidaurre et al., 2016)

yt st = k 𝒩 ∑
l ∈ A

yt − lW l
(k), Σ(k) (1)

where A is the set of lags considered by the MAR model, W l
(k) is the Nch × Nch matrix 

representing the autoregressive coefficients for lag l, and Σ(k) is the Nch × Nch noise 

covariance matrix codifying the variance and covariances between channels when state k is 

active (Vidaurre et al., 2016, 2017). The noise is assumed to be Gaussian with zero mean 

and the covariance matrix is assumed to be a full matrix and state-dependent. The variational 

Bayes inference algorithm (Bishop, 2006) was used to estimate the model parameters, which 

acts on a group of parameters and iterates through the different groups of parameters until 

convergence is attained by minimizing the so-called free energy as the cost function. 

Comprehensive details about the HMM inference algorithm can be found in (Vidaurre et al., 

2016).

In this study, the bivariate EEG time series was derived from frontal (average of F1, F2, and 

Fz) and posterior channels (average of PO3, PO4, POz), and downsampled to 125 Hz for the 

principle of parsimony, which was then concatenated across all the participants to infer the 

HMM model at the group level using the HMM-MAR toolbox (Vidaurre et al., 2016). We 

chose the frontal and posterior channels because of their relevance to ketamine anesthesia 

based on our recent studies (Lee et al., 2013; Vli-sides et al., 2017). We assume each HMM 

state to be associated with a different behavioral state (baseline, subanesthesia, the delta- and 

gamma-dominant periods at post-LOC, and pre-ROC), so the number of HMM states was 

set to be 5. For MAR parametrization, we followed Vidaurre et al. (2016) and used the 

configuration of exponential spacing, i.e. A = {P0 + P, P0 + Q, P0 + Q2, …, P} where the 

number of lags |A| = 12 the offset P0 = 1 to avoid over the maximal lag P = 125 that 
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corresponds to one=cycle of the lowest frequency of interest (1=Hz), and the elapse 

Q = P − P0
( A − 1)−1

.

To validate the HMM model described above, we compared the models with different 

number of HMM states and variants of MAR coefficients matrix (W l
(k)in Eq. (1)). Moreover, 

the HMM inference is sensitive to initialization (Vidaurre et al., 2016, 2018a), and the 

strategy that we employed in this study consists of running the HMM inference procedure 10 

times with random initialization and using the one with the lowest free energy as a starting 

point for the inference in the final solution. We evaluated the robustness of this initialization 

strategy by assessing the consistency of the HMM inference results across multiple 

realizations.

2.3.3. Assessing the relationship between HMM states and behavioral states
—The Hidden Markov modeling yields the probability of each HMM state being active at 

each time point, from which the HMM state with the highest probability was determined as 

the state that best represents the data on a ‘winner-take-all’ basis. To assess how well the 

resultant HMM states relates to the behavioral states, the following five equal-length 

segments were selected: 2-min baseline, last 2-min during sub-anesthesia, 2-min 

immediately after LOC, 2-min just before ROC, and 2-min during recovery. For each 

segment, we quantified the fractional occupancy, which is defined as the fraction of time 

spent in each HMM state at both group-level and participant-level, and which reveals the 

dominant HMM state(s) for each behavioral state under consideration. Additionally, to 

evaluate if any two behavioral states are associated with the same set of HMM states, cosine 

similarity was used to measure the similarity between the distributions of fractional 

occupancy, by using the pdist function with the option of ‘cosine’ distance metric in Matlab 

Statistics and Machine Learning Toolbox.

2.3.4. Epoch selection—The HMM time series provides a highly time-resolved 

representation of the brain dynamics in different states. However, instead of characterizing 

the temporal dynamics of the HMM states, this study was intended to investigate the 

complexity properties of the EEG signals associated with these states. To achieve this, EEG 

epochs that have a certain duration, for which we assume stationarity, are required to 

calculate the complexity metric and its variant that controls for spectral changes through 

surrogate data (involving the application of Fourier transform) (see HMM state-specific 

complexity analysis). Specifically, we smoothed the HMM state time series via a 1-s moving 

average filter and extracted 1-s epochs from the 90-channel EEG signals that correspond to 

each HMM state in each participant. This selection allows for an acceptable spectral 

resolution for the spectrum analysis and also provides a tradeoff between the number of 

achieved epochs and the mean activation probability of the HMM state at the achieved 

epochs (which indicates how well the HMM state can represent the brain activity among all 

the states) (See Fig. S2 in Appendix).

Due to the data-driven inference of HMM states and inter-individual variability, we expect 

the number of achieved epochs to be unequal across HMM states and participants. To 

alleviate the effect of unbalanced sample sizes on the estimation of EEG measures, we set 
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the maximal number of epochs to be 30 and calculated the EEG measures based on a 

random subset of at most 30 epochs drawn for each HMM state, which were then averaged 

as the estimation of the HMM state-specific properties for each participant. This selection 

allows for at least 60% of participants to have 30 epochs for each HMM state; the detailed 

information on the sample size is listed in Table S1. We corroborated the epoch selection 

strategy by performing supplementary analysis with (1) a random subset that consists of 

only participants in which 30 1-s epochs could be extracted, (2) a random subset of at most 

60 0.5-s epochs, and (3) a random subset of at most 12 2-s epochs extracted for each HMM 

state and participant.

2.3.5. HMM state-specific spectral power analysis—Although the spectral 

properties can be obtained directly from the MAR parameters derived from the HMM 

inference procedure or through the weighted non-parametric approach that uses the inferred 

HMM state time series (Vidaurre et al., 2016), we chose to calculate the spectral power 

based on the extracted EEG epochs as described above. The analysis on the same dataset 

allows for a further examination of the associations between spectral power and 

spatiotemporal complexity metrics (see HMM state-specific complexity analysis). 

Specifically, the extracted EEG epoch was analyzed using the multitaper method in Chronux 

analysis software (Mitra and Bokil, 2007) for each channel, with time-bandwidth product = 

2, number of tapers =3. The relative power was calculated from the absolute power 

normalized by the total power. For statistical comparisons, the mean spectrum was obtained 

by taking the average across all the available epochs for each HMM state, and the EEG 

power values were calculated for delta (0.5–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta 

(13–25 Hz), and gamma (25–45 Hz) bands. The topographic maps of group-level spectral 

power for each HMM state and frequency band were constructed using the topoplot function 

in EEGLAB toolbox (Delorme and Makeig, 2004).

2.3.6. HMM state-specific complexity analysis—The HMM state-specific 

complexity properties were characterized by LZC. LZC is a method of symbolic sequence 

analysis that counts the number of times a new word is encountered in a sequence (Lempel 

and Ziv, 1976), which has been shown to be a valuable tool to investigate the spatiotemporal 

complexity of brain activity (Abásolo et al., 2015; Casali et al., 2013; Hudetz et al., 2016; 

Sarasso et al., 2015; Schartner et al., 2015, 2017).

For a multichannel EEG epoch, the instantaneous amplitude was estimated by applying the 

Hilbert transform (Schartner et al., 2015, 2017), which was binarized using its mean value as 

the threshold for each channel (supplementary analysis was performed to test the effect of 

threshold selection). The data epoch was then converted into a binary matrix, in which rows 

represent channels and columns represent time points. The complexity of the spatiotemporal 

matrix was assessed by spatiotemporal LZC (Casali et al., 2013). It searches the binary 

matrix, time point by time point, and counts the number of different spatial patterns across 

different time points. If the matrix is random, the spatiotemporal LZC tends to be high; on 

the other hand, it will be low if all the channels behave identically. Since the LZC value for a 

sequence of fixed length is maximal if it is entirely random (Schartner et al., 2015, 2017), 

we normalized the raw spatiotemporal LZC by the mean of those from N = 50 surrogate data 
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generated by randomly shuffling the original spatial order for each time point; thus, the 

resultant spatiotemporal LZC values range from 0 to 1.

Since each HMM state has distinct spectral profiles, we further tested whether the state-

dependent difference in the LZC is entirely due to spectral changes. We generated surrogate 

data through phase randomization that preserves the spectral profiles of the signal for each 

channel (Schartner et al., 2015, 2017), and normalized the spatiotemporal LZC by the mean 

of those from N = 50 surrogate time series (supplementary analysis was performed to test an 

alternative method in the generation of surrogate data). If the complexity change is entirely 

due to spectral changes, the difference in the LZC values across the HMM states will be 

completely preserved in the LZC values from the surrogate data, thus the normalized LZC, 

spatiotemporal LZCN, will be close to 1 and equal across the HMM states. If there is 

complexity change not due to spectral changes, the alterations of LZC values from the 

surrogate data will be distinct from those of spatiotemporal LZC, and spatiotemporal LZCN 

will reflect the signal diversity beyond the spectral changes. For statistical comparisons, the 

spatiotemporal LZC and LZCN values were averaged across all the available epochs as the 

final estimate for each HMM state and participant.

An alternative metric to spatiotemporal LZC is temporospatial LZC, which searches the 

spatiotemporal matrix, channel by channel, and counts the number of different temporal 

patterns across channels. The temporospatial LZC tends to be high if the binary matrix is 

random and will be low if temporal variations do not occur in every channel. The 

temporospatial LZC and spatiotemporal LZC are theoretically distinct but nonetheless 

highly correlated measures (Casali et al., 2013). We performed supplementary analysis with 

temporospatial LZC and its normalized metric (temporospatial LZCN) that controls for 

spectral changes and assessed their correlations with spatiotemporal LZC metrics. Moreover, 

to further evaluate the associations between spectral power and cortical complexity, we used 

multivariate linear regression to test whether and to what extent the spectral power (across 

brain regions [frontal and posterior] and frequency bands [delta, theta, alpha, beta and 

gamma]) predicted the state-dependent differences as revealed by LZC measures.

2.4. Statistical analysis

Statistical analyses were conducted using IBM SPSS Statistics version 24.0 for Windows 

(IBM Corp. Armonk, NY). Statistical comparisons were performed using linear mixed 

models (LMM) (West et al., 2014), to test the difference across the HMM states for the EEG 

power and LZC measures. LMM analysis offers more flexibility in dealing with missing 

values and accounting for individual differences by including a random intercept associated 

with each participant. For the models of EEG power values, the fixed effects included the 

HMM state, region (frontal and posterior), and the interaction between them; repeated 

effects included the HMM state and region. For the LZC measures, the HMM state was 

modeled as the fixed effects and repeated effects. We used restricted maximum likelihood 

estimation, compound symmetry as covariance structure of repeated effects, and variance 

components as covariance structure of random effects. For the EEG power values, the post-

hoc pairwise comparisons were performed between each HMM state relative to the baseline-

associated state S1, and between frontal and posterior regions if the regional fixed effects 
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were statistically significant (p < 0.001); only the significant levels were reported 

(Bonferroni corrected p < 0.05). For the LZC measures, the post-hoc pairwise comparisons 

were performed between each pair of HMM states. A p-value < 0.05 using Bonferroni 

correction was considered statistically significant if not specifically stated. In addition, the 

mean and 95% confidence interval (CI) values of the estimated difference along with the 

exact uncorrected p-values were reported in Table S2.

3. Results

3.1. Inference of HMM states

Brain activity exhibited distinct spectral profiles during the sub-anesthetic infusion and 

ketamine anesthesia. There was a reduction of alpha power and a mild increase of gamma 

power during subanesthesia (Fig. 1 Ba). After LOC, the gamma-burst pattern was visibly 

evident with alternating delta, theta, and gamma activities (Fig. 1 Ca and Cb), which evolved 

into a distinct pattern with more stable theta and gamma power before ROC (Fig. 1 Ba). The 

spectral profile at recovery seemed to be comparable to that during subanesthesia (Fig. 1 

Ba). These phenomena were observed, although quantitatively different, in both frontal and 

posterior regions (Fig. 1 Ba and Cb).

The EEG signals for the frontal and posterior regions were used to train the HMM model, 

which was driven by both the auto- and cross-spectral dynamics of the bivariate time series. 

Five HMM states were inferred and the probability of each state being active at each time 

point was estimated (Fig. 1 Bb and Cc), from which the HMM state that best represents the 

data was obtained (Fig. 1 Bc and Cd). It is notable that the HMM states seemed to track the 

evolution of spectral profiles with ketamine anesthesia. The HMM state 1 (S1) was dominant 

at baseline, which turned to S2 during subanesthesia. The two HMM states, S3 and S4 

concentrated at delta and gamma activity respectively, co-existed and alternated at the early 

stage of the anesthetic period, which shifted to S5 before the ROC. The dominant pattern 

returned to S2, but not S1, in the recovery period (as might be expected in the shift from 

anesthetic to subanesthetic effect-site drug concentrations). To test the robustness of the 

inferred results, we ran the HMM algorithm multiple times. The high correlation (>0.97) of 

the HMM state time series across different realizations suggests consistency of the inference 

results due to different initializations (Fig. S3D).

3.2. Association of inferred HMM states with different behavioral states

To evaluate how well the HMM states track the evolution of behavioral states associated 

with ketamine, Fig. 2 shows the fractional occupancy of HMM states for each considered 

behavioral state at both group-level (A) and individual participant-level (B). HMM state S1 

was most often seen during the baseline eyes-closed period (60.37%), while S2 was the 

dominant state at subanesthesia (46.52%), which was followed by S5 (28.52%). The HMM 

states mostly seen in post-LOC were S3 (31.16%) and S4 (41.31%), while the one that 

dominates the pre-ROC period was S5 (58.89%). Similar to subanesthesia, S2 (39.19%) and 

S5 (33.40%) were dominant states at recovery. There was a fair amount of participant-to-

participant variability, which was most prominent for the sub-anesthesia and recovery 

periods (Fig. 2 B). Instead of HMM state S2, the subanesthesia period was occupied mostly 
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by HMM state S5 or S1 in N = 6 participants, and the recovery period was more distributed 

across the HMM states. Brain activity at recovery did not return to baseline, while the 

distribution of fractional occupancy appeared to be comparable to that observed in 

subanesthesia, with the cosine similarity of 0.90 ± 0.25 significantly higher than those with 

the other periods (0.60 ± 0.29, 0.21 ± 0.17, 0.47 ± 0.32 for baseline, post-LOC and pre-

ROC, respectively) (Bonferroni corrected p < 0.005, Wilcoxon rank sum test).

Additionally, Fig. S3 (A–C) presents the associations between the behavioral states and the 

HMM states inferred from different variants of HMM model, suggesting that the employed 

model correlates best with the behavioral states of interest in this study.

3.3. HMM state-specific spectral power analysis

The HMM state-specific spectral properties were characterized by the power analysis of the 

EEG epochs extracted from the 90-channel EEG signals for each HMM state, as shown in 

Fig. 3. The HMM state S1, the dominant pattern of the baseline period, was characterized by 

a predominance of alpha power in posterior channels (frontal vs. posterior: p < 0.001). A 

decrease in alpha (p < 0.001 for both frontal and posterior regions) and a mild increase in 

theta and gamma were observed for the subanesthesia-associated state S2 (Fig. 3A–C). For 

the two alternating HMM states correlated with post-LOC, S3 was characterized by 

prominent delta power throughout the scalp (p < 0.001 for both regions) and the lowest 

power at alpha and gamma bands (p < 0.05 for both regions), while S4 was dominant with 

significantly higher theta and gamma power (p < 0.05 for both regions). Although the pre-

ROC-associated state S5 demonstrated a slightly lower theta and gamma power (Fig. 3A and 

B), there was no statistically significant difference between S4 and S5 (Fig. 3 C).

3.4. HMM state-specific complexity analysis

To characterize the HMM state-specific complexity properties, Fig. 4 presents the changes 

of spatiotemporal LZC and its normalized measure that excludes the possibility that any 

observed changes could be attributed solely to changes in spectral profile. We found 

increased complexity for the subanesthesia-associated state S2 as compared to S1 

(spatiotemporal LZC: p < 0.05, 0.056 [0.021–0.090] for mean and 95% CI), spatiotemporal 

LZCN: uncorrected p = 0.038, 0.035 [0.002–0.067]), while the HMM state S3 demonstrated 

the lowest complexity values across all the states (p < 0.001). For the other two HMM states 

that correlated with ketamine-induced unconsciousness, the LZC measures behaved 

differently. The spatiotemporal LZC values at S4 and S5 were –0.065], higher than those at 

S1 (S4: uncorrected p = 0.047, 0.033 [0.000 S5: uncorrected p = 0.007, 0.044 [0.013–

0.076]) while comparable to that at S2, but its normalized measure LZCN demonstrated 

lower complexity than S2 (S4: p < 0.05, −0.053 [−0.086 to −0.020], S5: uncorrected p = 

0.039, −0.034 [−0.067 to 0.002]), which was comparable to that at S1. There was no 

statistically significant difference between S4 and S5 for any LZC measure (Table S2). 

Similar state-dependent changes of spatiotemporal LZCN were observed despite different 

strategies in the selection of EEG epochs, the threshold for binarization, and the method of 

generating surrogate data (Fig. S4).
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As with spatiotemporal complexity, the temporospatial LZC measures achieved the minimal 

values at state S3 (p < 0.001). However, there was no statistically significant increases 

detected at S2 relative to S1 (Fig. S5 A–C, and Table S2). The temporospatial LZC values at 

S4 and S5 were higher than those at S1 (S4: p < 0.001, 0.081 [0.043–0.119], S5: p < 0.05, 

0.060 [0.023–0.097]) but the differences were attenuated in temporospatial LZCN after 

controlling for the spectral changes, suggesting that temporospatial LZC may mainly reflect 

the signal diversity due to power spectrum. Across all states except S3, the temporospatial 

LZC and spatiotemporal LZC were strongly correlated (Spearman’s correlation r = 0.73, p < 

0.001), while there was no relationship between their normalized measures (r = 0.13, p = 

0.34) (Fig. S5 D–E). Additionally, the spectral power across brain regions and frequency 

bands (Fig. 3 C) jointly accounted for 85% and 61% of total variance in the temporospatial 

LZC and spatiotemporal LZC, which were reduced to 31% and 42% for the temporospatial 

LZCN and spatiotemporal LZCN, respectively (Fig. S6). Collectively, these results suggest it 

is likely that the HMM state-dependent difference in spatiotemporal LZC was considerably 

influenced by spectral changes, but this association was largely mitigated for spatiotemporal 

LZCN, where at least 58% of the total variance cannot be explained by the effect of EEG 

spectral characteristics.

4. Discussion

In this study of human volunteers, we investigated the spatiotemporal complexity in 

spontaneous high-density scalp EEG recordings during both subanesthetic and anesthetic 

dosing of ketamine, but without the confound of other psychoactive medications. Given the 

fast transient spectral changes of brain activity, we employed a method based on Hidden 

Markov modeling to classify the EEG signals into a discrete set of brain states that 

correlated with different behavioral states. We found that these inferred states demonstrated 

distinct features of spatiotemporal complexity as assessed by LZC. After controlling for the 

spectral changes, the complexity increased at the HMM state associated with subanesthesia 

and recovery (S2) relative to baseline (S1), while it alternated between low (S3) and high 

(S4) levels during gamma-burst pattern after loss of consciousness until stabilizing at the 

high level (S5) before recovery of consciousness. The complexity levels at S4 and S5 were 

comparable to that during baseline (S1). These findings demonstrate the unique complexity 

dynamics during the alteration of consciousness induced by different doses of ketamine.

We observed the dose-dependent effect of ketamine on spectral characteristics, which is in 

line with previous EEG/MEG findings that ketamine suppresses alpha oscillations at 

subanesthetic doses (de la Salle et al., 2016; Lee et al., 2013; Muthukumaraswamy et al., 

2015; Schartner et al., 2017; Vlisides et al., 2017), and increases delta, theta, and gamma 

power during general anesthesia (Blain-Moraes et al., 2014; Lee et al., 2013; Purdon et al., 

2015; Vlisides et al., 2017). Specifically, a gamma-burst EEG pattern has been associated 

with ketamine-induced unconsciousness following a bolus dose of ketamine, which evolves 

into a stable gamma pattern likely due to decreasing plasma levels of ketamine (Akeju et al., 

2016). Motivated by the time-varying spectral changes (Fig. 1 Ba), we adopted a data-driven 

method to infer the HMM states inherent in the EEG signals based on their spectral and 

cross-spectral dynamics in frontal and posterior channels. This method enabled us to 

investigate the spatiotemporal complexity separately for each HMM state and associated 
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behavioral state (Fig. 2 A). As compared to conventional analysis directly performed on 

these behavioral states (Fig. S7), we not only assessed the spatiotemporal complexity 

associated with the gamma-burst pattern, but also revealed a considerably richer picture of 

the cortical dynamics during the alterations of consciousness induced by different doses of 

ketamine. For example, the transient gamma-dominant pattern and the stable gamma pattern, 

which usually occur at the early and later stages of the ketamine-induced unconsciousness 

period respectively, are associated with distinct EEG characteristics, while the post-recovery 

and subanesthesia infusion periods share similar cortical dynamics, irrespective of the 

number of HMM states inferred (Fig. 2A and S3A).

The spatiotemporal complexity was assessed by the LZC that measures the diversity of 

spatial patterns over time, which is different from temporospatial LZC that measures the 

temporal variability across space (in this case, EEG channels). Consistent with (Casali et al., 

2013), the spatiotemporal LZC and temporospatial LZC were found to be highly correlated, 

but this is not the case for spatiotemporal LZCN and temporospatial LZCN after controlling 

for spectral changes (Fig. S5D–E). As opposed to the spatiotemporal measures, the 

temporospatial LZC could be mainly driven by EEG spectral characteristics, because the 

temporospatial LZC exhibited the highest complexity in conjunction with the highest theta 

and gamma power at S4 (Fig. 3), with differences among the states (except S3) reduced after 

correction (Figs. S5A–B). In this study, we focused on spatiotemporal LZCN, which 

mitigates the effect of EEG spectrum, as corroborated by linear regression analysis 

suggesting that spectral power data cannot entirely account for the complexity changes as 

revealed by spatiotemporal LZCN (Fig. S6B). The dose-dependent effect of ketamine on 

spatiotemporal complexity (Fig. 4 C) is in line with previous neurophysiological studies that 

found increased signal diversity in spontaneous MEG at a psychoactive dose of ketamine 

(Schartner et al., 2017), while the PCI index in the TMS-evoked EEG at general anesthesia 

level was comparable to those obtained during wakefulness (Sarasso et al., 2015). The most 

interesting finding in the current study is the complexity dynamics following a bolus dose of 

ketamine, i.e., the complexity alternated between low (S3) and high (S4) levels during 

gamma-burst pattern after loss of consciousness, which stabilized at a high level (S5) before 

recovery of consciousness. Furthermore, we found that the fractional occupancy of HMM 

states after recovery of consciousness was similar to that at subanesthesia (Fig. 2), which 

suggests that brain activity (in terms of frontal-posterior spectral dynamics) does not return 

to baseline with return of conscious responsiveness, but transitions to a state similar to 

subanesthesia.

The findings in this study suggest that the spatiotemporal complexity associated with 

ketamine-induced state transitions has features of general anesthesia (delta activity, lowest 

complexity), normal consciousness (gamma-dominant periods during post-LOC ‘gamma-

burst’ pattern and pre-ROC, baseline complexity), and altered states of consciousness 

(during subanesthesia and recovery, highest complexity). If we accept the argument of 

Schartner et al. (2017) that LZC might represent a measure of neural signal complexity 

along one axis that represents both anesthesia (low LZC) and psychedelic experience (high 

LZC), then what we currently call “ketamine anesthesia” is actually a fragmented state 

characterized by a rapidly alternating pattern of conscious states (high complexity) and 

anesthetic states (low complexity) (Fig. 5). This is consistent with the known disruption of 
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connected consciousness (i.e., consciousness of environmental events) with the unique 

preservation of vivid disconnected consciousness (e.g., dream states or hallucinations) 

during ketamine anesthesia (Grace, 2003). It also suggests that temporal continuity of 

requisite complexity levels is likely required for the sustained state of consciousness 

experienced in the waking state.

There were methodologic limitations that should be considered. First, we assessed the 

cortical complexity of spontaneous EEG in terms of signal diversity or variability of the 

spatiotemporal patterns (Schartner et al., 2015, 2017), but not in the same way that the PCI 

index assesses the joint presence of functional integration and differentiation (Casali et al., 

2013) as proposed in the integrated information theory of consciousness (Tononi et al., 

2016). Second, despite controlling for the overall spectral changes through surrogate data, 

the spatiotemporal LZCN is not independent of the temporal diversity, which may be 

sensitive to the temporal variations in higher-order properties. Third, we inferred the HMM 

model to match the studied behavioral states, in order to connect the complexity dynamics 

with the alterations of consciousness induced by different doses of ketamine. It is likely that 

a finer-grained inference with more HMM states may reveal other dynamic states beyond 

these behavioral changes. Fourth, the HMM states were identified based on the spectral 

dynamics in frontal and posterior regions (also see the results with four regions in Fig. S8), 

which was determined by our prior findings (Lee et al., 2013; Vlisides et al., 2017) and for 

optimizing efficiency of the HMM inference procedure. The number of model parameters 

quadratically increases with the number of channels, which may lead to over-fitting 

problems and also increased computational costs. The incorporation of a dimensionality 

reduction strategy such as time-delay embedded HMM model might be a useful direction for 

future studies of whole brain dynamics (Vidaurre et al., 2018b).

In summary, we demonstrated that the subanesthetic dose of ketamine is associated with an 

elevated complexity level relative to baseline consciousness, while brain activity following a 

bolus dose of ketamine is characterized by alternating levels of low and high complexity 

until stabilizing at a level comparable to that observed during baseline consciousness. These 

results improve our understanding of the complex pharmacological, neurophysiological, and 

phenomenological properties of ketamine, which can serve as a unique tool to probe 

different states of consciousness.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Experimental design and the inference of Hidden Markov Model (HMM) states. (A) 

Experimental design and timeline. The electroencephalographic (EEG) data was recorded 

throughout the entire experiment and the four periods during eyes-closed baseline, 

subanesthetic, anesthetic, and recovery, as indicated in bold horizontal lines, were 

concatenated for the analysis. LOC, loss of consciousness. ROC, recovery of consciousness. 

(B) Representative spectrograms from frontal (average of F1, F2, and Fz) and posterior 

(average of PO3, PO4, POz) channels (a) were estimated via multitaper method in 1-s 

window with 0.5-s overlap, time-bandwidth product = 2, number of tapers = 3. Five HMM 

states were inferred from Hidden Markov modeling based on the frontal-posterior spectral 

dynamics, with the probability time course (smoothed via a 1-s sliding window) indicating 

the probability of each HMM state being active (b) and the HMM states time courses 

showing the most probable state at each time point (c). The black vertical lines differentiate 

the baseline, subanesthetic, anesthetic and recovery periods respectively. (C) Representative 

EEG signals (a), spectrograms (b), and HMM state time courses (c and d) during gamma-

burst pattern after LOC. The gamma-burst pattern is characterized by alternating delta and 

theta-gamma activities, as evident in EEG signals and spectrograms, which were classified 

into distinct HMM states (c and d).
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Fig. 2. 
The inferred HMM states are associated with different behavioral states. (A) Fractional 

occupancy, i.e., the fraction of time spent in each HMM state for each behavioral state across 

all participants. For each participant, five segments of 2-min were selected to represent the 

different behavioral states: eyes-closed baseline, subanesthesia, post-LOC, pre-ROC, and 

recovery. (B) fractional occupancy of HMM states for each behavioral state at the single 

participant level. The recovery period was not recorded for participant 01, as indicated by all 

zero occupancy across all HMM states for this participant in the bottom-most panel. EC, 

eyes-closed.
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Fig. 3. 
HMM state-specific spectral power analysis. (A) Group-level power spectrum of frontal 

EEG, averaged across F1, F2, Fz channels. (B) Scalp topography of the power values at 

delta (0.5–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta (13–25 Hz), and gamma (25–45 Hz) 

bands across the HMM states. (C) The mean and SD (frontal: black bars; posterior: white 

bars) of the power values at each frequency band across the HMM states. * indicates 

significant changes relative to S1, while # indicates significant difference between frontal 

and posterior regions, using linear mixed model analysis (Bonferroni corrected p < 0.05).
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Fig. 4. 
HMM state-specific complexity analysis. The complexity changes across the HMM states as 

assessed by spatiotemporal LZC (A) and its normalized measure, spatiotemporal LZCN (B, 

and C in the form of fold changes from the baseline-associated state S1). On each box, the 

central line and edges indicate the median and the interquartile range (IQR) of the values 

across the participants, the whiskers extend to the most extreme values, and the outliers are 

marked as red crosses. * indicates significant increase relative to S1, # indicates significant 

increase relative to S2, while y indicates significant decrease as compared to all the other 

states, using linear mixed model analysis (Bonferroni corrected p < 0.05, while (*) or (#) 

indicating uncorrected p < 0.05).
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Fig. 5. 
Schematic summary of the complexity dynamics during ketamine-induced alterations of 

consciousness. The black squares indicate the inferred HMM states, which correlated with 

different behavioral states under consideration. For each HMM state, the spatiotemporal 

complexity (averaged value of spatiotemporal LZCN across all the participants) were plotted 

relative to S1. The arrows in red represent the alterations from baseline (S1) to subanesthesia 

(S2) and then LOC following a bolus dose of ketamine (alternating between S3 and S4), 

whereas the progression into late anesthesia (S5) and then recovery of consciousness (S2) is 

indicated in blue arrows. The brain dynamics after recovery of consciousness didn’t return to 

baseline (S1), but shared the same dominant state (S2) with subanesthesia. This suggests that 

the spatiotemporal complexity associated with ketamine-induced state transitions has 

features of general anesthesia (S3), normal consciousness (S4, S5), and altered states of 

consciousness (S2).
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