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Abstract

Walking stability is achieved by adjusting the medio-lateral and anterior-posterior dimen-

sions of the base of support (step length and step width, respectively) to contain an extrapo-

lated center of mass. We aimed to calculate total recovery time after different types of

perturbations during walking, and use it to compare young and older adults following differ-

ent types of perturbations. Walking trials were performed in 12 young (age 26.92 ± 3.40

years) and 12 older (age 66.83 ± 1.60 years) adults. Perturbations were introduced at differ-

ent phases of the gait cycle, on both legs and in anterior-posterior or medio-lateral direc-

tions, in random order. A novel algorithm was developed to determine total recovery time

values for regaining stable step length and step width parameters following the different per-

turbations, and compared between the two participant groups under low and high cognitive

load conditions, using principal component analysis (PCA). We analyzed 829 perturbations

each for step length and step width. The algorithm successfully estimated total recovery

time in 91.07% of the runs. PCA and statistical comparisons showed significant differences

in step length and step width recovery times between anterior-posterior and medio-lateral

perturbations, but no age-related differences. Initial analyses demonstrated the feasibility of

comparisons based on total recovery time calculated using our algorithm.

Introduction

For older adults, falls are a debilitating health problem affecting physical and psychological

health [1]. Most falls in independent older adults occur when they slip (27%-32%) or trip

(35%-47%) while walking [1]. Thirty percent of community-dwelling older adults fall at least

once a year [1], and 10%-20% are recurrent fallers [2,3]. About 20% of falls are injurious,
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leading to reduced mobility and independence, and increased morbidity and mortality rates

[4]. Falls are associated with estimated medical costs of about $50 billion per year [5].

Center of pressure and center of mass use for assessing postural stability

A fall is defined as a failure of the balance control system to recover from an unexpected loss of

balance. Early studies addressing mechanisms underlying falls evaluated the relationships

between postural sway, as measured by center of pressure (COP) displacement, and falls [6,7].

Parameters generated based on the dynamics of the COP displacement facilitate modeling

mechanisms underlying balance control [8–10]. For example, recent studies quantify the

entropy of COP dynamics during quiet standing [11–13] and walking [14]. These studies pro-

posed that COP data entropy can be used to differentiate between fallers and non-fallers in

standing, though it is not clear which entropy features should be used. In walking, the interac-

tion between walking speed and duration was found to have an effect on the COP complexity.

Hof et al. [15,16] showed that during walking, balance is maintained by keeping the ‘extrap-

olated center of mass’ (xCOM; i.e., generalized center of mass (COM) variable based on the

COM displacement and velocity) within the boundaries of the base of support [17]. In order

not to fall as a result of a perturbation during walking, kinematic modifications in, e.g., walking

speed [18], step length and width [17,19], and cadence [20], are required [21,22].

Walking recovery processes from unexpected perturbations

In order to continue walking efficiently after a perturbation, gait kinematics have to be

restored to baseline levels [18,20]. Therefore, we should expect a relatively big and quick

response right after the perturbation, followed by a subtler decrease in gait variability until

baseline levels are achieved. This was demonstrated for walking speed and stepping frequency

[18,20].

Briefly, studies documenting the first stage of recovery from perturbation described the

electromyography (EMG) patterns associated with the initial stepping response e.g., [23] and

step length, step width and step time [24], as well as ground reaction force profiles [25] and

xCOM in relation to the base of support [17], which regain pre-perturbation baseline values in

2–3 steps (we see the same behavior in our data, not in the scope of this paper).

While these methods for quantifying recovery time concentrated on a short time window

following the perturbations, quantifying fast recovery processes (i.e., first stage of recovery),

longer time widows should be the focus when studying regaining regular gait pattern processes

[18,20].

Snaters et al. [20] applied rapid changes to treadmill speed and measured the dynamics of

step frequency adjustments. They used a two-process model of the sum of two exponentially

decaying changes to quantify the time course of fast and slow components. They showed that

the first component (2–3 steps after perturbation; ~1.44 seconds) is dominant in reducing the

amplitude of the response and gaining control on the COM. The second component requires

longer duration (~27.56 seconds). To the best of our knowledge, no other study has proposed

a systematic method for estimating the total recovery time of stepping characteristics.

Age effect on reaction to perturbations

McIlroy and Maki [26] showed that young and older adults use different strategies to regain

balance after medio-lateral perturbations in standing, and that the older adults use a greater

number of steps to recover. This result was repeated in walking [27].
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Older adults show slower reaction time capabilities [28] that are attributed to longer muscle

activation latencies in specific muscles, including hip flexors and knee extensors prior to and

during the swing phase of the reacting limb [29].

Cognitive load and its impact on recovery from perturbations

Concurrent cognitive load was found to prolong recovery times from unexpected perturba-

tions while walking [30–33], as well as having a negative effect on postural stability among fall-

prone populations with neurological disorders and/or with prior history of falls, as compared

to younger healthier groups [34]. However, task dependency was previously described. While

relatively easy cognitive tasks (e.g., walking while talking) have no apparent effect on the

motor task, more complex cognitive tasks (e.g., stroop task) show effects of attention [35,36].

Additionally, Ghai et al. [34] found that some dual tasks enhance (e.g., auditory switch task)

and other adversely impact (e.g., complex mental arithmetic task) postural stability.

In the present study, step length and step width were calculated to accomplish the following

aims: (1) devise an algorithm to calculate total recovery time; (2) conduct exploratory pilot

analyses to demonstrate the feasibility of the new method in characterizing total recovery time

among young and older adults under different perturbation conditions; and (3) explore differ-

ences in total recovery time for step length and step width parameters, as a function of pertur-

bation direction, participant group (young versus older adults), and cognitive load. We

hypothesized that total recovery time would be longer following medio-lateral than anterior-

posterior perturbations, young adults would recover faster than older adults, and total recovery

time would be shorter under single-task than dual-task conditions.

Methods

Participants

Twelve healthy young adults and twelve healthy older adults participated in the study (see

demographic and physical characteristics in Table 1). Exclusion criteria were: (1) obesity

(body mass index (kg/m2) > 30 [37]); (2) orthopedic condition affecting gait and balance (e.g.,

total knee replacement, total hip replacement, ankle sprain, limb fracture, etc.); (3) cognitive

or psychiatric conditions that could jeopardize the participant’s ability to participate in the

study (Mini-Mental State Exam score< 24 [38]); (4) heart condition, such as non-stable ische-

mic heart disease or moderate to severe congestive heart failure; (5) severe chronic obstructive

pulmonary disease; (6) neurological disease associated with balance disorders (e.g., multiple

sclerosis, myelopathy, etc.).

Table 1. Comparison of demographic and physical characteristics (mean ± standard deviation) in young and older adults.

Young Adults (n = 12) Older Adults (n = 12) P value

Age (years) 26.92 ± 3.40 69.50 ± 5.20 < 0.01�

Sex (F/M) 5/7 6/6 0.56

Height (cm) 168.42 ± 7.32 169.67 ± 6.68 0.82

Weight (kg) 63.67 ± 10.26 78.34 ± 16.22 0.02�

BMI (kg/m2) 22.35 ± 2.47 27.13 ± 4.82 <0.01�

Years of education 15.25 ± 2.67 14.27 ± 2.24 0.66

Comparisons were made using the Mann–Whitney U test and cross-tabulation as needed; BMI, body mass index;

�p< .05.

https://doi.org/10.1371/journal.pone.0233510.t001
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All participants signed an informed consent prior to entering the study, which was approved

by the Sheba Medical Center Institutional Review Board (Approval Number 9407–12).

Apparatus

We implemented a VR-based paradigm using the Computer Assisted Rehabilitation Environ-

ment (CAREN) High-End (Motek-Medical, the Netherlands; see Fig 1), a motion base plat-

form with an imbedded treadmill, surrounded by a 360˚ dome-shaped screen, enabling

optimal immersion in a largescale VR setting. During walking trials, participants (in a safety

harness) were presented with simulated ecological surroundings (e.g., urban public park).

Underneath the belts there are two parallel force plates (Zemic load cells; The Netherlands),

one under each belt. Each force plate has six sensors. Two sensors for the X axis (medio-lateral;

ML), three sensors for the Y axis (vertical), and one sensor for the Z axis (anterior-posterior;

AP). Force measurement precision is 0.5N (~51gr) and the reliable range of measurement is 0-

500kg.

Self-paced walking mode. The treadmill was operated in self-paced mode, in which the

motor is operated as a function of the instantaneous position and speed of the participant,

which are sampled using a motion capture system (see more details in [39]).

Physical perturbations. Perturbation types were classified according to the following cri-

teria: (1) perturbation direction–medio-lateral (i.e., right or left platform displacement) or

anterior-posterior (i.e., deceleration of one of the treadmill belts); (2) gait phase–immediately

after initial contact, mid-stance, or towards toe off, as detected in real time from foot markers

and force plates data; and (3) foot of reference (right or left foot that were detected in the rele-

vant gait phase). An example for perturbation type by criteria would be: (1) platform left in (2)

initial contact (3) right = a displacement of the platform to the left was executed when initial

contact phase was detected for the right foot. Medio-lateral platform perturbations were

achieved by displacing the moving platform 15 cm, to the left or to the right, over 0.92 seconds

(perturbation Level 12, see Fig 2). The platform held its new position for 30 seconds, to allow

full recovery of the gait parameters (i.e., step length and step width), and then returned gradu-

ally to its original position over three seconds; Anterior-posterior treadmill belt perturbations

were achieved by reducing the speed of one of the treadmill belts by 1.2 m/s with a deceleration

Fig 1. Experimental setup. Participants walked on a treadmill in self-paced mode. The treadmill is embedded in a

moveable platform with six degrees of freedom (three translations and three rotations). They were exposed to

unexpected platform (medio-lateral) or treadmill (anterior-posterior) perturbations in a virtual reality environment.

Vicon motion capture cameras were used to calculate walking parameters of step length and step width based on

marker data from the feet. A small backpack was used to carry a wireless amplifier connected to biosensors (e.g.,

electroencephalography, electromyography), data from which are not reported here.

https://doi.org/10.1371/journal.pone.0233510.g001
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of 5 m/s2 (perturbation Level 12, see Fig 2). To enable anterior-posterior perturbations, the

treadmill speed was fixed to the measured average self-paced walking speed five seconds prior

to perturbation onset. The perturbation was presented when the relevant gait phase was

detected (see below), and three seconds later the treadmill was once again set to self-paced

mode (see perturbation profiles, Fig 2).

We aimed to introduce perturbations in particular phases of the gait cycle: initial contact,

mid-stance, and toe off. Relevant gait phase was detected online using force plate and toe

marker data in the sagittal plane. The former was filtered using a low-pass filter with cutoff fre-

quency of 5Hz and a force threshold of 25N was set. Initial contact was detected when the ver-

tical force from the foot in front (leading limb; identified using the toe marker) exceeded a

minimum of 35N (to avoid force plate baseline noise); mid-stance was detected 200 ms after

initial contact; and toe off was detected when the vertical force from the force plate on the side

of the trailing limb was below 5 N. Once the relevant gait phase was detected, a perturbation

execution command was initiated by the system. Since there was a delay between the detection

of the relevant gait phase and perturbation execution (~250 ms), we re-evaluated the actual

perturbation type (i.e., initial contact, mid-stance, or toe off) post-hoc. Gait phases and leading

limb were defined using the heel markers’ position in the sagittal plane [40]. Initial contact and

toe off were detected when the heel marker was at its maximal forward or backward position,

respectively, with 0.025 second margins. Perturbation that was introduced beyond these mar-

gins was considered a mid-stance perturbation.

While the intention was to introduce perturbations at magnetite Level 12 (see Fig 2), four

older adults expressed fear when perturbation magnitude was raised, and were tested using

lower magnitudes (levels 3–8, see Fig 2 legend). Perturbation magnitude and timing (see

experimental procedure below) were controlled and modified by the VR system computer.

Possible perturbation levels ranged from Level 1 to Level 20, participants in the study were

subjected to perturbation magnitude Level 12. For platform perturbations, Level 12 is imple-

mented by displacing the platform 15 cm to the right or left over 0.92 seconds. The levels were

used to allow for participants who feared the high magnitude perturbations to participate (four

of the 12 older adults). The levels were constructed so that the platform displacement is always

15 cm, and the time to complete the distance was manipulated between 1.36 seconds (Level 1)

and 0.6 seconds (Level 20); decrease of 0.04 seconds per level. For treadmill perturbations,

Level 12, we used a deceleration of 5 m/s2 and speed reduction of 1.2 m/s. For the different lev-

els we used fixed deceleration of 5 m/s2, and the reduction in speed was manipulated between

Fig 2. Perturbation profiles used in the platform (top) and treadmill (bottom) experiments.

https://doi.org/10.1371/journal.pone.0233510.g002
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0.1 m/s (Level 1) and 2 m/s (Level 20); increase of 0.1 m/s per level. Prior to and immediately

following the treadmill perturbation (periods between black and red vertical dashed lines,

respectively), self-paced was switched off and the two belt speeds were fixed to the mean walk-

ing speed in the last five seconds; (see text for further details). SSV–steady state velocity

Capturing gait parameters. Gait speed was obtained from an encoder on the drive shaft

of the treadmill motor. Spatial-temporal gait parameters (i.e., step times, step length, and step

width) were obtained from a Vicon motion capture system (Vicon Motion Systems, Oxford,

UK) (set of 41 body markers, 18 cameras, 120Hz sampling rate, 0.11 cm spatial accuracy). Gait

phases were detected using foot marker and force plate data.

Experimental procedure

Stage I: Self-paced walking–learning and acclimation. The trials started with acclima-

tion sessions during which participants were introduced to the self-paced walking paradigm.

Participants were asked to maintain their comfortable walking speed for one minute, and then

to dynamically modify their gait speed, including accelerating, decelerating, coming to a full

stop, and resuming their comfortable walking speed. This was repeated until they felt confi-

dent and performed the transition from standing to comfortable walking speed smoothly.

Stage II: Introducing physical perturbations during walking. The protocol consisted of

walking trials in two different scenes (park and a no-hands hanging bridge over a deep can-

yon). Each scene was used in four walking trials of single-task and dual-task conditions (see

Fig 3 for more details).

Once the participant reached steady state walking velocity (see S1 Appendix), one of several

types of unexpected perturbations was randomly presented (see below) in two trial conditions:

(a) the single-task condition, in which no additional cognitive load was introduced; (b) the

dual-task condition, in which participants were asked to perform concurrent arithmetic calcu-

lations [41], higher cognitive load. Similar arithmetic tasks were practiced by the participants

prior to the gait trials, while sitting and standing. Participants were instructed to react naturally

to the perturbations, to prevent themselves from falling.

A total of 18 possible surface perturbations were used in random order to reduce learning

effects anticipatory reactions from trial to trial [21,42].

At least 30 seconds of baseline walking were implemented before and after every perturba-

tion to allow full recovery of the kinematic gait parameters. This experiment was part of a

Fig 3. Study protocol. The protocol consisted of walking trials in two different scenes, park (A) and a no-hands

hanging bridge (B). Each scene was used in four walking trials of single-task and dual-task conditions in walking bouts

of ten and five minutes with rest between walking trails. Participants performed eight walking trails, with the exception

of one young and five older participants who asked to stop. The order of the scenes and the conditions were

randomized across participants.

https://doi.org/10.1371/journal.pone.0233510.g003
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larger study with the overall aim of developing algorithms for the analysis of physiological net-

works for fall prevention in elderly subjects with and without neurological disease using virtual

reality environments. Additional procedures related to the larger experimental protocol are

described in the S1 Appendix.

Data handling and outcome calculations

The proposed algorithm for the estimation of total recovery time for gait (see below) was

based on the re-stabilization of discrete step length and step width variables.

Step width and step length calculation. A MATLAB Graphical User Interface (Math-

Works Inc.) was customized to assess gait cycle parameters. Motion capture data from heel

markers were used to semi-automatically detect initial contact times and calculate step length

and step width (see Fig 4A for more details). The following equations (conducted for each leg)

were used for the calculation of step length and step width, respectively:

SL ¼ HMLðyÞ � HMTðyÞ ðEq 1Þ

SW ¼ HMLðxÞ � HMTðxÞ ðEq 2Þ

where SL is step length, SW is step width, y is anterior-posterior axis, x is the medio-lateral

axis, HML is the leading limb heel marker at the moment of initial contact, and HMT is the

trailing limb heel marker at the moment of initial contact of the leading limb. Examples of

actual step length and step width data before and after perturbations are shown in Fig 4B and

4C, respectively.

Definition of an automated algorithm to detect total recovery time. Given a graph that

represents a vector of gait parameter data (i.e., step length or step width) with a perturbation at

time t, the goal of the algorithm is to detect the first point after t at which the graph (i.e., the

Fig 4. Step width and step length calculation and sample data. (A) Illustration of step length and step width

calculation. (B) Step length and step width behavior in response to anterior-posterior treadmill belt perturbation. Top

panel: trace of treadmill belt speed shows treadmill perturbation profile; red–right belt, blue–left belt (seen only at time

of perturbation, as the two belt speeds were otherwise identical); middle panel: trace of step length values prior to and

post perturbation; lower panel: trace of step width values prior to and post perturbation. (C) Step length and step width

behavior in response to medio-lateral platform perturbation. Top panel: trace of platform displacement shows

platform perturbation profile (positive values = right direction); middle panel: trace of step length values prior to and

post perturbation; lower panel: trace of step width values prior to and post perturbation. Negative step length values

represent backward steps of the recovering limb, while negative step width values represent a crossover step with the

leading limb. (B) and (C) depict 45 and 40 seconds, respectively, of walk trials from one participant. Values from the

right and left leg are depicted in all panels (alternating; not distinguished in the trace). Vertical dashed line represents

perturbation onset time.

https://doi.org/10.1371/journal.pone.0233510.g004
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values in the vector) is considered “recovered”. Meaning having reached a stable pattern–the

variability of the gait parameter is reduced to baseline levels.

Fig 5 will be used to facilitate our explanation of the algorithm, which operates in three

stages: (1) computes two implied graphs using a moving window of six samples, a graph of

means, and a graph of standard deviations, from the original data; (2) standardizes the implied

graphs, and creates a combined graph; and (3) scans the combined graph from left to right and

continually updates an index, which eventually represents the point of recovery (see Fig 5 and

S1 Appendix).

Black dashed line represents perturbation onset. Stage 1. The original walking parame-

ter graph (Fig 5A) is scanned using a moving window of six samples to compute two graphs:

mean and standard deviation (Fig 5B). Each point in the graphs represents the mean or stan-

dard deviation of the six original samples prior to it.

Stage 2. For each implied graph, 20 samples prior to perturbation onset were taken as base-

line (MBL and SDBL; Fig 5) to standardize the implied graphs. Mean and standard deviation

were calculated for each baseline. Then, each value Mi and SDi of the implied graphs is stan-

dardized, and matching standardized data points are summed to obtain the overall sum of

deviations (OSDev–Fig 5C) using the following equation:

OSDev; i ¼ 0:25�
Mi � meanðMBLÞ

stdevðMBLÞ

�
�
�
�

�
�
�
�þmax 0;

SDi � meanðSDBLÞ

stdevðSDBLÞ

� �

ðEq 3Þ

where i = 1, 2, . . ., L; and L = length of implied graphs. Intuitively, the combined graph esti-

mates the deviation from the behavior of the graph prior to perturbation. The second element

in the equation takes the positive values and replaces the negative values with zeros, as negative

values mean lower standard deviation, which corresponds to smaller variance (i.e., more sta-

ble). Since the average value is less indicative of gait recovery, the elements in Eq 3 are summed

Fig 5. Algorithm performance steps. (A) Graph of step width values (blue circles; connected to graphically enhance

perturbation effect). (B) Implied graphs for means (M; red) and standard deviations (SD; yellow), calculated using a

moving window of six samples. Each point in the graphs represents data from six preceding original data points

(depicted by the black vertical arrow between panel A and B). For each implied graph, 20 samples prior to perturbation

onset were taken as baseline (MBL and SDBL, denoted by horizontal black brackets). (C) MBL and SDBL were used to

standardize the implied graphs, to create the overall sum of deviations (OSDev–blue line, calculated using Eq 3). To

determine the recovery point, the algorithm scanned the OSDev graph from left to right, using a moving window of 20

values starting at perturbation onset. The recovery point is then defined using a mathematical criterion (see S1

Appendix) that assesses minimal changes in signal amplitudes (green circle; corresponds to the original step value

indicated by the green arrow in panel A).

https://doi.org/10.1371/journal.pone.0233510.g005
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up with a ratio of 1:4 in favor of the second element. The outcome of this stage is the OSDev

graph (Fig 5C), which is used to inspect the recovery criteria.

Stage 3. To determine the point of recovery, the algorithm scans the OSDev graph from left

to right, using a moving window of 20 values starting at perturbation onset. For each window,

the algorithm computes “amplitude”, defined as the maximum difference between any two val-

ues in the window (curamp). Two more amplitudes are considered: (1) firstamp = the amplitude

of the first window right after perturbation (the a priori assumption is that this is the largest

amplitude difference due to the reaction to perturbation); and (2) bestamp = an amplitude that

is at least 50% smaller than the first amplitude and satisfies the condition in Eq 4. The condi-

tion for updating bestamp is reevaluated in every window using the curamp value. curind and

bestind are the indeces of the first sample in the window for curamp and bestamp, respectively,

and are updated with them as needed. The point of recovery is the point at which the ampli-

tude difference is small enough relative to the “distance” from perturbation (see Eq 4) and is

found in the bestind after the last window was assessed.

bestamp � curamp

firstamp � bestamp
> 1% � ðcurind � bestindÞ ðEq 4Þ

The condition in Eq 4 is stricter if the position of the current window is further away from the

bestamp window index. This is done in order to overcome the natural variance of amplitudes.

The point of recovery is defined as the bestind after calculating all amplitude differences in the

whole OSDev vector within consecutive windows (see Section 4 S1 Fig in S1 Appendix for

complete description of the process of defining the point of recovery).

It should be clarified that the algorithm looks for the point in time where the window’s

amplitude stops decreasing. This is done by considering the significance of the difference from

the previously detected amplitude decrease. For this we used Eq 4, and we set a conservative

threshold of 1% to prevent undesired delays in total recovery time detection.

Data handling and statistical analyses

Non-parametric statistics were used. Medians and 95% confidence interval of the median were

used to describe central tendency of the total recovery time distributions.

ICC estimates and their 95% confident intervals were calculated for total recovery time

detection using SPSS statistical package version 23 (SPSS Inc, Chicago, IL) based on a mean-

rating (k = 2), absolute-agreement, 2-way mixed-effects model, calculated from total recovery

time estimation of 100 random perturbations (200 samples– 100 for step length and 100 for

step width), comparing the algorithm for total recovery time detections with human labeling

(UR, blinded to the results of the algorithm).

To explore the effects of perturbation direction (medio-lateral versus anterior-posterior),

the group (young versus older adults), and cognitive load (single task versus dual task) on total

recovery times, principal component analysis (PCA) was used, applying the singular value

decomposition (SVD). PCA allows for clustering of multidimensional data, in our case, com-

paring total recovery time, a bi-dimensional property consisting of the combination of step

length and step width, across different groups, conditions, and perturbation direction. Krus-

kal-Wallis one-way ANOVA was used to test the effect of perturbation intensity on total recov-

ery time. Since we found a significant effect of perturbation intensity on step length total

recovery time (p<0.01), only Level 12 perturbations (87% of all perturbations) were included

in the PCA analysis for comparisons of total recovery time for group, condition, and perturba-

tion direction. Prior to using PCA, values of total recovery time for step length and step width

were standardized (i.e., transformed into units of standard deviation), using Eq 5, so they
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could be comparable.

ðtRcT � tRcTÞ=stdðtRcTÞ ðEq 5Þ

were tRcT is the total recovery time in seconds for step length or step width, and std is the stan-

dard deviation. The standardized total recovery time is unitless. These values were used in the

PCA algorithm as an n x 2 matrix (were n is the length of the standardized step length and step

width vectors).

PCA was performed using MATLAB R2016b (MathWorks Inc.). Wilcoxon rank sum test

was used to compare central tendencies along the different principal components (PC) to test

the effects above. Additionally, Wilcoxon rank sum test was used to test for differences

between groups, conditions, and perturbation direction for total recovery times of step length

and step width separately. Significance level was set to p<0.05.

The protocol is also published here: dx.doi.org/10.17504/protocols.io.bdjvi4n6.

Results

Algorithm performance and reliability

Total recovery time values were calculated for step length and step width separately, based on

829 samples. “No deviation” was found in 47 and 57 perturbations for step length and step

width, respectively (11 overlapping). “No recovery” was detected in 11 and 33 perturbations

for step length and step width, respectively (1 overlapping; see Fig 6).

The 829 perturbations include samples from pilot trials aimed at defining the appropriate

baseline period (>18 seconds of undisturbed walking prior to perturbation to include at least

26 steps–see S1 Appendix).

Total recovery time distributions. Distribution of total recovery time in the two groups,

for step length and step width, across all participants, experimental conditions, perturbation

types and intensity Level 12 is presented in Fig 7A–7D. In most cases, participants recovered

from the unexpected mechanical perturbations after 4–6 seconds regardless of the perturba-

tion type (Fig 7A–7D). The 95% confidence intervals of the medians of total recovery time

were 4.70–5.06 seconds for step length in older adults, 5.32–5.96 seconds for step width in

older adults, 4.86–5.14 seconds for step length in young adults and 5.49–5.97 seconds for step

width in young adults (S1 and S2 Tables summarizes all results for Level 12 perturbation

types).

The detection algorithm results in comparison to human labeling showed moderate reli-

ability (ICC = 0.57, 95% CI = 0.42–0.67, p<0.01).

Fig 6. Flow chart of algorithm performance for gait parameters of step length (SL) and step width (SW).

https://doi.org/10.1371/journal.pone.0233510.g006
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Exploratory analyses: Effects of perturbation type, group, and cognitive load. PCA

plots comparing total recovery times for step length and step width are shown in Fig 8 and in

Table 2. Statistically significant differences were found between total recovery time values in

response to medio-lateral versus anterior-posterior perturbations–for step length median total

recovery time was 5.14 and 4.61 seconds from ML and AP perturbations, respectively. For step

width, the corresponding results were 5.52 and 6.41 seconds, respectively. No significant dif-

ferences were found between older and young adults or between cognitive task conditions.

Furthermore, the plots show similar variability in each pair of calculated principal components

(e.g., 53% and 47% for PC1 and PC2, respectively, Fig 8B), which means that each PC of the

transformed total recovery time values for regaining regular, stable step length and step width

parameters contributed roughly equally to the ability to find differences in the above

comparisons.

Fig 7. Total recovery time distributions. Bins of two seconds were used. (A), (C), distribution of step length total

recovery time for older and young adults, respectively. (B), (D), distribution of step width total recovery time for older

and young adults, respectively. The histograms show a non-normal distribution with a skew to the right of total

recovery time for young and older adults.

https://doi.org/10.1371/journal.pone.0233510.g007

Fig 8. Principal component plots of total recovery time values. Principal component plots of total recovery time

values for regaining stable gait parameters (step length and step width) for the following comparisons: (A) perturbation

direction–anterior-posterior (blue dots) versus medio-lateral (red dots); (B) group–older adults (blue dots) versus

young adults (red dots); (C) cognitive load conditions–single task (blue dots) versus dual task (red dots) among older

adults; and (D) cognitive load conditions–single task (blue dots) versus dual task (red dots) among younger adults.

PC1 and PC2 are the two components found by the PCA, and the percentages represent the percent of variation

explained in the data by each component (see scree plots, S2 Fig, in S1 Appendix).

https://doi.org/10.1371/journal.pone.0233510.g008
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SL = step length; SW = step width; OA = older adults; YA = young adults; AP = anterior-

posterior; ML = medio-lateral; ST = single task; DT = dual task; PC = principal component.

In secondary analysis, Wilcoxon rank sum test was used to test for differences between

groups, conditions, and perturbation direction for total recovery times of step length and step

width separately. No significant differences were found for any of the comparisons (p>0.1).

Discussion

Our newly developed algorithm successfully estimated total recovery time in 91.07% of the

samples, detected no deviation in 6.27%, and could not converge on the available data points

in 2.65% (Fig 6). Across groups, conditions, and perturbation types, step length and step width

regained stability within the first six seconds after perturbation (Fig 7). An exploratory PCA

identified a significant difference between anterior-posterior and medio-lateral perturbations

but no significant difference between older and young adults or between single-task and dual-

task conditions (Table 2). In comparison to human labeling, the algorithm shows moderate

ICC values (see more in the Limitations section below).

Total recovery time from physical perturbations—earlier estimations

Response times to physical perturbations during walking were previously described based on

muscle recruitment (EMG findings) (e.g., [42,43]) and on first recovery step (e.g., “crossover”

or “lateral” step) (e.g., [17]). These studies indicated relatively fast responses (~100–350 ms

and>300 ms, respectively). In the present study, we assessed the time it took to regain stable

gait parameter patterns after surface perturbations, and found that it was 10–20 times longer

than initial step responses.

Hof et al. [17] reported that two steps should be sufficient to contain the extrapolated center

of mass in the boundaries of the base of support after a perturbation while walking. Lee et al.

[25] found similar results when analyzing COP data, trunk kinematics, and center of mass

velocity to characterize the recovery responses from a trip in balance-impaired individuals who

are prone to falling. We believe this is only a partial view of the recovery process, as some gait

parameters, such as speed, cadence [18,20], step length, and step width (in our study) take lon-

ger to recover. In the case of a perturbation, such as a “slip” (i.e., loss of footing of the stance

foot) or a “trip” (i.e., obstruction of the swinging foot), the extrapolated center of mass might

cross the base of support, implying instability. Thus, a recovery strategy such as trunk

Table 2. Mean standardized total recovery time for step length and step width to standard deviation units (standardized mean): Independent samples comparisons

of perturbation direction, participant group, and cognitive load for the first and second principal components.

ML vs. AP OA vs. YA ST vs. DT in OA ST vs. DT in YA

AP ML OA YA ST DT ST DT

PC1 Standardized mean 0.11 -0.05 0.03 -0.04 0.02 -0.10 -0.05 0.08

Z Value 0.24 0.15 0.62 -1.23

P value 0.81 0.88 0.54 0.22

PC2 Standardized mean -0.39 0.13 0.01 -0.03 0.02 -0.02 0.00 0.02

Z Value -6.21 0.81 0.66 -0.19

P value <0.01� 0.42 0.51 0.85

SL = step length; SW = step width; PC = principal component; AP = anterior-posterior; ML = medio-lateral; OA = older adults; YA = young adults; ST = single task;

DT = dual task.

�p< .05.

https://doi.org/10.1371/journal.pone.0233510.t002
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movement or a step in the same direction and of equal magnitude to the displacement of the

extrapolated center of mass is essential to keeping equilibrium [17,19,25]. This mechanism

leads to rapid containment of the extrapolated center of mass within the base of support, and

prevents a fall. We believe this first recovery process is followed by a secondary process of gait

optimization, where gait parameters are fine-tuned. This is supported by the findings of Snaters

et al. [20] who studied the recovery of step frequency after a perturbation. They observed two

stages in stepping frequency recovery process: (1) fast and dominant change, occurring in ~1.44

seconds (2–3 steps); (2) the second stage takes about 27 seconds to complete. We attribute the

discrepancy between our total recovery time results (5–6 seconds) and the time Snaters et al.

report for the second stage mainly to methodological factors: (1) they evaluate cadence, while

we evaluate step width and step length, imperative parameters for balance recovery and the con-

tainment of COM in the boundaries of the base of support; (2) type of perturbations: we used

abrupt, physical changes (slips, displacements), while they used a smooth, longer transition to a

new constant speed, which leads to a longer gait adaptation process.

Our results differ from those reported by O’Connor and Donelan [18], who showed that

people gradually return to steady state baseline walking speed in ~365 seconds after a visual

walking speed perturbation. We believe that the discrepancy between these findings and our

own is directly related to the paradigm, as visual stimuli (perturbations) are known to elicit a

delayed response time (5.7 seconds, in this case) [44]. Another factor differentiating the studies

is duration of perturbation. Our participants were exposed to a relatively short, discrete pertur-

bation, while O’Connor and Donelan introduced either one gradual perturbation or a series of

sinusoidal perturbations. We believe that in the latter case, continuous processes of adaptation

to the inherently unstable environment delay the stabilization process. Finally, changes in step

length affect walking speed, which can explain the shorter total recovery times in the present

study (4–6 seconds in the majority of cases, see Fig 7).

Total recovery time distribution and variability

Figs 7 and 8 suggest high variability in total recovery times, with a central tendency skewed to

the right. Recovery stepping responses to unexpected perturbations are constrained by a floor

effect, as there is a limit to the minimal time required to react. In addition, participants had to

respond promptly in order to prevent a fall (first recovery process), pushing the median

towards lower values. However, after the initial recovery step response, gait amendments are

not essential to prevent a fall, and the process of regaining a stable pattern of gait parameter

generation lasts longer. The price paid for slow gait recovery is marginal (i.e., more energy

expenditure [45,46]) and can therefore be overlooked at times.

Age, task, and gait parameter effects on total recovery time–pilot feasibility

analyses

Non-parametric statistics, PCA, were used to demonstrate the feasibility of using the total

recovery time parameter, which was obtained from the new algorithm presented in the present

work, for studying the differences across different cohorts, conditions, perturbation directions,

and gait parameters. We view these results as preliminary and limited by small sample size.

Herein these results are discussed in comparison to the existing literature.

Young versus older adults. We found no significant differences in the total recovery

times between young and older adults. The non-significant difference we found is in agree-

ment with McIlroy and Maki [26] that characterized the compensatory stepping responses of

older and young adults to unpredicted postural perturbations. They show that stepping limb

kinematics are very similar between the groups, and that young and older adults react in
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similar times. Byrne et al. [47] found that young and older adults differ in gait coordination

only in the breaking period, no differences were found in constant walking. Liu and Lockhart

[48] showed that older adults use alternative strategies to compensate for physiological deficits

to maintain balance, achieving the effectivity of young adults. Similar findings were presented

for neural resource allocation [49]. Additionally, we only compared older adults who could

withstand the perturbation magnitude Level 12, the same as the young adults. By doing so, we

only used data from the “better” older adults. It might be the case that if we would compare the

“weaker” older adults to the young adults, a group effect will be significant.

Single task versus dual task. Our preliminary analyses revealed no differences in the total

recovery times, whether a concurrent cognitive task was introduced or not. Previous studies

showed that young and older adults are affected by concurrent dual task, but only if it is chal-

lenging to them [35,36]. Further study is required to delineate the effects of cognitive load on

total recovery time, for example, by assessing how confounding performance levels of the con-

gruent task are on the total recovery time results.

Medio-lateral versus anterior-posterior. We found significant differences between total

recovery time from ML perturbation as compared to AP perturbations: values for step length

recovery time were higher after ML, and recovery time of step width were higher for AP

perturbations.

One may argue that this finding is counter intuitive, since AP perturbations have a greater

physical impact on step length, and this parameter should recover more slowly, and ML per-

turbations immediately challenge ML control of COM placement within the base of support,

therefore step width should recover more slowly.

We speculate that since regulation of gait parameters is prioritized in the direction of the

more disturbed gait parameter (e.g., step width in the case of ML perturbation), the regulation

of other parameters is delayed. This speculation is in line with findings about general motor

control principles. For example, Todorov and Jordan [50] formulated the “minimal interven-

tion principle” with reference to the performance of manual reaching movements. According

to this principle, when a motor task involves controlling multiple degrees of freedom at once,

the system optimizes motor coordination by reducing the degrees of freedom being attended

to at any given moment, and only relevant variability is reduced, to allow for optimal task per-

formance. In the case of response to perturbation, the variability in the more perturbed plane

(i.e., step width in the ML perturbations) is thus regulated first.

Finally, we re-iterate that our hypotheses should be corroborated by additional data to be

collected in future studies.

Algorithm advantages

Our method calculates total recovery time from unexpected physical perturbations during

human walking. It can be used to find the point of recovery with respect to any discrete vari-

able for which sufficient data points prior to and post perturbation are available. Other algo-

rithms in the literature are specific to one gait parameter (e.g., gait speed [18] or step

frequency [20]), which are continuous in their nature, not series of discrete events. It is rela-

tively simple, based on an algorithm that uses mean, standard deviation, and amplitude differ-

ences as independent variables. Finally, the major advantage of this algorithm is that it has the

ability to adjust, per case, considering the baseline before perturbation.

Algorithm engineering advantages

The algorithm can be easily manipulated to fit different types of data. As it is now, the algo-

rithm requires at least 26 data points for baseline, and at least 20 data points after the
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perturbation for just the first window. If these conditions are not met (e.g., due to the nature of

the data), the window size of the baseline for the normalization of mean and standard devia-

tion can be shortened. The window for finding the point of recovery on the OSDev graph can

also be shortened. The right side of Eq 4 defines the algorithm’s sensitivity to variation in the

data. When the variability is high and point of recovery designation is too late, the constant on

the right side of Eq 4 can be increased. The percent change from the firstamp for the initiation

of bestamp and bestind can be decreased as well.

Implications, limitations, and future directions

In the present study, we calculated recovery of step length and step width to a steady state. Our

results suggest that beyond the quick balance recovery after physical perturbations (<2 sec-

onds [17,20,24,25]), there are additional recovery processes regulating gait patterns. This regu-

lation might be occupying some brain capacity and elevating energy expenditure.

Since there is no “gold standard” for detecting total recovery time, we compared the algo-

rithm performance with human labeling; this comparison is limited since human labeling is

subjective.

As discussed, direct follow up study is required to assess age, task, and step length/width

effects. Further, the assessment of total recovery time may facilitate understanding of the

mechanisms related to gait regulations, e.g., brain activity as expressed by electroencephalogra-

phy and energy expenditure.

Future studies are needed to integrate a greater number of gait parameters to further under-

stand adaptation process related to the total recovery time.

We recommend at least 30 seconds of stable baseline prior to exposure to unexpected per-

turbations in future studies. Similarly, permitting more than 30 seconds after perturbation

(prior to preparation for a new perturbation) might increase the likelihood of detecting total

recovery time in cases where “no recovery” would otherwise be designated. Our study can

pave the way to incorporating total recovery time after unexpected loss of balance as a tool in

the assessment of walking and balance impairments, to aid in diagnosis and in monitoring of

treatment outcomes.
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