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Background: Accurate parcellation of the cerebral cortex in an individual is a guide to its underlying organization. The most promising
in vivo quantitative magnetic resonance (MR)-based microstructural cortical mapping methods are yet to achieve a level of parcellation
accuracy comparable to quantitative histology.
Methods: We scanned 6 participants using a 3D echo-planar imaging MR fingerprinting (EPI-MRF) sequence on a 7T Siemens scanner.
After projecting MRF signals to the individual-specific inflated model of the cortical surface, normalized autocorrelations of MRF
residuals of vertices of 8 microstructurally distinct areas (BA1, BA2, BA4a, BA6, BA44, BA45, BA17, and BA18) from 3 cortical regions
were used as feature vector inputs into linear support vector machine (SVM), radial basis function SVM (RBF-SVM), random forest, and
k-nearest neighbors supervised classification algorithms. The algorithms’ prediction performance was compared using: (i) features
from each vertex or (ii) features from neighboring vertices.
Results: The neighborhood-based RBF-SVM classifier achieved the highest prediction score of 0.85 for classification of MRF residuals
in the central region from a held-out participant.
Conclusions: We developed an automated method of cortical parcellation using a combination of MR fingerprinting residual analysis
and machine learning classification. Our findings provide the basis for employing unsupervised learning algorithms for whole-cortex
structural parcellation in individuals.
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Introduction
Accurate subdivision of the human cerebral cortex
into distinct structural areas in individuals enables the
effects of aging and neurological disorders on different
cortical regions to be examined (Lebel et al. 2008; Rose
et al. 2008). Additionally, it is of value in evaluating
the association between tissue microstructure and
areal functions (Wahl et al. 2010). Furthermore, cortical
parcellation in individuals at the voxel level can assist
the delineation of abnormal tissue (Awad et al. 1991;
Duffau 2012). This may be clinically important, for
example in individuals with intractable epilepsy, in
whom the identification of subtle malformations of
cortical development associated with the seizure focus
may enable curative resective surgery.

Recent advances in high-field magnetic resonance
imaging (MRI) allow in vivo imaging at mesoscopic scale
(0.1–0.5 mm), with different image contrasts. These
images can be used in indirect quantitative methods
that derive information about tissue microstructure
(Weiskopf et al. 2015a). As different MR modalities

are differentially sensitive to microstructural tissue
properties, integration of complementary information
from different modalities may increase the accuracy
with which microarchitectonically distinct cortical areas
can be distinguished (Cohen-Adad et al. 2012; Mangeat
et al. 2015; Weiskopf et al. 2015b; Marques et al. 2017;
Cercignani and Bouyagoub 2018; Edwards et al. 2018).
Quantitative MR relaxometry parameters (e.g. T1, T2,
T2

∗) are sensitive to microarchitectonic features such
as fiber orientation (Cohen-Adad et al. 2012), myelin
density (Geyer et al. 2011; Tardif et al. 2013), and cortical
depth (Tardif et al. 2013). However, the relationship
between these parameters and microstructural features
is nonspecific; for example both higher myelination and
greater iron concentration reduce T1 values (Weiskopf
et al. 2015b; Cercignani and Bouyagoub 2018 ; Edwards
et al. 2018). Hence, complementary information from
other MR modalities is required for accurate parcellation
of the cerebral cortex (Cercignani and Bouyagoub
2018; Edwards et al. 2018). For example, in areas such
as the primary and secondary visual cortices where
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iron and myelin are co-localized, opposing effects on
susceptibility may be used to complement information
from T1 and T2

∗ measurements to allow the contribution
of myelin to MR signals to be quantified more accurately
(Stuber et al. 2014; Marques et al. 2017).

The use of multi-contrast MRI for in vivo microstruc-
tural mapping requires optimal data acquisition and
data integration methods to be defined. These should
account for potential collinearity between different MR
parameters, thereby allowing the extraction of comple-
mentary information that can be combined to yield novel
information that is greater than the sum of information
from individual MR contrasts (Cercignani and Bouyagoub
2018). Currently, there is no consensus on the optimal
data acquisition and integration methods (Cercignani
and Bouyagoub 2018). Conventionally, multimodal MRI
involves independent acquisition of each contrast, a pro-
cess that is time-consuming and costly. Moreover, differ-
ences in image resolution and nonlinear geometric mis-
matches between image modalities acquired using dif-
ferent types of readouts may result in large errors during
data integration and large biases in derived microstruc-
tural properties (Mohammadi et al. 2015; Cercignani and
Bouyagoub 2018). To obviate this, specially designed joint
acquisition MRI sequences (Yablonskiy and Haacke 1997;
Marques et al. 2010; De Santis et al. 2016) have been
developed to enable more efficient acquisition of multi-
ple image weighting in a single scan. Complex analytical
models are required to extract information from multiple
MR contrasts from data acquired in this fashion (Cercig-
nani and Bouyagoub 2018). Previous models were mostly
developed for ex vivo experiments (e.g. Stuber et al.
2014) and performed inconsistently when used for in
vivo whole-cortex microstructural characterization (e.g.
Marques et al. 2017) due to field inhomogeneity, lower
signal-to-noise ratio (SNR), and the effects of unmodeled
biological factors on the MR signal (Edwards et al. 2018).

MR fingerprinting (MRF) has the potential to avoid
the obstacles noted above. MRF facilitates simultaneous
quantification of multiple tissue properties (e.g. T1 and
T2) in a single scan by pseudorandom variation of acqui-
sition parameters (e.g. repetition time, echo time, flip
angle) (Ma et al. 2013). Pseudorandom changes in acqui-
sition parameters result in unique signal evolution from
voxels comprising structurally different tissues. Using
the same pseudorandom acquisition parameters, Bloch
equation simulations of MRF signals corresponding to
a range of tissue properties of interest are used to pre-
compute a dictionary and dictionary entries are matched
to the acquired MRF signal in each voxel. The tissue
properties used to generate the simulated signal which
best matches the acquired signal are then assigned to
the voxel (Ma et al. 2013). In a previous study, we intro-
duced the use of MRF to dissociate microstructurally
distinct regions of the human cerebral cortex (Moinian
et al. 2022). We developed a MRF residual analysis frame-
work in which each voxel’s residual signal contained
the collective unmodeled information in the acquired

MRF signal after removing the effect of T1 and T2
∗. MRF

residuals revealed region-specific patterns that allowed
the identification of all 11 cortical areas evaluated in
our previous study. In contrast, estimated T1 and T2

∗

failed to dissociate all cortical areas in some participants.
This finding suggests that for the purpose of cortical
microstructural parcellation, MRF signals contain spa-
tiotemporal information that is richer than the spatial
information from static quantitative T1 and T2

∗ maps.
Our previous analysis was based on the average MRF
residual signals from each target area and the utility
of residual-based analyses at the voxel-level was not
investigated (Moinian et al. 2022).

The MRF residual signal from each voxel contains
information about an ensemble of tissue properties that
is not explained by the Bloch equations, an established
MR signal model that incorporates T1 and T2

∗. The com-
bined effect of unmodeled MR properties on the resid-
ual signal is complex. The approach of using analytical
models to describe these effects at the voxel level would
face the same issues that impede modeling approaches
to joint acquisition MRI sequences. Furthermore, to ben-
efit from the spatiotemporal information in MRF signals,
these models would need to be developed on high dimen-
sional signals (because each MRF signal could contain
over 1,000 data points) from a large number of voxels,
adding to the complexity of identifying area-specific pat-
terns. Machine learning (ML) classification algorithms
provide a data-driven alternative. They facilitate the inte-
gration of information from high-dimensional data to
develop a statistical model characterizing MRF resid-
ual signals so as to identify cortical region-based differ-
ences at the voxel level. In supervised ML classification,
a model is trained using a set of data samples, labeled to
describe the distinctions between categories present in
the training dataset. A generalizable classification model
would allow reliable, efficient, and automatic prediction
of the class of future data samples with unknown labels
(Magnin et al. 2009; Focke et al. 2011; Orru et al. 2012;
Sacchet et al. 2015; Usman and Rajpoot 2017).

This research aims to establish the feasibility of
automated in vivo parcellation of the cerebral cortex
in individual subjects using data-driven ML-based
algorithms to identify region-specific patterns in spa-
tiotemporal MRF residuals.

Materials and methods
Subjects
Six volunteers (1 male and 5 females) participated
in a 2-h-long MRI scan session. Participants were
healthy individuals aged between 27 and 35 years with
no history of neurological disease. Each participant
underwent 2 scans separated by a 15-min break. A
whole-brain 3D echo-planar imaging (EPI)-based MRF
scan was performed in both sessions. We also performed
a whole-brain 3D Saturation-prepared with 2 Rapid
Gradient Echoes (SA2RAGE) and Magnetization-Prepared
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2 Rapid Acquisition Gradient Echoes (MP2RAGE) scan.
All participants were provided with an overview of the
experiment and signed a written consent prior to the
MR scans. The scan protocol was approved by the local
ethics committee and was conducted at the Centre for
Advanced Imaging, The University of Queensland.

Regions of interest
We selected 8 cortical areas from 3 regions of the cerebral
cortex extracted from an atlas of a subset of Brodmann
areas (BA) integrated in FreeSurfer 7.1.1 image analysis
suite (Fischl et al. 2008; Fischl 2012): primary somatosen-
sory areas BA1 and BA2, primary motor area BA4a and
premotor area BA6 from the central region, areas BA44
and BA45 from Broca’s region, and areas V1 (BA17) and
V2 (BA18) from visual cortical region. These cortical areas
were chosen because they are microstructurally distinct
on histology (Geyer et al. 1996, 1999; Amunts et al. 1999,
2000; Geyer 2012).

The FreeSurfer BA labels provide individual-specific
surface-based probability maps for each cortical area,
representing the interindividual variation in the spatial
location of each area. A high probability value indicates
that there is a high chance that the corresponding vertex
number on an individual’s cortical surface belongs to
the area of interest. To avoid overlap between probability
maps of selected areas, we used thresholded maps of
regions of interest (ROIs) for each individual, created by
FreeSurfer surface analysis.

MRI acquisition
The scans were performed at the Centre for Advanced
Imaging, The University of Queensland, on a 7T whole-
body MRI research scanner (Siemens Healthcare, Erlan-
gen, Germany) using a 32-channel head coil (Nova Med-
ical, Wilmington, Massachusetts). We performed third-
order B0 shimming at the beginning of each scan session
to reduce susceptibility effects.

B1
+ map

We utilized a 3D SA2RAGE sequence (Eggenschwiler et al.
2012) to obtain a whole-brain transmit magnetic field
(B1

+) map for B1
+ inhomogeneity correction of the MRF

signals (Ma et al. 2017). The SA2RAGE acquisition param-
eters were as follows: repetition time (TR) = 2,400 ms,
echo time (TE) = 0.95 ms, flip angle (FA)1/2 = 6◦/10◦, voxel
size = 4 × 4 × 4 mm, and matrix size = 48 × 58 × 64.

T1-weighted anatomical image
We acquired a 3D T1-weighted anatomical scan of each
participant, using a prototype MP2RAGE sequence (Mar-
ques et al. 2010) with TR = 6,000 ms, TE = 3.97 ms, inver-
sion time TI1/2 = 800 ms/2,700 ms, FA1/2 = 4◦/5◦, voxel
size = 1 × 1 × 1 mm, and matrix size = 222 × 240 × 144. T1-
weighted images were used to perform surface-based
processing of individuals’ MRF signals and to project MRF
signals to vertices on an inflated model of the cortical
surface of each individual subject. T1-weighted images

were also used to create gray matter mask of each indi-
vidual.

MRF acquisition
A 3D EPI-based (Poser et al. 2010) MRF sequence devel-
oped in-house was used to acquire 1,000 frames of 3D
MRF images with the following parameters:

FA = 10–77◦ (Fig. 1A), TR = 41–99 ms (Fig. 1B), TE = 12–
48 ms (Fig. 1B), partial Fourier phase = 6/8, voxel size = 1.4
× 1.4 × 1.4 mm, and matrix size = 142 × 142 × 88. We used
GRAPPA parallel imaging (Griswold et al. 2002) in both
phase encoding (with acceleration factor = 3 and refer-
ence lines = 36) and slice encoding directions (with accel-
eration factor = 2 and reference lines = 12). Chemical shift
selective fat saturation technique (Frahm et al. 1985)
was used to reduce common artifacts observed in EPI
sequences at high-field scanners (Edelman et al. 1994).

The sinusoidal FA pattern used for the MRF acqui-
sitions (Fig. 1A) was adopted from Buonincontri and
Sawiak (2016). We added abrupt FA changes (0◦-40◦-50◦-
60◦-0◦) at the final MRF frames to increase the sensitivity
of MRF signals to B1

+ variations as previously suggested
(Buonincontri et al. 2017).

We also used pseudo-randomized patterns of TE vari-
ation suggested by Rieger et al. (2017) (Fig. 1B), to improve
SNR as a result of the larger number of short TE values.
Shorter TE values also allowed the total MRF acquisition
time to be optimized by utilizing the minimum possi-
ble value of TR for each TE at each MRF frame. The
alternating TE pattern has also been shown to increase
sensitivity of MRF signals to T1 and T2

∗ variations (Rieger
et al. 2017), potentially improving estimation accuracy
for these tissue properties.

MRF dictionary matching
An MRF dictionary was generated using Bloch equation
simulation of MRF signal evolutions (in MATLAB R2019b,
MathWorks, Natick, MA) for a range of T1, T2

∗, and B1
+

values as follows:
T1 = 0.5–5 s (in increments of 10 ms, 20 ms, 30 ms,

40 ms, and 50 ms for 0.5–1 s, 1–2 s, 2–3 s, 3–4 s, and 4–
5 s, respectively); T2

∗ = 10–100 ms (in increments of 2 ms,
3 ms, and 5 ms for 10–20 ms, 20–40 ms, and 40–100 ms,
respectively); B1

+ = 0.3–1.4 in increments of 0.05. The B1
+

value for each MRF dictionary entry was multiplied by
the nominal FA values (Fig. 1A) to calculate the actual
FA values for MRF signal simulation (Buonincontri and
Sawiak 2016).

We performed MRF dictionary matching for each voxel
of the 3D MRF volumes in MRF native space. To increase
the efficiency of MRF dictionary matching, we used the
SA2RAGE B1

+ value of each voxel to only include the
relevant subset of dictionary entries in the signature
matching process (Chen et al. 2016). The dictionary sig-
nal profile which had the largest inner product with
the acquired MRF signal from the voxel of interest was
selected as the best fitting simulated MRF signal.
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Fig. 1. A) The sinusoidal pseudorandomized pattern of flip angles and B) the pseudorandomized pattern of TR and TE, used to acquire the 3D MRF
images.

Image processing
We first extracted the brain tissue (using FSL-BET; Smith
2002; Smith et al. 2004) from all MRF, T1-weighted, and
B1

+ images, to obtain a higher accuracy of brain tissue
co-registration between these images. Using MCFLIRT
(Jenkinson et al. 2002), we performed rigid body (6 param-
eter) co-registration of all 1,000 MRF 3D volumes of each
MRF scan to the mean volume of the series. Next, we
performed rigid body registration (using FSL-FLIRT; Jenk-
inson and Smith 2001; Jenkinson et al. 2002) of the MRF
volumes of the second scan session to the MRF volumes
of the first scan session and subsequently calculated the
average MRF volume between the 2 co-registered scans
for each MRF frame. We used FSL-FLIRT to perform rigid
body registration of the MP2RAGE T1-weighted image to
the average MRF image of the subject.

We utilized FSL_anat tool (https://fsl.fmrib.ox.ac.uk/
fsl/fslwiki/fsl_anat) to create the gray matter mask
of each individual using the MP2RAGE T1-weighted
image co-registered to the average MRF volume. The
FSL_anat tool performs enhanced bias-field correction,
which improves tissue segmentation accuracy. Each
individual’s gray matter mask was then used to exclude
voxels with gray matter probability of smaller than 90%.

The SA2RAGE B1
+ map was first linearly co-registered

to the MP2RAGE T1-weighted image of the subject using
FSL-FLIRT. Next, it was transformed to the MRF native
space using the linear transformation matrix previously
obtained by co-registering the MP2RAGE T1-weighted
image to the subject’s average MRF volume.

Surface-based processing
The MP2RAGE T1-weighted image co-registered to the
average MRF volume was processed using the FreeSurfer
7.1.1 recon-all pipeline to generate an inflated model of

the cerebral cortex surface for each individual. We cal-
culated the transformation between voxel coordinates
in MRF native space and surface coordinates to project
voxel-wise MRF signals to corresponding vertices on the
cortical surface model of an individual.

The FSL_anat tool (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
fsl_anat) was used to perform enhanced bias-field
correction of MP2RAGE images to improve FreeSurfer’s
white and pial surface estimations.

Supervised classification model
We employed classical supervised ML classification algo-
rithms to perform vertex-wise cortical parcellation on
the 8 cortical areas of interest. Supervised classification
involves learning a model based on a set of labeled train-
ing data samples (i.e. with known classes) characterized
by a set of statistical features. The model should be able
to predict the class label of unseen data samples (i.e. test
set), which are described using the same set of features.

Multi-class supervised classification
We formulated parcellation of cortical areas of interest as
a regional multi-class supervised classification problem
(Weston and Watkins 1998). All vertices of interest from
the 8 cortical areas were uniquely labeled based on the
FreeSurfer’s thresholded BA probability maps of each
subject.

One-versus-one multi-class classification
In cortical regions with more than 2 ROIs (i.e. the central
region), we employed a one-versus-one (OVO) multi-class
classification approach, in which one classifier is trained
for each pair of classes (Géron 2019). The class that
receives the majority of votes at the time of prediction
is considered to be the final class of the input sample.

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/fsl_anat
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/fsl_anat
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/fsl_anat
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/fsl_anat
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Compared with one-vs-the-rest multi-class classifica-
tion, OVO is potentially more robust to the class imbal-
ance problem (Géron 2019), which we discuss further in
Section 2.21.3.

Feature representation
Classical ML classification algorithms require data
samples that are characterized by statistical measures
that distinguish between classes, with instances of the
same class showing the highest similarity (Meyer-Baese
and Schmid 2014). We previously demonstrated that the
normalized autocorrelation of MRF residual signals can
be used to characterize structural distinctions between
different cortical areas (Moinian et al. 2022). Accordingly,
here we used the normalized autocorrelation values
(ranging from −1 to +1) of the MRF residual signals
to form a feature vector for each vertex of interest.
We examined the efficacy of 2 approaches to feature
representation:

Single vertex feature representation
Here, we used the normalized autocorrelation of the
MRF residuals corresponding to the vertex of interest
and created a 999-dimensional feature vector per vertex
number (i.e. autocorrelations at all lags other than lag 0
at which the normalized autocorrelation is always 1).

Neighborhood-based feature representation
An established approach in quantitative histological
studies requiring delineation of boundaries between
cortical regions is to exploit neighborhood information
when characterizing a particular location in the cortex
(Geyer et al. 1996; Amunts et al. 1999; Geyer et al. 1999;
Amunts et al. 2000). This allows the local statistical
characteristics of tissue properties of interest (e.g. neu-
ronal cell density) to be derived from neighboring spatial
locations in the cortex (Eickhoff et al. 2018). We followed
a similar approach by incorporating information from
a neighborhood of vertices immediately adjacent to the
vertex of interest. A feature vector was created for each
vertex by calculating the autocorrelations of the average
MRF residuals in a vertex neighborhood centered on the
target vertex. The neighborhood vertices add confirma-
tory information to the description of the vertex, which,
in particular, may improve the differentiation of vertices
with a large degree of similarity from 2 different areas
(e.g. vertices near the border between areas).

Classical supervised classification algorithms
We employed the following supervised classification
methods: linear SVM (L-SVM), radial basis function
kernel SVM (RBF-SVM), random forest (RF), and k-
nearest neighbors (KNN). To implement these classifiers,
we used scikit-learn (v0.21.3) (Pedregosa et al. 2011),
which provides an open-source ML library for Python
(v3.5). Model selection (described in Section 2.22) was
performed to fine-tune the key parameters for each
algorithm.

Support vector machine
Generally, in a high-dimensional feature space, SVM aims
to find a separating hyperplane (i.e. decision boundary),
which splits the data samples into distinct classes, such
that the distance from the hyperplane to the data sam-
ples is maximal (Boser et al. 1992). SVM-based classifiers
are robust to model overfitting when dealing with a high-
dimensional feature space in a variety of neuroimaging
applications (Fan et al. 2005; Zhang et al. 2011). Key
parameters of the SVM model are as follows.

Regularization parameter (C)

The regularization parameter defines the penalty applied
to a misclassified data sample when the SVM algorithm
is searching for the optimal decision boundary. More
regularization (i.e. smaller values of C) creates smoother
decision boundaries, leading to greater tolerance to noise
or outliers in the data samples.

Kernel function

The measure of similarity between data samples in fea-
ture space is based on a distance function, the SVM
kernel. We used both a linear (L-SVM) and a nonlinear
(RBF-SVM) kernel. In the former, the decision boundary
between data samples in feature space is linear, whereas
in the latter, data samples are transformed into a new
feature space that permits a linear decision boundary to
be found. The linear decision boundary in the new fea-
ture space corresponds to a nonlinear decision boundary
in the original feature space. We chose the RBF as the
kernel function, in light of previous reports of better pre-
diction performance and more time-efficient training for
high-dimensional data classification, compared to other
SVM kernel types (e.g. polynomial) (Yekkehkhany et al.
2014). The kernel function of the RBF-SVM algorithm is
defined as:

K (x1, x2) = e−γ .‖x1−x2‖2
(1)

where x1 and x2 are the feature vectors of 2 data samples
and ‖x1 − x2‖2 is the distance between the 2 samples in
the original feature space.

Gamma parameter (γ )

This parameter specifies the similarity radius of the
kernel function. As seen in Equation (1), the similarity
between 2 data samples in the transformed feature space
(K) is a function of their distance in the original feature
space (‖x1 − x2‖2). Smaller γ values lead to slower decay
of the exponential similarity function K. This in turn
forms a larger similarity radius around each sample
data point and thus the samples at greater distances in
the feature space will be considered as similar, creating
smoother decision boundaries.

Random forest
A RF classifier consists of an ensemble of decision tree
predictors, each of which is built using a random number
of training data samples and a random subset of features
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at each splitting node (Breiman 2001). The majority vot-
ing method is used to predict the class of unseen data
samples, reducing the risk of model overfitting, often
seen with single decision tree models (Han et al. 2012).
RF models are a theoretically appropriate choice for the
current study because they are reportedly robust against
outliers (which may occur due to misregistration or the
probabilistic ROI extraction here) and can handle multi-
class classification problems efficiently (Han et al. 2012).

To avoid model overfitting and improve the generaliz-
ability of the RF model, we used bootstrapping so that
each tree in the model was only trained on a random
number of data samples. The key RF algorithm param-
eters tuned during model selection are as follows.

n-estimators

This parameter defines the total number of decision trees
built for the RF model. A very large value may lead to
overfitting while a small value may cause underfitting.

max-depth

This parameter controls the maximum depth to which
each individual decision tree is allowed to grow (i.e. split
further). If not specified, or if set too high, it may lead
to full-grown trees where all the leaf nodes are pure (i.e.
all the data samples in the leaf nodes belong to a single
class), causing overfitting to the training data.

max-features

This parameter specifies the maximum number of fea-
tures that could randomly be selected at each node of
the tree to find the best split (i.e. the split that will create
more pure child nodes).

criterion

This is an impurity measure that is used to decide the
features that create the best split. We evaluated the use
of entropy and the Gini index:

Entropy = −
∑

j

Pjlog2Pj (2)

Gini = 1 −
∑

j

P2
j (3)

where Pj is the probability of class j in the child node.

K-nearest neighbors
The KNN algorithm classifies each data sample accord-
ing to the class of its K nearest samples in the feature
space (Cunningham and Delany 2007). This is a simple
and effective classification algorithm, which usually
performs well in a wide range of applications dealing
with low-dimensional data sets (Cunningham and
Delany 2007). However, its prediction performance is
competitive for high-dimensional data when combined
with neighborhood component analysis (NCA) as a
distance metric learning algorithm (Cover and Hart
1967). Additionally, KNN performs well in data sets with

irregular decision boundaries (Cunningham and Delany
2007). We tuned the following parameters during model
selection.

n-neighbors (K)

This parameter denotes the number of nearest neigh-
bors to consider for each data sample. K influences the
smoothness of the decision boundaries (i.e. model com-
plexity). Decision boundaries are less smooth for small K
values, increasing the chance of model overfitting.

weights

This parameter defines a weighting function for the dis-
tance between a data sample and its KNN. We evaluated
uniform weighting, in which all K neighbors are equally
weighted, and distance weighting, in which the weights
of neighbors are inversely proportional to their distance
from the data sample.

Data preparation
Our data preparation pipeline is illustrated in Fig. 2.

Feature preprocessing
Feature scaling

To give the values at all autocorrelation lags equal impor-
tance in terms of descriptive information provided to the
classification models, we calculated normalized autocor-
relations. The normalization scales the values of each
feature (i.e. the autocorrelation value at each lag number)
to the range of 0 to 1 in all data samples. The scaling pre-
vents the distance measures from being biased towards
data samples of higher magnitude but maintains the
original relationship between features (Han et al. 2012).

Dimensionality reduction

If the autocorrelations of the MRF residual signals were
to be used as feature vectors, the feature space would
have 999 dimensions. High-dimensional feature space
may not always benefit classification algorithms (Jain
et al. 2000) because training and prediction time increase
and prediction accuracy may drop (Jain et al. 2000). Fea-
ture reduction is usually performed to find the most
effective subset of features for the classification problem
at hand (i.e. to remove features that do not contribute
much to sample discrimination in the training set). This
is especially important when the number of features
is large relative to the number of samples available in
the training set. We performed dimensionality reduction
using:

(a) Feature selection

This eliminates the features that contribute little to
the separability of different classes (Meyer-Baese and
Schmid 2014). We employed a MRF residual signal sub-
sampling scheme as a feature selection method (see
Supplementary Figs. S1 and S2).

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac155#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac155#supplementary-data
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Fig. 2. The data preparation pipeline performed in this study. Note that the feature extraction step was not applied to all classification algorithms.

(b) Feature extraction

Feature extraction methods use all the information
provided in the original feature space to transform the
data into a new lower-dimensional feature space. In most
feature extraction methods, each feature in the new
space combines the most discriminative features from
the original space (Meyer-Baese and Schmid 2014).

Performing both feature extraction and feature selec-
tion can improve the efficiency and predictive perfor-
mance of a KNN classifier in a high-dimensional fea-
ture space (Goldberger et al. 2005). We used NCA, a
supervised Mahalanobis distance metric learning algo-
rithm that aims to maximize the prediction performance
of KNN by transforming the data samples into a new
feature space in which instances from the same class
have higher similarity (Goldberger et al. 2005). The main
advantage of NCA over other feature extraction meth-
ods is that it preserves information during the dimen-
sionality reduction process (Raghu and Sriraam 2018).
Euclidean distance was used to measure the similarity
of data samples in the transformed space.

We also used NCA as a feature extraction method
to train our RF classifier, as it has also been shown to
improve the efficiency and performance of other classi-
fication algorithms (Raghu and Sriraam 2018). However,
as SVM models can deal with high-dimensional data
effectively, we did not apply NCA to SVM classifiers.

Imbalanced class oversampling

Selected cortical areas in each region of interest in this
study differed in size. The difference in the total number
of instances of each class (i.e. vertices in each FreeSurfer
BA probability map) in the training dataset leads to a
class imbalance problem, which can affect classifier
performance. One remedy is to balance the training
set by increasing the number of the minority class
instances (i.e. oversampling) or decreasing the number
of the majority class instances (i.e. undersampling). To
avoid overfitting caused by random oversampling or to
lose important information by random undersampling,
we performed combined over- and undersampling on
all classes. The combination of synthetic minority
oversampling technique (SMOTE) and edited nearest
neighbor (ENN), called SMOTEENN, has been shown to

outperform other combined sampling methods (Batista
et al. 2004).

Model selection and evaluation
For each classification algorithm, we used a grid search
to evaluate the prediction performance of models built
using different combinations of parameter values (Hsu
et al. 2003). The set of parameter values that resulted
in the model with the best prediction performance (i.e.
with the highest evaluation score) on the unseen testing
data samples was selected as the best parameter set and
the resultant model as the best classifier. Grid search
model selection is efficient for applications in medium-
sized parameter spaces (Hsu et al. 2003), as is the case in
this study.

Evaluation metric
We used the area under the receiver operating charac-
teristic (ROC) curve (ROC-AUC) (Bradley 1997) to evalu-
ate each classifier’s prediction performance. AUC-ROC
allowed us to identify the best probability threshold for
each classifier and to select the best model when com-
paring different classifiers.

In a binary classification problem with so-called pos-
itive and negative classes, the classification algorithms
often return the probability of each data sample being
from the positive class. A probability threshold is then
applied to define the class of the data sample. The proper
discrimination threshold for a classifier varies with
application. The ROC curve identifies the best threshold
by plotting the true positive rate (TPR) against the false
positive rate (FPR) of predictions at different prediction
probability thresholds. This is a means of cost–benefit
analysis, representing how much sensitivity (i.e. TPR)
is gained at each threshold at the cost of a decline in
specificity (i.e. 1 − FPR) (Bradley 1997). Additionally, for
model selection on our imbalanced dataset, as suggested
by Tang et al. (2009), we needed a single metric combining
sensitivity and specificity measures when comparing
the effectiveness of different models. ROC-AUC is a
reliable performance measure for imbalanced datasets
(Provost and Fawcett 1997) and indicates the probability
of all the data samples being classified correctly. An
AUC of 1 represents a model that always distinguishes
data samples correctly, while an AUC of 0.5 occurs
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when a classifier randomly guesses the class of the
samples. Note that we used the average of the evaluation
score across all classes (macro-average) to give equal
importance to accurate classification of all classes.

Repeated K-fold cross validation
We performed 10-fold cross validation (Wong 2015) on
each set of model parameter values in the grid search
procedure to avoid overfitting the classifiers to the lim-
ited data samples. This method randomly subsampled
the whole dataset into 10 mutually exclusive folds and
repeated the grid search 10 times for each set of model
parameters. At each repetition, 9 partitions of the data
samples were used as the actual training set and 1 par-
tition was held out as the validation set. The validation
set was then used to evaluate the model performance
on unseen data, to ensure that the model was reliably
generalized. The average of the evaluation metric over
the 10 repetitions of the grid search was then taken as
the overall performance score of the classifier for the
model parameters of interest. To follow the paired experi-
mental design approach for comparisons of performance
between different models, we used the same randomly
subsampled data partitions for all classifiers.

To keep the portion of data samples of each class in
each fold the same as in the initial dataset, we used
a stratified method for dividing the data samples into
10 folds. Additionally, we used repeated K-fold cross-
validation with 10 repetitions to test the statistical sig-
nificance of classifier prediction performance during the
model selection process.

Testing the selected model
We used a leave-one-subject-out model evaluation
approach. We held out the data from one participant as
the test set for the final model evaluation and used the
data samples from the other 5 participants for training as
explained above. Evaluating the model performance on
a separate test set improves model generalization power,
by minimizing the risk of information leakage (Kaufman
et al. 2012) during model training.

Data and code availability
As no consent was obtained from the participants to
share their data in a public repository, the anonymized
data can be made available upon request to the corre-
sponding author. We also provide all the code for data
analysis and ML model development in this study at
GitHub.

Results
Model selection using single vertex approach
The results of feature selection and model selection for
the single vertex approach in the central region (areas
1, 2, 4a, and 6) are presented in Fig. 3. The steps of the
horizontal axis correspond to the MRF residual signal
subset that was included in the model selection process.

RBF-SVM (C = [BA1:6, BA2:4, BA4a:1, BA6:2] and γ = 0.01)
was found to perform best with a macro-average ROC-
AUC of 0.8 for class predictions for the held-out test set.

Overall, RBF-SVM also outperformed the other 3 algo-
rithms when different subsets of MRF residuals were
selected. When sampling the MRF residual at every third
timepoint, the macro-average ROC-AUC for RBF-SVM was
0.79. However, in return for a 1% drop (P-value <0.05) in
ROC-AUC, there was a 54% and 61% reduction (P-value
<0.05) in the model fitting time and prediction time,
respectively.

Model selection using neighborhood-based
approach
The results of model selection process using the
neighborhood-based feature representation approach in
the central region (areas 1, 2, 4a and 6) are detailed in
Table 1. The RBF-SVM model (with C = [BA1:30, BA2:4,
BA4a:1, BA6:2 and γ = 0.01) outperformed all other
models investigated in this study with macro-average
ROC-AUC = 0.85 (sensitivity = 0.77, specificity = 0.92).

Comparing single vertex and
neighborhood-based approaches
In Fig. 4, the normalized confusion matrices of the best
performer of both feature representation approaches are
provided for cortical areas from 3 cortical ROIs. We found
the ROC-AUC of predictions on the held-out test set
improved in all regions with the use of neighborhood-
based feature representation. ROC-AUC of predictions
increased by 5% (Fig. 4A and B), 8% (Fig. 4C and D), and
4% (Fig. 4E and F) (P-value <0.05) in the central region,
Broca’s region, and visual cortical region, respectively.

The prediction sensitivity scores for the cortical areas
of interest are represented along the diagonal of the
confusion matrices. Comparing these scores between the
2 matrices in each region shows an overall increase in
sensitivity values by using neighborhood-based feature
representation for all cortical areas. In average, the sen-
sitivity of predictions rose by 7%, 8%, and 4% (P-value
<0.05) in the central region, Broca’s region, and visual
cortices, respectively. We observed the largest increase in
the sensitivity score for area BA6 with an increase of 19%.

Comparison of the similarity between autocorrelation
profiles of cortical areas of interest (Supplementary Fig.
S3) confirms that false positive predictions for each pair
of areas (Fig. 4B, D, and F) reflect the degree of similarity
between autocorrelation profiles of cortical areas. It is
more challenging for the classification algorithm to sep-
arate samples with more similar autocorrelation profiles.

Spatial distribution of model predictions
Figure 5 depicts the spatial distribution of vertex-wise
label predictions for the unseen data samples of the held-
out participant using the best RBF-SVM classifier trained
with the neighborhood-based feature vectors. The con-
fusion matrices of these predictions are presented in
Fig. 4B, D, and F. The cortical area boundaries defined by

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac155#supplementary-data
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Fig. 3. The best macro-average ROC-AUC scores of 4 supervised classification algorithms are compared when trained with autocorrelation of different
subset of MRF residual signals as the feature vectors. The classification methods used here are L-SVM, RBF-SVM, RF, and KNN. The solid circle on each
plot represents the subset of MRF residual signals at which the classification algorithm showed its best performance, compared to the initial case of
including the whole MRF residual signal.

Table 1. The ROC-AUC scores of 4 supervised classification methods are compared, when the neighborhood-based approach was
used for feature representation of each vertex.

Classification algorithm Best macro-average
ROC-AUC

Best performer parameters

RBF-SVM 0.85 C = [BA1:30, BA2:4, BA4a:1, BA6:2], γ = 0.01
L-SVM 0.75 C = 100 (balanced class weights)
KNN 0.71 n-neighbors = 25, weights: distance, distance

metric: Minkowski distance with P = 3 on 6 NCA
components

RF 0.71 n-estimators = 200, criterion = entropy,
max-depth = 14, max-features = 6 NCA
components

The value in bold indicates the classification algorithm which achieved the highest ROC-AUC when the neighborhood-based feature representation
approach was used.

the FreeSurfer’s thresholded BA probability maps are
also shown (solid cyan lines surrounding each area). The
vertex-wise class labels are overlaid on an inflated model
of the cortical surface of the right hemisphere of the
participant generated by FreeSurfer.

Discussion
We demonstrated the feasibility of developing an auto-
mated in vivo method of vertex-wise cortical parcellation
in 3 cortical ROIs, using a combination of MRF residual
signals and supervised ML. Using a RBF-SVM classifier
and neighborhood-based feature representation, an aver-
age prediction score (ROC-AUC) of 0.85, 0.78, and 0.62 was
achieved for vertex-wise parcellation of 8 cortical areas
in the central region, Broca’s region, and visual cortical
region, respectively.

The present vertex-wise cortical parcellation method
aimed at improving the parcellation performance based
on the structural tissue properties. In contrast, previous

ML-based cortical parcellation methods mostly utilize
multiple neurobiological properties (i.e. functional,
connectional, and topographical features) (Glasser et al.
2016; Cucurull et al. 2018). Those studies note that
extended applicability of their parcellation method to
other lesion segmentation applications (e.g. multiple
sclerosis) would be conditioned on preparation of a
proper training dataset (Cucurull et al. 2018). Identifying
and extracting suitable feature representations are likely
to be key challenges to the application of these methods.
An important advantage of the parcellation framework
presented here is more efficient data acquisition and
feature extraction, compared to parcellation methods
that rely on multimodality information on multiple
neurobiological properties. The characterization of each
voxel in the present study does not require acquisition
of separate complementary MR modalities, unlike con-
ventional multimodal MRI microarchitectural mapping
methods. Moreover, the feature extraction process here
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Fig. 4. Normalized confusion matrices for the best performer (i.e. RBF-SVM classifier) trained with (A, C, E) single vertex feature representation and (B, D,
F) neighborhood-based feature representation in the central region (A, B), Broca’s region (C, D), and visual cortical region (E, F). The model parameters,
validation, and test ROC-AUC scores of the best classifier are stated at the top of each matrix. Cell values along the diagonal of each matrix represent
the sensitivity of the model predictions on the held-out test set. The values were rounded up to 2 decimal places.

involves efficient computation of the MRF residuals
and autocorrelation of the residuals, eliminating the
need for complicated data integration from multiple
modalities. Consequently, the efficient microstructural
feature extraction method of the present study facilitates
the application of our ML-based parcellation method to
other voxel-wise tissue segmentation applications such
as classification of brain tumor types.

We found the feature representation approach based
on a patch of neighboring surface vertices led to higher

prediction accuracy in comparison with the single vertex
approach (Fig. 4). The neighborhood-based feature repre-
sentation used in this study could be seen as a combined
local–global brain partitioning method. Similar to local
partitioning methods, the inclusion of features from
the patch of vertices surrounding the vertex of interest
provided the similarity functions of classification algo-
rithms with descriptive information about the vertex
neighborhood. At the global level, the similarity of
each neighborhood was measured against all other
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Fig. 5. Cortical parcellation results for (A) primary motor area BA4a (orange) and premotor area BA6 (yellow) from the precentral gyrus region, (B) primary
somatosensory areas BA1 (light green) and BA2 (dark green) from the postcentral gyrus region, (C) areas BA44 (dark blue) and BA45 (light blue) from
Broca’s region, and (D) areas BA17 (light pink) and BA18 (magenta) from the visual cortical region of the held-out participant, using the best RBF-SVM
classifier trained with the neighborhood-based feature representation. The cyan solid lines around each area show the true class borders. The predicted
vertex-wise class labels are overlaid on an inflated model of the right hemisphere cortical surface of the participant, generated by FreeSurfer.

neighborhoods regardless of their spatial location on the
cortical surface. Hybrid local–global brain partitioning
methods have demonstrated improved parcellation per-
formance, compared with local (e.g. classical histological
mapping) or global (e.g. connectivity-based parcellation)
partitioning approaches (Eickhoff et al. 2018; Schaefer
et al. 2018). Higher prediction accuracy of neighborhood-
based feature representation is likely to stem from
its hybrid parcellation approach, in line with similar
improvements observed in other hybrid methods of
cortical mapping (Schaefer et al. 2018).

The pattern of false prediction rates along each row
of the confusion matrix (excluding the elements on
the diagonal) of the best classifier (Fig. 4B) may imply
microstructural similarities between the cortical areas
of interest. For example, when comparing the similarity
of BA2, BA4a, and BA6, false BA4a predictions (1%) were
significantly less frequent than false BA6 predictions

(18%) for BA2 data samples. Additionally, false BA6
predictions (13%) were larger than false BA2 predictions
(8%) for BA4a data samples. Further, BA6 data samples
were more frequently predicted as BA4a (4%) than
BA2 (3%). This comparison between these 3 cortical
areas suggests that BA4a was more similar to BA6
than to BA2, causing the classification model to make
less accurate predictions when distinguishing the MRF
residual signals from BA4a and BA6. Additionally, the
larger false BA6 predictions for BA2 data samples suggest
higher similarity between BA2 and BA6, compared to
the similarity between BA2 and BA4a. These findings
are in line with the similarity measurements between
these 3 areas reported in Moinian et al. (2022). The
residual-based areal dissimilarity between these 3
areas in the current study is in agreement with the
pattern of microstructural dissimilarity on histology.
For example, larger microarchitectonic distinctions have
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been observed between areas 2 and 4 than between areas
4 and 6 (Geyer et al. 1996, 1997; Geyer 2012; Nieuwenhuys
2013; Mangeat et al. 2015). Additionally, we observed
the smallest false positive BA4a predictions for data
samples of other 3 cortical areas in the central region
using both feature representation methods (false BA4a
prediction of 10% when using the neighborhood-based
approach), which may correspond to the distinctive
microstructural characteristics of this area as reported
on histology. The presence of giant pyramidal cells (i.e.
Betz cells) and lack of layer IV are reportedly the unique
microstructural features of area 4 (Geyer et al. 1997;
Amunts and Zilles 2015). Therefore, it is plausible to
infer that our feature vectors (i.e. autocorrelation of MRF
residuals as illustrated in Supplementary Fig. S3) could
reflect microarchitectonic characteristics of the areas of
interest at the voxel level.

Nonetheless, it should be noted that histological
studies of cortical microstructure have mostly employed
local partitioning methods (Eickhoff et al. 2018), making
further microstructural inferences about the other areas
of interest in this study challenging. Further validation
of the microstructural similarity findings of the present
study would require experiments that compare a
combination of microarchitectonic characteristics of
areas globally, instead of focusing on the local microar-
chitectural transitions at the borders between adjacent
areas.

The effect of non-microstructural factors on
classification
Here we excluded MRF residual signals from voxels with
gray matter probability less than 90% to reduce the con-
tribution of neighboring white matter and cerebrospinal
fluid to gray matter MRF signals (partial volume effect).
However, due to the large voxel size of MRF images, com-
plete mitigation of partial volume effect is not feasible.
We also examined the effects of 3 non-microstructural
features, which may influence the degree of partial vol-
ume effect in the cortical areas of interest: average cor-
tical thickness, local cortical curvature, and vertex dis-
placement from the mid-surface. Variation in cortical
thickness (Fig. 6A), local cortical curvature (Fig. 6B), and
displacement of vertices from the mid-surface (Fig. 6C)
were not correlated with classification error defined as
the percentage of misclassified test data samples from
each area.

Spatial distribution of classification errors
The spatial distribution of classification predictions on
an inflated model of the cortical surface of the held-
out participant (Fig. 5) shows that classification errors
for BA1, BA2, BA4a, BA44, and BA45 are mostly located
at the borders of these areas. However, the classification
errors for BA6, BA17, and BA18 are centrally distributed
in some regions, e.g. anterior part of BA17 and infe-
rior part of BA6. In BA6, this may be explained by high
within-area microarchitectonic variation. For example,

Glasser and Van Essen (2011) observed higher myelina-
tion superiorly in BA6. High microarchitectonic hetero-
geneity in a large area like BA6 could affect the predic-
tion performance of the present ML-based parcellation
method. Increasing the number of subjects in the train-
ing set in future work may improve the classification
performance in such cases.

Additionally, due to the large MRF image voxel size,
cortical regions separated from the cortical area of inter-
est by a sulcus can contribute to the MRF signal of the
area of interest, especially in regions with highly folded,
relatively thin gray matter (Supplementary Fig. S4) as in
BA17 and BA18. This effect may have resulted in greater
similarity between the MRF signals of BA17 and BA18,
thus posing a greater challenge for the classification
algorithm in differentiating between these 2 areas. Fur-
thermore, tissue segmentation of visual cortical regions
using FreeSurfer may be degraded by partial volume
effect, thereby impairing surface reconstruction in visual
areas (Glasser and Van Essen 2011). Greater inaccuracy
in the gray matter masks of visual areas compared to
other areas of interest may, in turn, lead to inclusion of
voxels with larger partial volume effect in the training
set. In the application of supervised ML to classification,
errors in the class labels of the training dataset may
affect the resultant model. In future work, higher MRF
image resolution and improved bias field correction of
T1-weighted structural images may improve classifica-
tion performance in visual areas.

The effect of MRF acquisition parameters on
classification
We explored the effect of MRF acquisition parameters
on our MRF-based cortical parcellation method by using
the signal subsampling scheme introduced in the Sup-
plementary Information (Supplementary Figs. S1 and S2).
The model selection process in Fig. 3 showed that when
we used every third MRF residual timepoint, the RBF-SVM
model prediction score only dropped by 1%. We believe
that this is because the shape of the residual signals
was preserved when subsampled at every third time-
point. We also trained an RBF-SVM classifier using the
first 500 MRF residual signal timepoints. The prediction
score (ROC-AUC = 0.72) of this RBF-SVM classifier was
6% (P-value <0.05) lower than that of a RBF-SVM model
trained using every second residual timepoint, which had
the same feature vector length but a different pattern
of acquisition parameters. These observations suggest
that the pattern of MRF acquisition parameters affects
our MRF-based cortical parcellation method, a subject
for systematic investigation in future work. We used
the autocorrelation profile to characterize MRF residual
signals because it allowed us to incorporate the spa-
tiotemporal information of MRF signals in the classifica-
tion. Feature importance analysis methods would iden-
tify the most discriminative autocorrelation lag numbers
but not the most important signal timepoints for cortical
parcellation. Future studies may consider classification

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac155#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac155#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac155#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac155#supplementary-data
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Fig. 6. A) Mean cortical thickness, (B) mean local cortical curvature, and (C) mean vertex distance from the mid-surface against the percentage
of classification error (using neighborhood-based RBF-SVM classifier) for 8 cortical areas of interest. Solid circles indicate the mean of the non-
microstructural feature and the error bars represent the standard deviation of that feature in each cortical area.

algorithms that use MRF residual signals as the input.
In this case, feature importance analysis may provide
more direct information on the effect of MRF acquisition
parameters.

Considerations for future work
Our voxel-wise parcellation method may be integrated
with the image reconstruction procedure on the MR

scanner, enabling real-time cortical parcellation. To
achieve this, an essential step is to improve the time
efficiency of the parcellation approach. The dimension-
ality reduction results illustrated in Fig. 3 demonstrate
the feasibility of increasing the time efficiency of
our parcellation approach. Including every third MRF
residual signal timepoints (out of all 1,000 timepoints)
for the RBF-SVM classifier resulted in a 54% and 61%
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decrease (P-value < 0.05) in the model fitting and
prediction time, respectively. Additionally, this would
allow a reduction in total MRF data acquisition time
from about 42 min to about 13 min in future work.
This increased time efficiency increases the feasibility
of real-time applications of parcellation of the whole
cerebral cortex. However, the gains in time efficiency
were accompanied by a 1% drop in the prediction score
(ROC-AUC) of the classifier. In the context of voxel-wise
cortical parcellation, reductions in accuracy could be
clinically important. Thus, in future work, the trade-
offs between time efficiency, prediction accuracy, and
dimensionality reduction should be examined further.
Moreover, the generalizability of the classification model
needs to be investigated in future work by acquiring data
from a greater number of individuals. Generalization
may drop for the RBF-SVM method as more test subjects
are processed.

There are many avenues for improving the accuracy
of the present parcellation method in future work. Here,
we only used autocorrelation to create feature vectors.
Adding other statistical measures enhanced prediction
accuracy in other ML studies (Wang et al. 2006). Moreover,
deep learning methods are effective in learning features
from time series data (Langkvist et al. 2014). In addition to
enhanced efficiency, deep learning-based classification
may improve accuracy by extracting more discriminative
features from the MRF residual signals.

Conclusion
Our results demonstrate the feasibility of developing a
ML classification approach based on MRF residual signals
for automated in vivo parcellation of the human cere-
bral cortex. We also showed that a neighborhood-based
feature extraction approach improved the accuracy of
predictions. In future, we expect to improve the accuracy
of predictions by (i) using more statistical measures to
characterize the MRF residual signals and (ii) collecting a
larger training set.
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