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Antimicrobial resistance (AMR) is a significant and growing public health threat.
Sequencing of bacterial isolates is becoming more common, and therefore automatic
identification of resistant bacterial strains is of pivotal importance for efficient, wide-
spread AMR detection. To support this approach, several AMR databases and gene
identification algorithms have been recently developed. A key problem in AMR detection,
however, is the need for computational approaches detecting potential novel AMR
genes or variants, which are not included in the reference databases. Toward this
direction, here we study the relation between AMR and relative solvent accessibility
(RSA) of protein variants from an in silico perspective. We show how known AMR protein
variants tend to correspond to exposed residues, while on the contrary their susceptible
counterparts tend to be buried. Based on these findings, we develop RSA-AMR, a
novel relative solvent accessibility-based AMR scoring system. This scoring system can
be applied to any protein variant to estimate its propensity of altering the relative solvent
accessibility, and potentially conferring (or hindering) AMR. We show how RSA-AMR
score can be integrated with existing AMR detection algorithms to expand their range of
applicability into detecting potential novel AMR variants, and provide a ten-fold increase
in Specificity. The two main limitations of RSA-AMR score is that it is designed on single
point changes, and a limited number of variants was available for model learning.

Keywords: relative solvent accessibility, antimicrobial resistance, scoring, AMR, secondary structure, protein
variant, RSA

INTRODUCTION

Antimicrobial resistance (AMR) is a significant and growing public health threat. Treating
infections caused by resistant organisms is clinically challenging, and sometimes impossible; even
when resistant infections can be treated with alternative antibiotics, these treatments are often
costly both in terms of healthcare costs as well as increased morbidity in treated patients. For these
same reasons, AMR is a significant challenge in veterinary and plant health, and the need to develop
novel AMR treatments is deemed very urgent (Nelson et al., 2019). According to a 2019 report
(Centers for Disease Control and Prevention (U.S.), 2019), the number of annual AMR infections
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in the US alone is greater than 2.8 million, with 35,000 AMR-
associated deaths. The CDC identifies 21 resistant bacteria and
fungi as threats to human and public health, with 5 of those
listed as urgent threats and 11 as serious threats. Efficient
identification of AMR is of pivotal importance in order to control
the spread of AMR and contain its impact. To address this
need, several AMR databases and identification algorithms have
been recently developed, including MEGARes (Doster et al.,
2020) and CARD (Alcock et al., 2020). Curated records in AMR
databases typically list whole resistant gene accessions, i.e., genes
resistant to specific molecules or AMR classes/mechanisms; or
housekeeping genes associated with specific AMR-conferring
amino acid variants. These AMR variants can originate from
two main sources: (a) specific genes or mobile elements (e.g.,
plasmids) conferring AMR; or (b) specific protein variants that
connote AMR in housekeeping regions. Hundreds of variants
are known to confer resistance. The MEGARes database, for
example, reports about 500 of these mutations, with the five more
frequent mechanisms being Fluoroquinolones (110), Rifampin
(46), Phenicol (40), Sulfonamides (39), and Aminocoumarins
(37). There is a continuous, active search performed by the
scientific community to discover genomic variants conferring or
altering AMR in bacteria strains, and to assess their prevalence in
isolates. For example, specific variants on ParC gene, such as S83I,
D87G, and GyrA gene, such as C257T, D99N, G93C, and M95I,
confer resistance to fluoroquinolone. Recent works on these
variants include studies on Mycoplasma genitalium from urethral
swabs or urine sediments (Hamasuna et al., 2018); Neisseria
gonorrhoeae from urethral or cervical swabs (Kivata et al., 2019);
Klebsiella pneumonia from blood, wound, and sputum (Zeng
et al., 2020); and Campylobacter jejuni from human diarrheal
cases (Elhadidy et al., 2020).

Systems for automated AMR identification such as
AMRPlusPlus (Doster et al., 2020), Meta-MARC (Lakin
et al., 2019), or DeepARG (Arango-Argoty et al., 2018), are
intrinsically based on their reference databases, which are highly
incomplete. In other words, current identification methods are
limited to only genes and pathogens in the reference databases.
The automatic identification of novel AMR genes remains
therefore an open problem. The wetlab methods to discover
a new AMR gene are highly laboratory intensive, requiring
specifically trained personnel to be performed. As resources
are limited, an automated system discovering new potential
AMR genes would be beneficial to isolate highly plausible,
testable AMR candidates. With the present study we take an
initial step in this direction by developing an AMR scoring
system based on protein secondary structure variations, focusing
on relative solvent accessibility (RSA). The relative solvent
accessibility of a residue in a peptide is the fraction of the surface
area that is accessible to a solvent, and reflects the level of
exposure of the residue. An exposed residue is more likely to
interact with the surrounding environment than a buried one.
A variation in the solving accessibility in a key AMR residue
would therefore likely affect the AMR machinery. Structure
variation helps understanding the impact of mutations in drug
resistance (Pandurangan et al., 2017). Exposed protein residues
tend to contribute less to protein stability and evolve faster

(Ramsey et al., 2011). A variation in the solving accessibility
in a key AMR residue would therefore likely affect the AMR
machinery. Examples of variation of secondary structure
affecting AMR include alteration of beta-lactamase resistance
(Liu et al., 2019); cephalosporins, meropenem, imipenem,
ciprofloxacin, chloramphenicol, cefepime, cefotetan, cefotaxime,
cefpirome, and ceftazidime (Doménech-Sánchez et al., 2003);
multi-compound, RND efflux regulator resistance (Jahandideh,
2013); isonazid resistance (Purohit et al., 2011); and macrolide
resistance implied by conserved protein structure (Stsiapanava
and Selmer, 2019). In this work (a) we find how RSA consistently
characterizes known CARD resistant and susceptible variants,
with resistant variants more likely to be exposed, and susceptible
variants more likely to be buried; (b) we show how the variants
in AMR MEGARes proteins with the potential of hindering
the resistance mechanism tend to be denoted by RSA variation;
(c) we elaborate an AMR protein variant scoring system based
on RSA (RSA-AMR score), and we show it can be used to
expand the range of applicability of an existing AMR detection
algorithm. A general schematic describing our procedure is
represented in Figure 1.

MATERIALS AND METHODS

Relative Solvent Accessibility Calculation
Briefly, Brewery (Torrisi and Pollastri, 2020) is a state-of-the-
art deep learning method implementing stacked bidirectional
recurrent neural networks and convolutional neural networks
to predict protein secondary structure, considering evolutionary
information from PSI-BLAST (Altschul et al., 1997) and HHblits
(Remmert et al., 2012). We considered the prediction of relative
solvent accessibility (RSA), i.e., the exposed fraction of the
maximum possible solvent accessible surface area for a residue.
The input for Brewery is the protein sequence, while the output
is the probability distribution of each residue of belonging to
four exposure classes, namely B, b, e, and E. The classes are
described as follows: B, very buried (less than 4% exposed);
class b, somewhat buried (between 4 and 25% exposed); class
e, somewhat exposed (between 25 and 50% exposed); and class
E, very exposed (more than 50% exposed). For each residue,
the scores predicted for all the classes represent a probability
distribution, therefore their probability sum is bound to be 1.

CARD AMR Protein Variants
We extracted the protein variants from the CARD protein variant
model, considering single resistance variants only. To describe
the variant, CARD reports position, susceptible (wild type) amino
acid, and resistant one. For example, a record of a resistance
variant for Bacillus subtilis pgsA with mutation conferring
resistance to daptomycin is annotated as A64V, meaning that a
Valine in position 64 confers the described resistance. In addition
to the variant annotation, CARD reports the susceptible protein
sequence as well. For our analysis, if the susceptible residue in
the annotated position differed from the one reported in the
sequence, we considered both as susceptible. This procedure led
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FIGURE 1 | General schematic of the presented work. (A) We obtained from CARD resistant (R) and susceptible (S) protein variants. We used Brewery software to
calculate relative solvent accessibility (RSA), and derived a RSA scoring model to dichotomize R and S variants based on their RSA scores. (B) We obtained from
PATRIC proteomes that are resistant or susceptible to specific AMR molecular mechanisms. We BLAST searched them against MEGARes proteins resistant to the
same AMR molecular mechanisms, and obtained candidate R and S protein variants. We then calculated the RSA variation (1RSA) by comparing candidate R and S
protein variants against their MEGARES. (C) We considered S and R protein variant pairs by coupling the candidate susceptible protein variants with their MEGARes
counterparts. We classified them by stacking Meta-MARC, AMRPlusPlus, and DeepARG to the RSA scoring model; and we designed a meta-feature ensemble
approach.

to the collection of 1,234 resistant protein variants out of 152
susceptible proteins.

These data are used firstly to measure the difference in the
RSA classes between resistant and susceptible variants, and then
to elaborate the RSA-AMR score.

Candidate AMR Protein Variants From
MEGARes and PATRIC
CARD AMR protein variants typically belong to housekeeping
genes. To extend our study to a more general case, we extracted
candidate AMR and susceptible protein variants by aligning
AMR MEGARes proteins with both AMR and susceptible
proteomes downloaded from PATRIC (Davis et al., 2020). We

selected MEGARes genes annotated to be resistant to a specific
AMR molecule or mechanism. We then selected matching
PATRIC proteomes that are annotated as either resistant or
susceptible to the same AMR molecule or mechanism. After
translating the MEGARes genes to proteins, we aligned the
MEGARes proteins against PATRIC proteomes with BLAST,
retaining extensive and precise alignments (see below). We
selected the resulting BLAST alignment mismatches as candidate
new variants. Variants found in the alignment of MEGARes
(resistant) with PATRIC susceptible proteins are candidates to be
responsible for the susceptibility. That is, if a MEGARes protein
is resistant to a specific AMR molecule or mechanism, and it
is well and extensively aligned against a PATRIC protein from
a proteome which is susceptible to the same AMR molecule
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TABLE 1 | Interquartile range and p-values comparing the scores of susceptible
and resistant protein variants for each of the four RSA classes.

Susceptible Resistant

1st Q Median 3nd Q 1st Q Median 3rd Q Pval

B 0.09 0.25 0.49 0.06 0.19 0.4 2.2e-16

b 0.22 0.35 0.33 0.23 0.35 0.43 0.092

e 0.08 0.2 0.31 0.12 0.23 0.33 2.2e-16

E 0.02 0.06 0.18 0.03 0.1 0.24 2.2e-16

or mechanism, then the alignment mismatches can be read as
candidate variants involved in the resistance loss. Conversely,
candidate variants (i.e., alignment mismatches) found in proteins
from PATRIC resistant proteomes are more likely to not affect
the resistance, as both the MEGARes and PATRIC proteins are
annotated with the same AMR resistance.

MEGARes and PATRIC Data Extraction
and Alignment
MEGARes V2.00 genomic sequences were obtained and
AMR variant-dependant accessionsed were filtered out (7375

sequences retained). We translated MEGARes sequences into
peptides with ORFfinder (Rombel et al., 2002), considering
any sense codon (other parameters set to default). PATRIC
proteomes were filtered according to specific annotations,
as follows. Genomes metadata were downloaded from the
PATRIC website (415089 annotations). We removed all
annotations that were not explicitly listed as “Resistant,”
“Susceptible,” “Intermediate,” “Non-susceptible,” “S,” or “RS,” and
did not have an explicit testing standard recorded (135198
retained annotations). As PATRIC provides proteomes,
we did not translate PATRIC genomes, but used the
provided proteomes.

We then searched for specific terms to extract drug-specific
resistant MEGARes sequences, and drug-specific resistant
and susceptible PATRIC proteomes, namely tetracyclines,
ciprofloxacin, ampicillin, and amikacin. Our rationale for
choosing the PATRIC labels used in this work was based on
three criteria, namely (a) abundance of the labels in both
databases; (b) one-to-one non-ambiguous mapping between
MEGARes hierarchical nomenclature and PATRIC labels; and
(c) labels that confer resistance to antimicrobials listed as
critically important for human medicine by World Health
Organization [WHO] (2019). Class A beta-lactamases have

FIGURE 2 | Violin and box plots for the solvent accessibility scores in CARD protein variants. Resistant variants are significantly less buried (class B), and more
exposed (classes e and E).
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FIGURE 3 | ROC curves for logistic regression, J48, and CART on CARD protein variant data set, 10 fold cross-validation.

1580 entries in MEGARes, and ampicillin is the most frequent
beta-lactamase label in both susceptible (3994) and resistant
(4424) filtered PATRIC records. Aminoglycosides have 773
entries in MEGARes, and amikacin is among the most frequent
aminoglycoside labels in both susceptible (3531) and resistant
(821) filtered PATRIC records. Fluoroquinolones have 296
entries in MEGARes, and ciprofloxacin is the most frequent
fluoroquinolone label in both susceptible (3995) and resistant
(4221) filtered PATRIC records. Tetracyclines have 296 entries
in MEGARes, and tetracyclines are the most frequent AMR
class label in both susceptible (3354) and resistant (4089)
filtered PATRIC records. Tetracyclines are the most abundant
in PATRIC, and directly correspond to an existing MEGARes
term. In its 2018 list of critically important antimicrobials, WHO
classifies tetracyclines as important, and fluoroquinolones, beta-
lactamases, and aminoglycosides as critical. Considering each
specific term independently, we filtered out PATRIC proteomes
that were annotated as both susceptible or resistant to that term.
For tetracyclines, we retained PATRIC genomes if annotated
with the terms “tetracycline,” or “tetracyclin,” and MEGARes
genes if annotated as tetracyclines. For ciprofloxacin, we retained
PATRIC proteomes if annotated with the term “ciprofloxacin,”
and MEGARes genes if annotated as fluoroquinolones. For

ampicillin, we retained PATRIC proteomes annotated with
the term “ampicillin,” and MEGARes genes if annotated as
Class A betalactamases. For Amikacin, we retained PATRIC
proteomes annotated with the term “amikacin,” and MEGARes
sequences if annotated with as aminoglycosides. Once obtained
the PATRIC proteomes, we generated two BLAST databases
(DBs) for each molecule, one with resistant proteomes, one
with susceptible ones. We then BLAST searched the selected
MEGARes peptides against their paired DBs, obtaining two
sets of alignments, one against resistant proteomes, one against
susceptible ones. From these two DBs we extracted, respectively,
candidate resistant and candidate susceptible protein variants
as the alignment mismatches. We considered as candidate
variants the single mismatches in BLAST ungapped alignments
with an identity of 99% or more, extending for 80% or
more of the MEGARes query peptide. For tetracyclines we
retrieved 346 resistant and 24 susceptible variants from 83
MEGARes proteins. For ciprofloxacin, we retrieved 76 resistant
and 72 susceptible variants from 135 MEGARes proteins. For
ampicillin, we retrieved 1833 resistant and 189 susceptible
variants from 889 MEGARes proteins For amikacin, we
retrieved 150 resistant and 156 susceptible variants from 294
MEGARes proteins.
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TABLE 2 | Interquartile ranges and p-values comparing the scores of candidate
susceptible and resistant protein variants obtained by alignment mismatches of
MEGARes proteins against PATRIC proteomes, against their resistant (original)
MEGARes counterparts.

Susceptible Resistant

1st Q Median 3rd Q 1st Q Median 3rd Q Pval

Tetracyclines

1B −0.08 −0.06 0.01 −0.017 0 0.03 0.0064

1b −0.032 −0.03 0.01 −0.04 0 0.04 0.2796

1e −0.03 0.035 0.09 −0.02 0 0.03 0.1328

1E −0.017 0.02 0.03 −0.04 0 0.01 0.0707

Ciprofloxacin

1B −0.002 0 0.022 −0.082 0 0 < 0.0001

1b −0.01 0.01 0.08 −0.05 0 0.02 0.0075

1e −0.042 −0.02 0.01 −0.01 0 0.069 < 0.0001

1E −0.07 −0.03 0.01 −0.01 0.015 0.04 < 0.0001

Ampicillin

1B −0.01 0 0.01 −0.02 0 0.06 0.0094

1b −0.055 0.02 0.07 −0.04 0 0.03 0.0004

1e −0.01 0 0.01 −0.03 0 0.02 0.5435

1E −0.07 −0.1 0.02 −0.04 0 0.03 0.0157

Amikacin

1B −0.01 0 0.03 −0.02 0 0.01 0.02

1b −0.04 −0.01 0.02 −0.02 0 0.027 0.1791

1e −0.04 0 0.03 −0.02 0 0.017 0.2588

1E −0.02 0 0.04 −0.007 0 0.05 0.5523

RSA Class P-Values
For CARD protein variant RSA probability distributions,
P-values comparing the score distributions have been calculated
as pairwise (resistant versus susceptible) Wilcoxon signed-
rank tests. P-values for probability distributions from candidate
protein variants derived from MEGARes and PATRIC are
calculated as Wilcoxon rank sum tests.

Gene Data Set to Test the Combination
of RSA-AMR Score With Existing AMR
Algorithms
To show how the RSA-AMR score can ameliorate the
performance of existing AMR detection algorithms, we used it in
combination with Meta-MARC, DeepARG, and AMRPlusPlus.
We obtained a set of resistant-susceptible gene pairs as follows.
We considered all the candidate susceptible protein variants
derived by aligning MEGARes versus PATRIC, as in Sections 2.3
and 2.4. For each susceptible protein variant, we calculated all
the possible corresponding nucleotide codons, and obtained a
candidate susceptible gene for each codon. We coupled candidate
susceptible protein variants with their reference resistant gene
on MEGARes obtaining a balanced data set of resistant
and candidate susceptible instances. Regarding classification
for Meta-MARC, we considered the lowest E-score for each
sequence; for DeepARG, we considered the DeepARG AMR
probability output for each sequence; for AMRPlusPlus we

considered the resistome, i.e., the sum of the AMRPlusPlus BWA
alignements to the reference database.

RESULTS

In silico RSA Is Increased in CARD AMR
Protein Variants
We calculated the solvent accessibility for each protein,
susceptible and resistant, from 1,234 resistant protein variants
obtained from the CARD (Table 1 and Figure 2). The Brewery
algorithm (Torrisi and Pollastri, 2020) outputs the probability of
each residue to belong to four exposure classes, namely B (very
buried), b (somewhat buried), e (somewhat exposed), and E (very
exposed). We found resistant variants show a higher probability
than susceptible ones in classes e (medians 0.23 versus 0.2), and
E (medians 0.24 versus 0.06). Conversely, susceptible protein
variants show a higher probability in class B when compared to
resistant ones (medians 0.25 and 0.19, respectively). We did not
find a variation in the medians for class b (both 0.35).

We investigated the solvent accessibility difference between
susceptible and resistant variants across specific AMR
mechanisms (Supplementary Figures 1–6). We retained
the six CARD model types with at least 30 annotated
susceptible/resistance pairs, namely one Clostridioides
difficile resistance to fluoroquinolone, and six Mycobacterium
tuberculosis resistances (ethambutol, streptomycin, isoniazid,
pyrazinamide, and rifampicin). We found the RSA behavior to be
consistent also if we split the variants by mechanism. Class B is
invariantly scoring higher for susceptible protein variants, while
classes e and E for resistant ones. Differently from the general
case, class b is scoring higher for susceptible protein variants in
four out of six molecular mechanisms.

AMR RSA Score
By considering resistant and susceptible CARD AMR variants as
classes, we developed a model based on logistic regression, with
the four RSA values as features. We used the probability of this
model as a RSA-based AMR protein variant score (RSA-AMR
score). We measured the area under the ROC curve (AUC) for
a 10-fold cross validation for logistic regression (AUC 0.55), J48
decision tree (AUC 0.55), and CART (AUC 0.67) decision tree,
as depicted in Figure 3. CART provided the best AUC but at the
cost of an increased complexity (number of leaves 247, tree size
493) compared to J48 (number of leaves 11, tree size 21).

In silico Candidate AMR Protein Variants
From MEGARes and PATRIC
We extracted candidate AMR and susceptible protein variants
by aligning AMR MEGARes proteins with both AMR and
susceptible PATRIC proteomes.

When examining CARD variants, we use two sets of RSA
probability distributions, i.e., the ones for the susceptible (wild
type) variants, and the ones for the resistant variants. For
candidate variants extracted from the MEGARes versus PATRIC
alignment, on the other hand, we have to consider three
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FIGURE 4 | Violin and box plots for the solvent accessibility scores for tetracyclines. For resistant protein variants, 1s for all classes have a median of 0, showing no
variation in solvent accessibility. On the contrary, susceptible protein variants show median 16=0.

sets of RSA probability distributions. Specifically, we calculate
the RSA for the resistant (original) residues from MEGARes;
the RSA for the candidate resistant variants; and the RSA
for the candidate susceptibility variants. We therefore do not
compare RSA probability distributions but variations of the
RSA probability distributions (1s), as the difference between
the resistant (MEGARes) solvent accessibility distribution; and
the candidate resistant or susceptible variant (PATRIC) solvent
accessibility distribution. 1B, 1b, 1e, and 1E are calculated as
MEGARes residue score (resistant) – PATRIC score. Therefore
when we consider genes from susceptible PATRIC genomes, we
expect a change in the score; whereas when we consider genes
from resistant PATRIC genomes, we expect a negligible score
change, ideally 1B, 1b, 1e, and 1E = 0.

In tetracyclines (Table 2 and Figure 4), resistant protein
variants 1s for all classes have median = 0, showing no variation
in solvent accessibility. This indicates that PATRIC candidate
resistant variants do not influence the solvent accessibility of the
MEGARes resistant genes. On the contrary, PATRIC susceptible
protein variants show median 16=0, suggesting a structural
variation. In ciprofloxacin (Table 2 and Figure 5), resistant
protein variants showing median 1 = 0, with the exception
of class E, where the median 1 is negative. For susceptible

protein variants, three out of four classes (B, e, and E) show
1 6= 0, suggesting a structural variation. In ampicillin (Table 2
and Figure 6), the median 1s for all classes are 0 for resistant
proteins; for the susceptible one, 1b and 1E distributions are
centered in 0, while 1B and 1e are not. In amikacin (Table 2 and
Figure 7), while the median 1s for all classes are 0 for resistant
protein, only for class 1b the median is 6= 0 in the susceptible
protein variants. Overall, these results suggest that even for genes
without known resistance-conferring variants, conservation of
the structural variations (or its absence) can be implicitly related
to their ability to retain (or lose) AMR against specific substances.

Combining the SRA-AMR Score With
AMR Detection Algorithms
To show how it is possible to utilize the RSA-AMR score to
expand the range of applicability of existing AMR detection
algorithms, we show three case studies with state-of-the-art
algorithms, namely Meta-MARC, DeepARG, and AMRPlusPlus.
We derived a set of resistant and susceptible genes by pairing
candidate susceptible variants described in Section 2.6. We chose
this set as we can not use CARD since the RSA-AMR score
is based on those very same variants. Resistant genes from
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FIGURE 5 | Violin and box plots for the solvent accessibility scores for ciprofloxacin. For resistant protein variants, with the exception of class E, 1s have a median of
0, showing no variation in solvent accessibility. On the contrary, susceptible protein variants 1 with median 6= 0.

Megares are paired with candidate susceptible ones, i.e., carrying
a variant obtained from PATRIC alignments. Current algorithms
are not designed to answer the specific task represented by our
data set, which would be to detect susceptible sequences from
their resistant counterparts based on a single protein variant per
sequence, as their AMR labeling is based on sequence similarity
(for example percent of identity with sequences in the reference
database). We observed that these algorithms classify the great
majority of the candidate susceptible variants as resistant (false
positives). We show how using the SRA-AMR score can greatly
ameliorate the results and greatly curb the number of false
positives, increasing specificity.

Integration with Meta-MARC. The Meta-MARC predicted
resistome depends on a user-defined E-value threshold. To
explore the integration of the RSA-AMR score with Meta-MARC,
we tested how Sensitivity and Specificity vary according to
the E-value threshold, and how the RSA-AMR integration can
ameliorate the overall performance (Figure 8). We filtered the
paired variants to retain unique variants only (437 resistant and
1519 susceptible variants). We tested E-value thresholds of 100,
10, 1, 10−5, 10−10, 10−15, 10−20, and 10−25. Meta-Marc tends
to identify the great majority of the variants as resistant for

threshold 10−15 and above, with Sensitivity≥0.92 and Specificity
≤0.01. For thresholds below 10−15, Specificity shows a slight
increase (up to 0.05 for E-value 10−25), but at the cost of a
sharp decline in Sensitivity (down to 0.63 for E-value 10−25).
Thus, Meta-MARC cannot accurately distinguish genes carrying
the candidate susceptible variant from the resistant ones, as it
tends to classify both classes as resistant. We used the RSA-
AMR score to balance Sensitivity and Specificity in an ensemble
(stacking) fashion. We considered the Meta-MARC predictions
for the resistant class as true; however, for the susceptible class,
we considered the Meta-MARC predictions true only if the
associated RSA-AMR score is positive, i.e., predicted positive by
the RSA-AMR logistic regression. When compared to the Meta-
MARC prediction for the most stringent threshold of 10−25,
Specificity is greatly increased (0.05–0.49), with a minor loss of
Sensitivity (0.63–0.6).

Integration with DeepARG. The same data set utilized for
the Meta-MARC integration was also tested with DeepARG. We
varied the DeepARG classification threshold from 0.8 (default) to
0.95 (Figure 9). At default threshold value, DeepARG tends to
classify the majority of the variants as resistant, with Sensitivity
0.65 and Specificity 0.04. By raising the threshold, Specificity
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FIGURE 6 | Violin and box plots for the solvent accessibility scores for ampicillin. For resistant protein variants, all 1s have a median of 0, showing no variation in
solvent accessibility. Susceptible protein variants for 1b and 1e show median 6= 0.

increases up to 0.23, but Sensitivity sharply drops to 0.22. By
adding the RSA-AMR score to the DeepARG classification,
we observe a similar behavior, with Specificity increasing and
a Sensitivity decreasing as the threshold is raised; however,
the default DeepARG threshold combined with the RSA-AMR
score provides the best combination of Sensitivity (0.45) and
Specificity (0.4).

Integration with AMRPlusPlus. To make possible an
integration with AMRPlusPlus, we proceeded by providing
AMRPlusPlus the unfiltered paired resistant/candidate
susceptible sequences and their reverse complement, and
setting the highest quality for all the corresponding simulated
FASTQ files to ensure that AMRPlusPlus would not filter out
any sequence. Not surprisingly, the total number of BWA
alignments is basically the same for both classes, with 3587 and
3585 BWA alignments for resistant and candidate susceptible
classes respectively. We can apply the RSA-AMR score to curb
the tendency of AMRPlusPlus to find the same resistome for both
classes; specifically, we can pre-filter the sequences to be used as
AMRPlusPlus by removing the ones with a negative RSA-AMR
score, therefore less likely to carry resistance. By applying
AMRPlusPlus to the filtered set, the number of alignments of

the susceptible class (false negatives) decreases by 65% (1266
alignements), while the alignements on the resistant class (true
positives) decreases only by 38% (2240 alignements).

RSA-AMR as a meta-classfier. We assessed the potential of
integrating Meta-MARC, DeepARG, and the RSA-AMR score in
a meta-classifier. The meta-classifier is an AMR variant resistance
classifier that accepts the outputs of single classifiers as input.
We considered the filtered resistant/candidate susceptible data
set to train meta-classifiers based on logistic regression, J48, and
CART. As features for the meta-classifiers we considered the
RSA-AMR score, the Meta-MARC E-value, and the DeepARG
classification probability, or a combination of them. Figure 10
shows a heatmap of the 10-fold cross validation AUC for the
different combinations of features and methods. Combining the
meta-features from all the three approaches leads to the best
results for all the learning methods.

DISCUSSION AND CONCLUSION

The main state-of-the-art algorithms used to predict AMR in
unknown sequences are based on alignment with known AMR
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FIGURE 7 | Violin and box plots for the solvent accessibility scores for amikacin. The median s for all classes are 0 for resistant and susceptible protein variants is 0,
only for class 1b in the susceptible protein variants the median is 6= 0.

genes (Arango-Argoty et al., 2018; Lakin et al., 2019; Alcock
et al., 2020; Doster et al., 2020), and are therefore limited
to search within their reference databases. While extremely
functional, these algorithms can not be utilized to investigate
novel AMR genes or variants. The need to fill this research
gap motivated our work. Our analysis showed a strong RSA
distribution shift related to the AMR-conferring protein variants
(Figure 2 and Table 1), present in 3 out of 4 RSA classes.
The direction of this shift is coherent with the fact that AMR
is determined by structural physico-chemical properties, and
therefore the AMR-related residues tend to be more exposed than
their susceptible counterparts.

Consistently with these findings, we did not find a strong
shift when measuring the 1RSA in candidate resistant protein
variants obtained by comparing resistant PATRIC proteomes
and MEGARes resistant genes (median 1 = 0 for all the
considered AMR mechanisms). On the other hand, the shift was
present in the candidate susceptible protein variants, indicating
a structural change. Intuitively, this change can be interpreted
with the fact that a structural change is altering the AMR
properties, specifically diminishing or removing AMR. However,
the shift greatly varies according to the specific AMR mechanism

(Figures 4–7 and Table 2) in terms of both classes (present
in one class in amikacin; in all four classes in tetracyclines)
and directions. In tetracyclines, susceptible variants tend to
be more buried, showing negative 1 for classes b and B,
and conversely positive 1 for classes e and E. However, this
does not hold for other AMR mechanisms, where we notice
a predicted structural variation in the candidate susceptible
variants in both directions. There are several factors that, alone or
combined, can explain why the shifts are in both directions. One
possible explanation is that we use single-point mutations, whilst
more extensive combinations of mutations could be needed
for significant structural changes. However, when analyzing
the so-called housekeeping genes that are known to confer
AMR with exactly one mutation, we clearly observe a definite,
strong shift in 1s between the E and B categories. Another
possibility is that different antibiotics have different binding
affinity and mechanisms of action, such that some might be less
affected by structural changes, particularly if their mechanism
of action doesn’t involve binding in that portion of the protein.
Furthermore, the resistance mechanism for some proteins might
in fact be due to burying of the binding site itself, i.e., by exposing
a specific residue the resistance is hindered because the target
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FIGURE 8 | Sensitivity and Specificity of Meta-MARC and Meta-MARC combined with the RSA-AMR score. The best combination of Sensitivity and Specificity is
achieved by combining Meta-MARC combined with the RSA-AMR score, and a stringent threshold of 10-25 for the Meta-MARC E-value.

FIGURE 9 | Sensitivity and Specificity of DeepARG and DeepARG combined with RSA-AMR. The best combination of Sensitivity and Specificity is achieved by
combining DeepARG with the RSA-AMR score, and the default 0.8 threshold for DeepARG.

antibiotic can bind. In the case of active translation, the protein
blocks the binding site without preference for the direction of
the change, depending on drug and mechanism. Finally, we
are conducting in silico experiments based on predicted (not
observed) data, i.e., predicted secondary structure and candidate
protein variants. Therefore our data are strong enough to contain

the biological signal connecting changes in solvent accessibility to
changes in AMR, but are not sufficient to define its direction.

A challenge in our experiment design was to match CARD,
MEGARes, and PATRIC annotations, which required ad hoc
manual curation. While MEGARes provides a lookup table
matching its sequences with the CARD ones, the AMR
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FIGURE 10 | 10-fold CV AUC for meta-classifiers based on different combinations of input meta-features and learning approaches. The best approach consists of a
CART tree learning from all the three meta-features.

mechanism description is fundamentally different in the two
databases. MEGARes structures each sequence into type, class,
mechanism, and group; CARD provides an ontology-oriented
labeling. PATRIC is instead annotated with AMR molecule-
specific names. PATRIC annotations are not always consistent,
with the same AMR molecule labeled with multiple names, or
genomes showing records as both resistant and susceptible to
the same AMR molecule (see Methods). Although designed for
single variants, the RSA-AMR score can be applied in principle to
proteins showing multiple variants, e.g., in an additive fashion.
However, multiple non-synonymous changes can significantly
impact the protein structure. In turn, structures computed by
prediction tools might not be reliable when calculated upon
multiple changes, possibly introducing larger errors. We plan to
address a multiple-variant model in our future works.

In conclusion, in this study we analyzed AMR protein
variants from the RSA perspective. We analyzed the RSA of
AMR protein variants with Brewery, a state-of-the-art method
based on deep learning. We found a strong distribution shift
in resistant residues, with respect to RSA, when compared to
the susceptible ones. Our approach unveiled RSA differences

also in putative resistant and susceptible variants, obtained by
aligning MEGARes and PATRIC sequences. These differences are
measured as the variation in the RSA probability distribution.
We found these differences varying greatly depending on
the considered AMR machinery. Based on these findings, we
developed a novel scoring system, RSA-AMR. RSA-AMR is not
meant to be used as a standalone AMR prediction tool, but
rather as a variant screening. When combined with state-of-
the-art classifiers, it provides a ten-fold increase in predictive
Specificity (combined with DeepARG, from 0.04 to 0.4; combined
with Meta-MARC from 0.05 to 0.49). Limitations of RSA-AMR
include the fact that it works on single point changes, and
a limited number of identified protein variants was available
for model learning.
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