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Can deep convolutional neural networks support relational
reasoning in the same-different task?

Guillermo Puebla School of Psychological Science, University of Bristol, UK

Jeffrey S. Bowers School of Psychological Science, University of Bristol, UK

Same-different visual reasoning is a basic skill central to
abstract combinatorial thought. This fact has lead neural
networks researchers to test same-different
classification on deep convolutional neural networks
(DCNNs), which has resulted in a controversy regarding
whether this skill is within the capacity of these models.
However, most tests of same-different classification rely
on testing on images that come from the same
pixel-level distribution as the training images, yielding
the results inconclusive. In this study, we tested
relational same-different reasoning in DCNNs. In a series
of simulations we show that models based on the
ResNet architecture are capable of visual same-different
classification, but only when the test images are similar
to the training images at the pixel level. In contrast,
when there is a shift in the testing distribution that does
not change the relation between the objects in the
image, the performance of DCNNs decreases
substantially. This finding is true even when the DCNNs’
training regime is expanded to include images taken
from a wide range of different pixel-level distributions or
when the model is trained on the testing distribution
but on a different task in a multitask learning context.
Furthermore, we show that the relation network, a deep
learning architecture specifically designed to tackle
visual relational reasoning problems, suffers the same
kind of limitations. Overall, the results of this study
suggest that learning same-different relations is beyond
the scope of current DCNNs.

Introduction

Feedback connections, can be investigated, and
methods relational reasoning is core to human
intelligence (Penn et al., 2008) and has proven to be
a challenge for an earlier generation of connectionist
models (e.g., O’Reilly & Busby, 2001; Rogers &
McClelland, 2004; St. John, 1992), as well as more
recent deep neural networks (for recent reviews, see Ricci
et al., 2021; Stabinger et al., 2021). Perhaps the simplest
form of relational reasoning is the same-different task

that simply requires the reasoner to determine whether
two inputs are the same or different by some criterion.
In the domain of vision, the simplest version of this is
to classify images as visually identical or not. This skill,
essential to abstract combinatorial thought, is much
more developed in humans and chimpanzees than in
other species (Gentner et al., 2021) and develops early
in human infants (e.g., Ferry et al., 2015).

Recently, there has been mixed evidence regarding
whether standard deep convolutional neural networks
(DCNNs) can support same-different matching of
images. Much of this research has used the synthetic
visual reasoning test (SVRT) developed by Fleuret et al.
(2011). This dataset comprises sets of 23 classification
problems involving images, of randomly generated
shapes (for example images, see Figure 1). In their study,
Fleuret et al. (2011) found that the standard machine
learning techniques of the time performed poorly,
whereas most humans were able to solve the problems
after seeing a few examples. Similarly, Stabinger et
al. (2016) showed that state-of-the-art DCNNs (at
the time) LeNet and GoogLeNet performed poorly
on the same SVRT same-different tasks, and more
recently, Kim et al. (2018) showed that vanilla DCNNs
were poor at SVRT same-different tasks, and using a
different dataset, showed that the Santoro et al. (2017)
relational network also failed to support same-different
judgments.

Interestingly, Kim et al. (2018) did find that a
Siamese network (Bromley et al., 1993) that encoded
the two shapes in two separate channels to simulate the
effects of attentional selection and perceptual grouping,
learned to classify images as “same” or “different”
easily, leading the authors to conclude that object
individuation is a key step in solving the same-different
task. At the same time, they also argue that a full
solution to the same-different problem requires a
network to encode dynamic representations of relations
rather than statically storing visual relation templates
in synaptic weights. That is, in their view, symbolic
processes need to be implemented to fully solve the
same-different task.
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Figure 1. Examples of the “same” and “different” categories
from SVRT problem #1. In this problem, an image belongs to
the category same if both shapes are identical up to translation
on the canvas and different otherwise.

In contrast, there are recent reports that the current
state-of-the-art DCNNs can learn the same-different
task. If this is indeed the case, it would be a striking
example of standard networks solving a fundamental
relational reasoning task without implementing any
symbolic machinery. Funke et al. (2021) noted that Kim
et al. (2018) only tested relatively small CNNs (up to
six layers), and when they replicated the same-different
experiments on the SVRT dataset using ResNet-50
(He et al., 2016), a network of 50 layers, the models
were able to perform the task successfully. Funke et
al. (2021) noted that the success does not necessarily
imply DCNNs can perform well on all visual reasoning
tasks, but they do highlight that standard feedforward
processing DCNNs can learn the (in-distribution)
same-different task and that Kim et al.’s claim regarding
the need for extra mechanisms for abstract visual
reasoning is unwarranted.

Similarly, Messina et al. (2021) have shown that a
range of recent DCNNs, specifically ResNet, DenseNet
(Huang et al., 2017), and CorNet-S (Kubilius et al.,
2018), can solve the same-different SVRT tasks, whereas
they confirm that this is difficult for older AlexNet
(Krizhevsky et al., 2012) and VGG (Liu & Deng, 2015)
networks. The authors conclude that “We think that the
development of the abstract and relational abilities of
neural networks is an important leap towards achieving
some interesting new task.”

However, there is a fundamental problem with using
success on the SVRT dataset as evidence that CNNs
can support same-different relational reasoning. A key
feature of relational reasoning is that it is reasoning
based on relations between objects rather than any
low-level visual details of the inputs. In the domain
of visual reasoning, this entails that same-different
discrimination should extend to novel images. The
SVRT dataset does test models on novel images, but
the test images are generated in the same way (i.e., the
train and test datasets come from the same pixel-level
distribution), and accordingly, it does not test the
hypothesis that models have acquired the capacity to
support relational reasoning on the same-different task.

Simulations

In the simulations described in this article, we test
abstract same-different reasoning in several DCNNs
models based on the ResNet-50 architecture. The basic
tenet of our simulations is that a model that has learned
the abstract same and different relations should be able
to recognize examples of these relations beyond its
training set. Similar to previous research on abstract
visual reasoning (Funke et al., 2021, Study 1; Yan &
Zhou, 2017), our approach used carefully constructed
out-of-distribution samples to test whether DCNNs
understood the trained concept or instead relied on
superficial statistical cues present in the training data.

Our training and test data are based on problem #1
of the SVRT (see Figure 1). In this problem, images of
two randomly generated shapes are classified as “same”
if they are the same up to translation on the canvas
and “different” otherwise. We created nine new datasets
that followed the same abstract rule as problem #1 (see
Figure 2). However, each new dataset was generated
through a distinct stochastic generative process (i.e.,
a different pixel-level distribution). Each dataset was
defined as follows:

• In the irregular dataset, each shape was a irregular
polygon. These polygons were generated by
sampling a series of 1 to 7 points of a circumference
of radio π (uniformly sampled from 1 to 40 pixels)
around a randomly chosen center. After this, we
added uniformly distributed random noise to each
point and connected all of them with straight lines.
In the same category, both shapes were identical
except for the position in the canvas. In the different
category, the initial points and point errors of the
second polygon were resampled such that both
shapes were different.

• In the regular dataset, each shape was a regular
polygon. These polygon were generated in the same
way as the Irregular dataset except that we did not
add with random noise to the polygon points.

• The open dataset was generated in the same way as
the irregular dataset, except that the first and last
vertices of each shape were not connected.

• The wider line dataset was generated in the same
way as the irregular dataset, except that the line
width was set to two pixels instead of one.

• The scrambled dataset was was generated in the
same way as the Regular dataset except that in
the different category, one the of the objects
(scrambled) was generated by dividing the other
object into sections and displacing them randomly
around the center.

• The random color dataset was generated in the
same way as the irregular dataset, except that for
each image the line color was chosen randomly.
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Figure 2. Examples of the same and different categories from our nine new versions of SVRT problem #1. See text for details.

• The filled dataset generated in the same way as the
irregular dataset except that the shapes were filled
with black.

• In the lines dataset, each object corresponded
with a line created by joining two open squares,
one with the opening pointing downward and the
other with the opening pointing upward, at the
end of the opposite left/right sides (i.e., the right
side downward-facing open square was joined to
the left side of the upward-facing square or vice
versa); in the same category, the lines were identical,
whereas in the different category, the second line
was created by joining the open squares at the
opposite left/right sides than the first line.

• In the arrows dataset, the objects were arrows
consisting of one or two triangular head(s) and a
line; the head(s) and the line were connected; in the
same category the arrows were the same and in the
different category the orientation of each head was
inverted.

Note that, among these nine different stimulus sets
there are differences in the level of low-level similarity
with the original SVRT data. In particular, the irregular,
regular, and, to a lesser extent, the open datasets are
more similar to the original data than the rest of the
datasets. The code to generate these datasets, as well
as to run all our simulations, can be found at: https:
//github.com/GuillermoPuebla/same_different_paper.

Simulation 1: Generalization to unseen
conditions

In simulation 1, we performed the most basic and
stringent test of abstract relational reasoning. We
trained several models on the original problem #1 and
then presented with 5,600 images from each of the
10 stimulus test sets. That is, our testing conditions
consisted of new images from the original training set
(replicating Funke et al., 2021), and novel images from
the other nine test datasets that were not seen during
training. As noted elsewhere in this article, a model that
has learned the abstract same and different relations

should generalize learning on the same-different task
independently from the pixel-level similarity to original
SVRT data.

In simulation 1, we tested three sets of models based
on the ResNet architecture. The first set consisted of
four ResNet-50 classifiers. All models consisted of
a ResNet-50 convolutional front end followed by a
hidden layer with 1,024 units with ReLU activation
(see Figure 3A). In simulation 1, there was one
output layer consisting of a single sigmoid unit that
predicted the probability that the input image belonged
to the category same. We pretrained the models’
convolutional front end using either ImageNet (Deng
et al., 2009) or TU-Berlin (Eitz et al., 2012), a dataset
of human-generated sketches. Furthermore, we varied
how we treated the output of the convolutional front
end before passing it to the hidden layer. We either
applied a global average pooling (GAP) operation to
the output, as in Funke et al. (2021), or flattened the
output, as in Messina et al. (2021).1

The second set of models were different versions
of the ResNet architecture that varied on depth. In
particular we used ResNet-18, ResNet-34, ResNet-101,
and ResNet-152 front ends with GAP pooling and
ImageNet pretraining, because this was most successful
condition in the first set of models. The goal of testing
these models was to measure the potential role of
network depth on the generalization of same-different
discrimination.

The third set of models consisted of two variations
of a relation network (Santoro et al., 2017). This
architecture is especially relevant for the present study
because it was explicitly designed to perform relational
reasoning on the visual domain and it’s fully compatible
with DCNNs. As illustrated in Figure 3B, a relation
network consists of a convolutional front end that
outputs a series of filters and a relation module. The
relation module organizes the filter activations into
columns that correspond with specific positions across
filters (denoted by different colors in Figure 3B), and
generates all possible pairs of columns. All this pairs are
processed by a single multilayer perceptron, gθ , yielding
a vector per pair. These vectors are summed up and
passed trough a second multilayer perceptron, fφ, that

https://github.com/GuillermoPuebla/same_different_paper
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Figure 3. Models tested. (A) ResNet classifier. (B) Relation network.

yields the final same-different prediction. Note that the
feature columns inputs to the relation module do not
necessarily represent objects or objects parts. Instead,
they represent whatever is in their corresponding
receptive fields (e.g., the background, a texture, or
even multiple objects at the same time). We created
two versions of the relation network2 by varying the
filter inputs to the relation module. In the first version
we used the output of the last convolutional layer of
ResNet-50 (pretrained on ImageNet), that consisted of
2,048 4×4 filters. Because the original relation network
of Santoro et al. (2017) used a CNN front end with
filter outputs of size 8×8, in the second version we used
the 1,024 output filters of the last convolutional layer
of Resnet-50 with filter size 8×8.

Following the recommendations of Mehrer et al.
(2020), who argue that network behavior should be
based on groups of network instances, we trained 10
instances of each model. We used the Adam optimizer
(Kingma & Ba, 2014). Training proceeded in two
stages. In the first stage, the pretrained ResNet network
was frozen while the rest of the network was trained
with a learning rate of 0.0003. In the second stage,
the complete model was trained with a learning rate
of 0.0001. The training data consisted of the original
data from SVRT problem #1. In the first stage, the
model was trained on 28,000 images for 5 epochs with a
batches of 64 samples. In the second stage, the model
was trained on the same images for 10 epochs and with
the same batch size.

Because same-different decisions were often
performed on test datasets with different distributions
than the training datasets, it is possible that there is

AUC range Category

[0.9−1.0] Outstanding
[0.8−0.9) Excellent
[0.7−0.8) Acceptable
≤0.7 Poor

Table 1. AUC interpretation criteria.

a different optimal classification threshold for each
test dataset. To account for this, we used the area
under the receiver operating characteristic (ROC)
curve (AUC), which is a performance measure that
takes into consideration all possible classification
thresholds. AUC values range from 0.0 to 1.0, where
0.5 corresponds with chance-level responding and 1.0
with perfect classification. The AUC can be interpreted
as the probability that a randomly sampled example of
the positive category (same) will be assigned a higher
predicted probability than a randomly sampled example
of the negative category (different) (Hanley & McNeil,
1982). We interpreted the AUC values according the
general guidelines of (Hosmer et al., 2013) (Table 1).

Results and discussion
ResNet-50 classifiers: As can be seen in Figure 4,
all models achieved outstanding performance in the
original test dataset. Average validation AUC scores
on the original dataset were greater than 0.9 for all
models. Furthermore, we did not find large differences
in generalization as a function of pooling or the
pretraining dataset. Overall, the ImageNet and GAP
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Figure 4. Mean AUC by ResNet-50 classifier across datasets in simulation 1. Error bars are 95% confidence intervals.

Figure 5. Mean AUC by ResNet version and test dataset on simulation 1. Error bars are 95% confidence intervals. Note: the ResNet-50
means correspond with the same data shown in Figure 4 (GAP and ImageNet).

model was the best performing model in the original
test dataset, as well as, on average, in the nine new test
datasets. Accordingly, the following analysis (as well as
simulations 2 to 4) will concentrate on this condition.
The ImageNet and GAP model showed outstanding
or excellent performance in the irregular, regular, and
open datasets. As can be appreciated in Figure 2,
these datasets were the most featurally similar to the
training data. In contrast, the ImageNet and GAP
model showed a poor performance on the random
color, filled, lines, and arrows datasets and a acceptable
performance on the wider line and scrambled datasets.
In general, these results show that generalization on the
same-different task is very susceptible to distribution
shifts that do not affect the relationship between
the objects in the image. This pattern of results is
inconsistent with the models learning the abstract same
and different relations.

ResNet depth variations
As shown in Figure 5, all versions of ResNet

performed similarly. Average validation AUC scores
on the original dataset were greater than 0.9 for all

models. Overall, the ResNet-152 version was the best
performer, with significantly higher AUC on the wider
line and filled conditions than the ResNet-50 model,
although ResNet-152 achieved the worst performance
in the scrambled condition. Given that we found some
evidence for a role of network depth on generalization,
we will include ResNet-50 and ResNet-152 models
in all the following simulations. Importantly, all
ResNet versions showed the same overall pattern
of generalization, with better generalization to the
conditions that were more similar to the training data,
which is inconsistent with learning the abstract relations
same and different.
Relation networks: Similar to the ResNet classifiers,
both relational networks achieved outstanding
performance in the original test dataset (Figure 6).
Average validation AUC scores on the original dataset
were above 0.9 for all models. Overall, the relation
network with 8× 8 filter inputs was the best performing
model on the original test dataset as well as across
the nine new test datasets (in many cases by a large
margin). Accordingly, for the following analysis (as
well as simulations 2 to 4), we will concentrate on it.
This model achieved excellent performance or above in
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Figure 6. Mean AUC by relation network version and test
dataset on simulation 1. Error bars are 95% confidence
intervals.

the irregular, regular, open, wider line and scrambled
datasets. Performance was acceptable on the filled
dataset. Still, the relational network performed poorly
on the random color, arrows, and Lines datasets, which
is inconsistent with an understating of the abstract
relations same and different.

Simulation 2: Leave-one-out training

One potential criticism to simulation 1 is that the
training data (line drawings of random shapes) was not
rich enough for the models to form a more complex
representation of the same and different relations. Note
that Messina et al. (2021) do interpret their results
with the same training data as supporting relational
same-different reasoning in DCNNs. Nevertheless, we
agree that the representations of the human visual
system are based on rich stimuli and, therefore, is
important to test what happens when the models have
access to a richer training set. Therefore, in simulations
2 to 4, we tested whether augmenting the training
regime of the models would improve generalization on
the same-different task to unseen stimuli. In simulation

2, we did this by using a leave-one-out procedure, where
the models were trained on nine stimulus conditions
consisting of images from the original SVRT data and
all the new datasets except one (cf. Geirhos et al., 2018).
For each condition, we trained 10 model instances with
the same settings as in Simulation 1 except that the
models were trained for 15 epochs instead of 10. We
tested the models in the one stimulus set they were not
trained on. For example, the models in the irregular
stimulus condition were trained on the original data
and all the new datasets except the irregular condition,
in which they were tested on.

Results and discussion
Figure 17 in Appendix A presents all validation

AUC scores for all trained datasets per model and
condition. As can be seen in Figure 7, the relation
network was the best performer with AUC excellent
or above in all conditions, but lines and arrows.
The ResNet-152 model performed worse than the
ResNet-50 version, showing poor performance on the
scrambled, random color, lines and arrows conditions.
All models performed poorly in the lines condition.
Furthermore, the performance of all models was near
the lower limit for acceptable in the arrows condition.
Overall, these results show that augmenting the training
regime directly on the same-different task improved
performance on untrained datasets for all models.
However, this benefit does not seem to be based on a
better understanding of the shared relational structure
of the problem, given the results in the lines and arrows
conditions.

Simulation 3: Multitask learning

In simulation 2, we augmented the models’
experience by training on the same-different across
a range of stimulus conditions. A potential criticism

Figure 7. Mean AUC by test dataset and model on simulation 2. Error bars are 95% confidence intervals.
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to this strategy is that it does not give the models
any experience with the specific stimulus condition
they are tested on. Accordingly, in simulation 3, we
augmented the models’ experience on all the datasets
through multitask learning. In deep learning research,
multitask learning has long been used as technique to
improve generalization (for a review, see Ruder, 2017).
In this simulation, the models were trained on two
tasks. The first was the same-different task as in the
previous simulations. In simulation 3a, the second task
was a relative position task. This process consisted
in classifying whether the lower object in the image
was to the right of the upper object (category 1) or to
the left (category 0). In simulation 3b, the second task
consisted on classifying each same-different sample into
its corresponding condition (i.e., original, irregular,
regular, etc.). In both simulations, we trained both task
jointly.

To train the ResNet models in simulation 3a, we
added a second output layer with a single sigmoid unit.
During training we presented the models with images
from all conditions. However, we only allowed the
models to learn to classify the images from the original
condition as same or different, whereas the models
learned to classify all images according to relative
position. To this end, we used the following composed
loss function:

Ltotal =
∑

i∈batch
wsd

i ·CE (ysdi , ŷsdi ) + w
rp
i ·CE (yrpi , ŷrpi ), (1)

where CE (y, ŷ) is the cross-entropy loss between the
label y and the prediction ŷ, and wsd and wrp are the
weights for the same-different loss and the relative
position loss, respectively. During training, wrp was
set to 1 for all images. In contrast, when the model
received images from the original SVRT data, we set
wsd to 1; otherwise, it was set to 0. During testing, we
presented the models with images of each problem
version and recorded the models’ same-different and
relative position AUC. All other training and testing
parameters were the same as in simulation 1, except
that we trained the models for 15 epochs rather than 10.

For the relation network, we added a question
layer3 and a second output layer with a single sigmoid
unit. The relation network concatenates this question
to all the column pairs, making the computation
performed by gθ question dependent. To train on
the same-different task we created a vector, [1 0]T ,
representing the same-different question and another
vector, [0 1]T , representing the relative position
question. When the input to the question layer was
the same-different vector the target for the relative
position output was always 0, and when the input to
the question layer was the relative position vector the
target for the same-different output was always 0. We
trained 10 instances of the relation network on two
original datasets, one with the input to the question
layer corresponding to the same-different vector, and
one with question input corresponding to the relative
position vector. For all other datasets we set the
question inputs to the relative position vector.

The training setting for simulation 3b was identical
to simulation 3a for both the ResNet models and the
relation network, with the exception that the second
output layer had 10 units (correspondin with the
10 conditions) and the second term in Equation (1)
corresponded with the categorical cross-entropy instead
of binary cross-entropy.

Results and discussion
Figures 18 and 19 in Appendix A present all

validation AUC scores for all trained datasets per
task, model and condition for simulations 3a and 3b,
respectively. Figure 8 presents the results of simulation
3a. As can be seen, all models achieved ceiling
performance in the relative position task. Overall, all
models achieved a similar level of performance in the
same-different task, with the ResNet-50 being the
best performer by a small margin. The ResNet-50 and
ResNet-152 performed poorly on the lines and arrows
conditions, whereas the relation network performed
poorly only in the arrows condition. Strikingly, the
relation network performed worse than both the
ResNet models in the regular condition. Figure 9

Figure 8. Mean AUC by test dataset, model, and task on simulation 3a. Error bars are 95% confidence intervals.
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Figure 9. Mean AUC by test dataset, model and task on simulation 3b. Error bars are 95% confidence intervals.

presents the results of simulation 3b. As can be seen,
the performance was worse than in simulation 3a for
all models. Performance on the condition classification
task was worse than in the relative position task
(although all models achieved excellent performance or
higher in all conditions) and performance was worse in
the same-different task in comparison with simulation
3a. This drop in performance was especially marked
in the relation network, which achieved excellent
performance only in the trained original condition.
These results show that the relative position task was
better at promoting same-different generalization than
the condition classification task. More generally, results
of simulations 3a and 3b show that augmenting the
model’s experience by training on a auxiliary task can
enhance generalization on the same-different task for
unfamiliar samples. However, neither of our auxiliary
tasks improved generalization evenly across datasets
and models, which suggest that the auxiliary task is not
helping the models to form an abstract representation
of the relations same and different.

Simulation 4: Leave-one-out and multitask
learning

In simulation 4, we combined the approaches taken
in simulations 2 and 3 to provide the models with
the maximum amount of information to generalize
the same-different task to the unseen conditions.
As in simulation 3, we trained the models in both

the same-different and the relative position tasks.
Furthermore, as in simulation 2, for the same-different
task we trained on all the stimulus conditions except
one. For each of these 9 conditions, we trained 10
instances of the ResNet-50 and ResNet-152 classifiers
as well as the relation network and tested them on the
stimulus set that was not trained on. We trained the
our models with loss (1), this time setting wsd to 1 for
all datasets except the one tested on. All other training
parameters were the same as in simulation 3 for both
models.

Results and discussion
Figures 20 and 21 in Appendix A presents all

validation AUC scores for all trained datasets per
task, model and condition for simulation 4. As can
be seen in Figure 10, for the relative position task all
models achieved ceiling performance in all test datasets,
just as in simulation 3a. For the same-different task
overall performance was comparable with simulation
3a, although the performance at the condition level
was different. Despite being trained on all datasets on
the relative position task and on all other datasets (i.e.,
except on the dataset tested) on the same-different
task, all models achieved only an acceptable level of
performance on the arrows and scrambled datasets and
performed poorly on the lines dataset. Overall, training
on the secondary relative position task and training
on the same-different task in all conditions but the
one tested did improve same-different generalization,

Figure 10. Mean AUC by test dataset, model and task on simulation 4. Error bars are 95% confidence intervals.
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Figure 11. Examples of the same and different categories from
the new testing conditions of simulation 5.

however, as in simulations 2 and 3, this effect did not
spread evenly across datasets, which is not consistent
with the models learning the abstract relational concepts
same and different.

Simulation 5: Further tests of generalization,
does a rich training regime guaranties
same-different generalization?

Simulations 1 to 4 showed that augmenting the
model’s training regime, either directly by training
on the same-different task with data from several
datasets or indirectly by multitask learning, improved
generalization in both the ResNet classifiers and the
relation network. As described previously, however,
the benefits of both strategies did not spread to all
test datasets equally, which raises the question of how
broadly the benefits extend. In other words, could
a rich training regime that included all our above
conditions lead the models to generalize same-different
discrimination in yet unseen new variations of this
task? To investigate this question, in simulation 5 we
trained the ResNet classifiers and the relation network
on all previous datasets on both tasks and tested them
in four new test datasets (see Figure 11). These datasets
followed the same rule as SVRT problem #1, but
differed from the previous conditions at the pixel-level.
They were defined as follows:

• In the rectangles dataset, each shape was a
rectangle. In the same category, both shapes were
identical, whereas in the different category, either
the width or the height of one of the rectangles was
different. Both sides had lengths between 16 and
64 pixels and the minimum difference between the
critical sides on the different category, was 4 pixels.

• In the straight lines dataset, each shape was a
straight line with a tilt of 0◦, 45◦, 90◦ or 135◦. In
the same category, both lines were identical. In
the different category, one line was longer than
the other. The lines had a length between 16 and

64 pixels and minimum difference in length was 4
pixels. This differences were uniformly distributed
across examples of the different category.

• In the connected squares dataset, each shape was
a pair of connected squares. These shapes were
generated by adding an horizontal line to the shapes
in the lines condition (compare the third column
of Figure 11 with the eighth column of Figure 2).
In the same category, both shapes were identical.
In the different category, the corner at which both
squares were connected was the opposite.

• In the connected circles dataset, each shape was a
pair of connected circles where one was in top of
the other. One the circles was bigger than the other.
In the same category, both shapes were identical.
In the different category, the circles at the top and
bottom were swapped.

To train the models, we used the same settings as
the previous simulations, except that we trained the 10
model instances for 20 epochs.

Results and discussion
Figure 22 in Appendix A presents all validation AUC

scores for all trained datasets per model and stimulus
condition. As can be seen in Figure 12, all models
achieved ceiling performance on the relative position
task in all conditions, including the new test datasets.
In contrast, both models only achieved acceptable
performance on the rectangles dataset and poor
performance on the straight lines, connected squares
and connected circles datasets in the same-different
task. This marked difference in task generalization is
consistent with previous results by Kim et al. (2018);
see also Vaishnav et al. (2021), who reported that visual
reasoning tasks that involve same-different judgments
are more difficult for CNNs than other spatial reasoning
tasks. Furthermore, these results provide further
support to the idea that DCNNs do not form abstract
representations of the relations same and different when
trained on the same-different task.

Although analyses based on AUC scores provide an
overall measure of the degree of generalization achieved
by the models, this measure does not provide much
detail about the nature of the errors—for example,
whether a model is assigning high probabilities of
belonging to the same category to samples of the
different category (i.e., false positives), assigning low
probabilities to samples of the same category (i.e., false
negatives), or both. To gain further understanding of all
the models’ behavior in this simulation, for each model
we picked the best performing instance (according to
the AUC scores) and used it to plot the distribution of
predicted probabilities for each test dataset (Figure 13).4
For each model/dataset combination we also calculated
the optimal threshold that maximized the true positive
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Figure 12. Mean AUC by test dataset, model and task on simulation 5. Error bars are 95% confidence intervals.

rate and the true negative rate, through Youden’s J index
(Youden, 1950), and superimposed on the distributions.
As can be seen in Figure 13, on the trained stimulus
conditions the distributions of predicted probabilities
for the same and different categories showed a low
degree of overlap, which allows the optimal threshold
to discriminate effectively between the categories. In
contrast, in the new test conditions there is a greater
degree of overlap between the distributions which
renders the optimal threshold ineffective. This overlap
is due to a tendency of to assign high probabilities
of belonging to the same category to samples of the
different category; in other words, all models tend to
produce false positives in the new conditions. The
exception to this general pattern is the rectangles
condition, where the mass of predicted probabilities
was more evenly distributed across the whole range
of probability values for the samples of the different
category. Overall, all models showed a similar degree of
overlap between the same and different categories in
the new stimulus conditions, with the relation network
showing a slightly lower overlap.

One comparison that is specially informative is
the one between the lines and the connected squares
conditions. Recall that the connected squares conditions
was built by simply adding a horizontal line to the
shapes in the lines condition. This simple change—that
left the underlying same-different classification rule
intact—lead all models to dramatically increase the
degree of overlap between the probabilities assigned
to the samples of the same and different categories.
Overall, the results of simulation 5 show that, for
all models, generalization of the same-different task

was highly restricted in the case of the new untrained
conditions, exactly the opposite one would expect if
these models had learned the abstract relations same
and different.

Simulation 6: The role of object segregation

Simulations 1 to 5 showed that DCNNs do not
learn the abstract same and different relations. What
is needed to accomplish this? As discussed in the
introduction, (Kim et al., 2018; see also Ricci et al.,
2021) the Siamese Networks (Bromley et al., 1993), a
model that simulates the effects of attentional selection
and perceptual grouping by encoding the two objects of
the same-different examples in two separate channels,
was able to solve the same-different task easily.

However, there are reasons to doubt that separating
the objects of the same-different examples into different
channels is all that is needed for a DCNN to learn
an abstract representation of the relations same
and different. First, there has been no tests of the
generalization capabilities of the Siamese network on
the kind challenging stimuli we have used on simulations
1 to 5. Second, recently Webb et al. (2021) have shown,
using a custom dataset, that a recurrent version of
the Siamese network failed on the same-different task
on examples not seen during training. Third, object
segregation is only one of several aspects involved
in forming a relational representation like same or
different. In particular, as Greff et al. (2020) have
pointed out, achieving relational responding in neural
networks might entail binding (already segregated)
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Figure 13. Gaussian kernel density estimates for test datasets on simulation 5. Dashed lines represent optimal thresholds for each
model/dataset combination. See text for details.

object representations with independent representations
of relational roles dynamically, something that is
beyond the capabilities of standard neural networks
architectures. In other words, object segregation might
be only a necessary but not sufficient condition for a
neural network to form relational representations.

To investigate the role of object segregation in
same-different generalization, in simulation 6 we
replicated simulations 1 and 5 with Siamese networks.
Our models (Figure 14), use the same front-end
(ResNet-50 or ResNet-152) in both channels (i.e., they
share weights) to produce two vectors through a GAP
operation, that are concatenated and passed to two
hidden layers of ReLU units which lead to a single
same-different output unit. To train and test the model,
we made versions of all our new datasets with the
objects separated into two images. In simulation 6a, we
trained the model on the irregular dataset and tested it
in all other datasets (as in simulation 1). In simulation
6b, we trained on the same-different task in all the

Figure 14. Siamese network.

datasets of simulation 6a and tested on the rectangles,
straight lines, connected squares, and connected circles
conditions (as in simulation 5; note, however, that
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Figure 15. Mean AUC by model and condition on simulation 6a.
Error bars are 95% confidence intervals.

Figure 16. Mean AUC by model and condition on simulation 6b.
Error bars are 95% confidence intervals.

we did not use a secondary task). We used the same
training settings as the previous simulations, except that
in simulation 6a we froze the front-end and trained the
classifiers for three epochs and then trained the whole
model for five epochs and in simulation 6b we trained
the classifiers for four epochs and then the whole model
for six epochs.

Results and discussion
In simulation 6a, the validation AUC was above 0.9

for both models on the irregular dataset. As can be seen
in the first panel of Figure 15, simulation 6a shows
that training on the separated channels version of the
Irregular dataset did not produce perfect generalization
to the untrained datasets for either of the models. Both
models achieved similar results, with the ResNet-50
based achieving acceptable performance on the arrows
dataset and poor performance on the scrambled and
lines datasets. The ResNet-152 based model showed
the same pattern of results except on the random color
condition, where it performed poorly. Figure 23 in
Appendix A presents all validation AUC scores for all
trained datasets per model and stimulus condition in
simulation 6b. As can be seen in Figure 16, the results of
simulation 6b show that training in all previous datasets

did not produce perfect same-different generalization
either. It is worth noting, however, that simulation
6b produced better results than simulation 5, with
performance on the connected squares dataset going
from poor to excellent.

Overall, these results show that using separated
channels for the two objects of each example (and
therefore, assuming object segregation as given) did not
produce perfect generalization on the same-different
task. These results imply that object segregation is not a
sufficient condition for learning the relations same and
different on DCNNs. In this regard, one possibility is
that, beside object individuation, it might be necessary
to separate the content of the representations of
the objects participating in the relation from the
content of the relational roles that form the abstract
relations same and different, as postulated by part-based
theories of object recognition (Biederman, 1987;
Hummel & Biederman, 1992) and current treatments of
compositional representations on deep neural networks
(Greff et al., 2020). Of course, it is still possible that
some DCNN-based model could achieve abstract
reasoning abilities without explicit object segregation,
however, the results of simulations 1 to 5 suggest
otherwise.

General discussion

In six simulations, we tested whether DCCNs were
able to learn the abstract same and different relations
when trained on the same-different task. Across
simulations we found that, instead of forming an
abstract representation of this task that generalizes
beyond the training distribution, DCCNs were unable
to reliably generalize to new test images that shared
the same underlying relations as the training data but
were dissimilar at the pixel level. This was the case
even when we augmented DCCNs’ experience with
new stimulus sets that instantiated the same-different
task with several kinds of objects (simulations 2, 4, and
5), and when we used multitask learning to give them
experience with images from same distribution in a
different task, and thus ensuring that the models were
able to process the test stimuli (simulations 3, 4, and 5).
Furthermore, in simulation 6 we showed that separating
the two objects of the same-different images into
different channels was not enough to enable DCNNs to
learn the abstract notions of same and different, even
when trained in a rich regime with data from several
datasets.

These results shed new light into the discussion
of whether is necessary to invoke extra, symbolic
mechanism to solve the same-different task. If
by “solving” the same-different task one means
generalizing from one set of images to another set of
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images that share the same pixel-level distribution, it
is perfectly reasonable to say that DCNNs are able to
solve this task. This problem, by itself, is interesting
from a machine learning point of view, because
simpler machine learning models tested previously
could not solve this kind of task. However, if by
“solving” the same-different task one means to learn a
representation of the same and different relations that
support generalization beyond pixel-level similarity (as
in humans and chimpanzees), our results suggest that
DCCNs are just not up to the task and that some sort
of symbolic machinery may be necessary.

Consistent with this conclusion, the relation network
used in experiments 1 to 5 did not fair much better
than standard CNNs classifiers when the training
and test images were markedly different at the pixel
level. Importantly, the relation network is claimed to
support relational reasoning without implementing
symbolic computations. Our results show, however,
that exhaustively comparing feature columns from
all locations in the output filters of a DCNN does
not support out-of-distribution generalization of
same-different judgements, as one would expect from a
model that learned a relational representation of the
same-different task. Beside failing to learn what could
be considered the simplest possible visual relations,
the number of parameters of the relation network
grows combinatorially with the filter size of the DCNN
output, which makes this model much more inefficient
during training than standard CNNs classifier and
brings into question the scalability of this approach.5

Similarly, the Siamese network failed to support
same/different judgments when training and test images
were from different pixel-level distributions. Clearly,
object individuation is a necessary step in the process
of comparing objects, but our findings highlight
that hard-wiring this information in a DCNN is not
sufficient in to solve the same-different task. As many
have suggested (e.g., Webb et al., 2021; Hummel &
Biederman, 1992; for a review, see Greff et al., 2020),
for a neural network to achieve effective relational
generalization, mechanisms to represent objects and
relational roles independently and binding them
together dynamically might be necessary. Recently,
Webb et al. (2021) proposed a emergent symbol binding
network (ESBN) that aims to implements some of this
principles. Using a custom dataset, they show that the
ESBN model was able to generalize the same-different
task to completely new objects. Note, however, that
1) the ESBN model takes as inputs images of individual
objects and 2) the dataset of Webb et al. (2021) was
composed by combining 100 32×32 grayscale images of
simple Unicode characters, which raises the question of
whether the ESBN model would show the same degree
of generalization with more complex stimuli like ours.
We think that this is an interesting possible extension
of the current research. More generally, as Stabinger
et al. (2021) note, models that work with separated

channels for different objects assume object segregation
as given, which is one of the most important steps
of the processing of visual relations. A satisfactory
solution to the same-different task in neural networks
should be able to extract the critical objects to compare
from the image automatically.

In conclusion, our results show learning same-
different relations is beyond the current capabilities of
DCNNs. Fundamental work on mechanisms for object
individuation and dynamic binding seems necessary for
neural networks achieve this hallmark of intelligence.

Keywords: same-different relations, relational
reasoning, visual relations, deep neural network
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Footnotes
1We also made models that had the pretrained convolutional front end
frozen and only the classifier was trainable. Those models achieved similar
results to the ones presented on simulation 1. However, they were not
well-suited for the data augmentation and multi-task learning techniques
used on Simulations 2 to 4, so we do not consider them further.
2To validate our implementation of the relation network we replicated
on Appendix B the main results of Santoro et al. (2017) with the
Sort-of-CLEVR dataset.
3The question layer was part of the original implementation of the relation
network by Santoro et al. (2017), but was unnecessary in the previous
simulations because the question was constant (same or different).
4We used the kernel density estimate function of Seaborn (Waskom, 2021).
We customized the x-axis of some of the subplots for better readability.
5In our simulations this made training the relational network several times
slower than training a the ResNet-50 classifier using a GPU.
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Appendix A

In this appendix we provide detailed validation AUC
scores for all simulation where we trained the models in
more than one dataset. Note that in simulations 2, 3
and 4 there are missing bars because we did not train
the models in those particular datasets. In all figures
we superimpose the “acceptable” and “excellent” limits
defined in Table 1.

Appendix B

We benchmarked the relation network used on
simulation 1 on the Sort-of-CLEVR dataset (Santoro
et al., 2017, Figure 24). This dataset consists of images

with six objects. Each object has a unique color (red,
green, blue, orange, gray, or yellow) and it has a square
or a circular shape. Each image has 20 associated
questions, 10 of which are nonrelational and 10 are
relational. The nonrelational questions ask for a) the
shape of an object, b) the horizontal location of an
object (left or right), or c) the vertical location of
an object (upside or downside). These questions are
considered nonrelational because to answer them
a model needs to focus only on a single object. In
contrast, the relational questions require the models
to consider relations between the objects in the image.
These questions ask for a) the shape of the object which
is closest to certain object, b) the shape of the object
which is furthest away from certain object, and c) the
number of objects that have the same shape as certain
object. The dataset consisted of 10,000 randomly
generated (image, questions, answers) triplets, of which
200 were withhold for testing. To benchmark the
ResNet-50 based relation network, we made images
of size 128 × 128 instead of 75× 75 as in the original
dataset.

We benchmarked three models. The first two were
the same models tested in Santoro et al. (2017): a
four-later CNN front end with a MLP classifier
(CNN+MLP) and the original relation network. The
third one was the relation network with 8× 8 inputs
from Resnet-50. All models were trained with the
Adam optimizer with a learning rate of 0.00025 for
the first two models and 0.0001 for the last. As can
be seen in Figure 25, both versions of the relation
network achieved high levels of performance in the
nonrelational and relational questions. The CNN+MLP
model performed comparatively worse in both types of
questions. In contrast to the results of Santoro et al.
(2017), the CNN+MLP model performed better in the
relational questions than in the non-relational ones. It
is worth noting that the sort-of-CLEVR dataset does
not include a set of withhold objects, which prevents to
perform the kind of relational generalization tests that
we carry on the main article. In fact, when Kim et al.
(2018) tested the relation network on a same-different
dataset with withhold color/shape combinations the
model performed at chance.

https://openreview.net/forum?id=LSFCEb3GYU7
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Figure 17. Mean validation AUC by model, condition and test dataset on simulation 2. Error bars are 95% confidence intervals.

Figure 18. Mean validation AUC by task, model and condition on simulation 3a. Error bars are 95% confidence intervals.

Figure 19. Mean validation AUC by task, model and condition on simulation 3b. Error bars are 95% confidence intervals.
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Figure 20. Mean validation AUC on the relative position task by model and condition on simulation 4. Error bars are 95% confidence
intervals.

Figure 21. Mean validation AUC on the same-different task by model and condition on simulation 4. Error bars are 95% confidence
intervals.

Figure 22. Mean validation AUC by task, model and stimulus condition on simulation 5. Error bars are 95% confidence intervals.
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Figure 23. Mean validation AUC by model and Condition on
simulation 6b. Error bars are 95% confidence intervals.

Figure 24. Example image, questions and anwsers from the
Sort-of-CLEVR dataset.

Figure 25. Sort-of-CLEVR benchmark. (Left) Training loss. (Right)
Test accuracy on nonrelational and relational questions.


