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During the last decades, researchers have investigated the functional relevance of adult
hippocampal neurogenesis in normal brain function as well as in the pathogenesis
of diverse psychiatric conditions. Although the underlying mechanisms of newborn
neuron differentiation and circuit integration have yet to be fully elucidated, considerable
evidence suggests that the endocannabinoid system plays a pivotal role throughout the
processes of adult neurogenesis. Thus, synthetic, and natural cannabinoid compounds
targeting the endocannabinoid system have been utilized to modulate the proliferation
and survival of neural progenitor cells and immature neurons. Cannabidiol (CBD), a
constituent of the Cannabis Sativa plant, interacts with the endocannabinoid system
by inhibiting fatty acid amide hydrolase (FAAH) activity (the rate-limiting enzyme
for anandamide hydrolysis), allosterically modulating CB1 and CB2 receptors, and
activating components of the “extended endocannabinoid system.” Congruently, CBD
has shown prominent pro-neurogenic effects, and, unlike ∆9-tetrahydrocannabinol, it
has the advantage of being devoid of psychotomimetic effects. Here, we first review
pre-clinical studies supporting the facilitating effects of CBD on adult hippocampal
neurogenesis and available data disclosing cannabinoid mechanisms by which CBD
can induce neural proliferation and differentiation. We then review the respective
implications for its neuroprotective, anxiolytic, anti-depressant, and anti-reward actions.
In conclusion, accumulating evidence reveals that, in rodents, adult neurogenesis is key
to understand the behavioral manifestation of symptomatology related to different mental
disorders. Hence, understanding how CBD promotes adult neurogenesis in rodents
could shed light upon translational therapeutic strategies aimed to ameliorate psychiatric
symptomatology dependent on hippocampal function in humans.

Keywords: cannabidiol, drug addiction, substance use disorder, endocannabinoid system, neurogenesis,
hippocampus

Frontiers in Behavioral Neuroscience | www.frontiersin.org 1 June 2020 | Volume 14 | Article 109

https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org/journals/behavioral-neuroscience#editorial-board
https://www.frontiersin.org/journals/behavioral-neuroscience#editorial-board
https://doi.org/10.3389/fnbeh.2020.00109
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbeh.2020.00109&domain=pdf&date_stamp=2020-06-26
https://creativecommons.org/licenses/by/4.0/
mailto:mlujan@som.umaryland.edu
mailto:olga.valverde@upf.edu
https://doi.org/10.3389/fnbeh.2020.00109
https://www.frontiersin.org/articles/10.3389/fnbeh.2020.00109/full
https://loop.frontiersin.org/people/898994/overview
https://loop.frontiersin.org/people/52631/overview
https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/behavioral-neuroscience#articles


Luján and Valverde CBD and Neurogenesis

INTRODUCTION

Neuropsychiatric disorders such as schizophrenia, mood
disorders, or drug addiction, represent a huge burden on
society, greatly impairing the health of those affected. During
the last half-century, considerable progress has been made
to understand, prevent, and treat such conditions. However,
treatment options are still far from optimal in terms of
efficacy and specificity, and there remain important untreatable
maladaptive phenotypes and treatment-resistant patients.
To solve this issue, basic and applied research has tried
to identify new altered neuropsychological mechanisms
suitable to promote new therapeutic strategies (Cuthbert,
2014). In this quest, the discovery of adult hippocampal
neurogenesis (Altman and Das, 1965) and its health implications
(Kempermann, 2012) has opened new vistas upon innovative
pharmacotherapies that could ameliorate impaired hippocampal
function. Among the many ways proposed to accomplish such
an improvement, cannabidiol (CBD) has recently stood out
as a promising compound to be taken into consideration.
In light of this, the following mini-review article aims
to: (1) summarize the available evidence describing the
modulation of adult hippocampal neurogenesis by CBD;
to (2) provide a prospective collection of the responsible
mechanisms; and (3) to detail the presumed therapeutic
potential of this phytocannabinoid via the modulation of
adult neurogenesis.

Cannabidiol
CBD is one of the most abundant constituents of the Cannabis
sativa plant. Unlike ∆9-tetrahydrocannabinol (THC), CBD is
devoid of psychotomimetic and rewarding effects (Ligresti
et al., 2016), and is well tolerated in humans (Chesney et al.,
2020). CBD is thought to interact with several molecular
targets (Campos et al., 2017). Its main targets within the
central nervous system are comprehended by the activation of
5-hydroxytryptamine 1A (5-HT1A), transient potential vanilloid
1 (TRPV1), G-protein 55 (GPR55) and peroxisome proliferator-
activated gamma (PPARγ) receptors, as well as the antagonism
of adenosine reuptake (Turner et al., 2017). Despite initial
controversy about its endocannabinoid targets (Zlebnik and
Cheer, 2016), recent evidence also supports CBD as a negative
allostericmodulator of cannabinoid receptors 1 and 2 (CB1, CB2)
at physiologically relevant concentrations (Laprairie et al., 2015;
McPartland et al., 2015; Martínez-Pinilla et al., 2017; Navarro
et al., 2018; Tham et al., 2019). Also, CBD reduces anandamide
(AEA) metabolism by inhibiting fatty acid amide hydrolase
(FAAH) activity (De Petrocellis et al., 2011). Consequently,
CBD is an efficient anxiolytic (Fogaça et al., 2018) and
there is evidence suggesting that it possesses anti-inflammatory
(Atalay et al., 2019), neuroprotective (Campos et al., 2016),
antidepressant (Sales et al., 2019), anti-relapse (Gonzalez-
Cuevas et al., 2018), pro-cognitive (Osborne et al., 2017)
and antipsychotic (Renard et al., 2017) effects. Accordingly,
CBD has been proposed as a novel therapeutic strategy for
different mental disorders such as drug addiction (Calpe-López
et al., 2019), depression (Silote et al., 2019), or schizophrenia

(Elsaid and Le Foll, 2020). Notwithstanding the foregoing, CBD
has a formidably complex pharmacology, and therefore, we
lack a clear understanding of the molecular and neuroplastic
consequences of CBD treatments. With such a pool of
targets, numerous hypotheses have tried to explain CBD’s
therapeutic mechanisms in each of the psychiatric models
addressed. The modulation of neuronal network dynamics
in the mesolimbic system via 5-HT1A activation (Norris
et al., 2016) is positioned as the best approximation to
CBD’s anti-craving actions (Katsidoni et al., 2013; Bi et al.,
2019; Galaj et al., 2020). On the other hand, the presumed
motivational consequences of in vivo CBD’s CB1 effects remain
unclear. Recent reports show that CBD modulation of cocaine-
seeking reinstatement, but not operant intake, depends on
CB1 receptor activation (Galaj et al., 2020; Lujan et al., 2020).
Therefore, indirect CB1 activation through FAAH blockade,
rather than CB1 negative allosteric modulation, is a more
plausible mechanism for the anti-craving effects of CBD. In the
case of mood and anxiety-related disease models, the activation
of ventromedial prefrontal cortex 5-HT1A and CB1 receptors
(Linge et al., 2016; Sartim et al., 2016), and the neuroprotection
against inflammatory and oxidative brain insults (Campos et al.,
2016) are the main mechanism candidates. Lastly, diverse studies
have also pointed to the pro-neurogenic effects of CBD, as
reviewed below.

Adult Hippocampal Neurogenesis in the
Mammalian Brain
Adult hippocampal neurogenesis encompasses a complex,
multistep process comprehending the proliferation, survival,
differentiation/maturation, and functional integration of
newborn neurons residing in the subgranular zone (SGZ) of the
dentate gyrus (DG; Kuhn et al., 2018; Figure 1A). It is detailed
in most mammals (Amrein, 2015), but its existence in humans
has been hotly debated due to the critical dependence on 14C
labeling (Sorrells et al., 2018). However, the latest evidence
suggests that adult hippocampal neurogenesis in humans is
abundant even in the senescence (Boldrini et al., 2018; Tobin
et al., 2019) and that previous discrepancies were probably due
to tissue processing protocols or neurological illness of the tissue
donors (Moreno-Jiménez et al., 2019).

During their development, adult-born neurons modulate
DG functions that orchestrate diverse behaviors. Newborn
neurons act as independent encoding units that can inhibit
the activity of mature granule cells (Drew et al., 2016) and
dampen overall DG excitability (Ikrar et al., 2013). Given
the participation of hippocampal function in mood, cognition,
and motivation, adult hippocampal neurogenesis is involved
in different neuropsychological processes in physiological and
pathological conditions (Mandyam and Koob, 2012). For
example, patients with depression exhibit decreased levels of
neurogenesis (Lucassen et al., 2010). Neurogenesis ablation
increases innate anxiety-like behaviors (Revest et al., 2009)
and depressive-like symptoms (Wu et al., 2014) in animal
models. And more importantly, anti-depressant drugs increase
neurogenesis, an effect that is required to observe some
of its behavioral effects in rodents (Santarelli et al., 2003).
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FIGURE 1 | The pro-neurogenic effects of cannabidiol (CBD) and its functional relevance. (A) Adult hippocampal neurogenesis originates from type 1 precursor cells
that might differentiate into granule neurons (Kriegstein and Alvarez-Buylla, 2009). The newly generated cells can be stimulated via GABAergic, endocannabinoid-
and serotonin-dependent mechanisms (Encinas et al., 2006; Prenderville et al., 2015). The proliferation phase ends just after precursor cells exit the cell cycle. As
early as 1 day after such an event, newborn neurons start expressing the postmitotic marker NeuN, which then declines as most newborn cells are eliminated before
they become functional (survival phase; Kempermann et al., 2015). Within days after generation, newborn neurons send their axons to cornu ammonis 3 (CA3),
where they form proper synapses (Sun et al., 2013). In the next phase, newborn neurons mature as the excitatory nature of GABA inputs shift into the standard
depolarizing profile. Finally, new mature neurons go through a phase of increased synaptic plasticity, which in turn promotes its final integration into the hippocampal
circuitry (functional integration phase; Ge et al., 2007). The effects of CBD are preferentially focused on the post-mitotic stages of the neurogenic process, whenever
it facilitates neuronal maturation and impedes early neuronal death. (B) The pro-neurogenic effects of CBD are orchestrated by the eCB system. Furthermore, CBD
upregulates different molecular components of downstream pathways usually associated with the eCB-driven facilitation of adult neurogenesis. Final molecular
effectors of the protein synthesis and survival machinery of the hippocampus such as brain-derived neurotrophic factor (BDNF), calbindin, MAP-2, synapsin 1, and
the activation of protective peroxisome proliferator-activated gamma (PPARγ) receptors, are also found upregulated after CBD subchronic treatments. (C) The figure
represents a simplified vision of the hippocampal neurocircuitry functionally coupled to the neurogenic state of the dentate gyrus (DG). The hippocampus (ventral
part) sends direct projections to the GABAergic interneurons of the BNST that, in turn, tune-down the hypothalamus–pituitary–adrenal (HPA) axis (Snyder et al.,
2011). Direct projections from the hippocampus to the mPFC promote stress sensitivity (Padilla-Coreano et al., 2016), and mediate antidepressant effects (Bagot
et al., 2015). Ventral hippocampal outputs to the BLA are involved in the feedforward inhibition of fear and anxiety-related responses (Bazelot et al., 2015). Finally, the
hippocampus can indirectly influence VTA DA release in motivated tasks by activating medium spiny neurons of the NAc (Britt et al., 2012). Abbreviations: GFAP, glial
fibrillary acidic protein; Mol, molecular layer; GCL, granule cell layer; AEA, anandamide; mPFC, medial prefrontal cortex; NAc, nucleus accumbens; BLA, basolateral
amygdala; BNST, bed nucleus of the stria terminalis; VTA, ventral tegmental area. Created with Biorender.com.

Such relations are thought to be due to the newborn
neuron regulation of hippocampal inhibitory control over the
hypothalamus–pituitary–adrenal (HPA) axis. The ventral part
of the hippocampus has also been related to emotional control.
This region shares regulatory projections to canonical emotional-
processing structures such as the basolateral amygdala or the
medial prefrontal cortex that are key to modulate fear-associated
memories and anxiety (Felix-Ortiz et al., 2013; Padilla-Coreano
et al., 2016) and are regulated by neurogenesis (Temprana et al.,

2015; Figure 1C). Interestingly, it is now described that pattern
separation, a brain computational mechanism dependent on
newborn neurons (Leutgeb et al., 2007; Sahay et al., 2011) also
allows for the discrimination of emotional states experienced
during memory creation (Redondo et al., 2014), thus granting
adult hippocampal neurogenesis a way to modulate emotional
memories retrieval and storage (Anacker and Hen, 2017). There
is debate as to whether such functional implication could
represent a caveat of pro-neurogenic therapeutics, as enhanced
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pattern separation processes may promote proactive interference
(see Epp et al., 2016; Tello-Ramos et al., 2019).

Additionally, the circuitry involved in the regulation of mood
and stress overlaps with the brain circuitry affected bymotivation
disorders (Koob, 2015; Volkow et al., 2016). Hence, extensive
evidence posits adult hippocampal neurogenesis as an additional
component of drug addiction etiology (Castilla-Ortega et al.,
2016; Barr et al., 2018). In this sense, rats with experimentally-
reduced neurogenesis consume more cocaine and work harder
to obtain the drug (Noonan et al., 2010; Deroche-Gamonet
et al., 2019). Conversely, pharmacological induction of adult
neurogenesis facilitates the forgetting of cocaine-contextual
memories (Ladrón de Guevara-Miranda et al., 2019). Other
drugs, such as alcohol, induce persistent reductions in adult
neurogenesis in rodents (Spear, 2018), primates (Taffe et al.,
2010), and humans, as shown by post mortem samples from
alcohol abusers (Dhanabalan et al., 2018). Finally, the neonatal
ventral hippocampal lesion rat model, which irreversibly lessens
adult neurogenesis, has been used to reveal the participation
of adult neurogenesis in the pathogenesis of dual diagnosis
schizophrenia (Chambers and Self, 2002). This relation suggests
that neurogenic deficits may also underlie positive-like, negative,
and cognitive symptoms of schizophrenia in rodent models
(Chambers, 2013; Sentir et al., 2020). Overall, a wealth of
literature supports the relevance of adult neurogenesis in
preclinical models of mood and anxiety disorders, as well as
drug addiction or schizophrenia, while opens a new window
of therapeutic opportunities aimed to ameliorate impaired
hippocampal function.

PROMOTING NEUROGENESIS WITH
CANNABIDIOL

Preclinical Evidence
Considering that the endocannabinoid (eCB) system exerts
important functions in the regulation of neuronal generation
and survival (Aguado et al., 2005), the Kempermann’s group
firstly explored the possibility that a cannabinoid like CBD could
enhance the survival of DG newborn neurons in mice (Wolf
et al., 2010). The pioneering study showed that a CBD-enriched
diet increased co-localized immunoreactivity of 5-bromo-2′-
deoxyuridine (BrdU) and neuronal nuclei (NeuN). Moreover, the
authors reported an interesting opposition to the effects of THC
on this measure. Months later, Demirakca et al. (2010) similarly
proposed these pro-neurogenic actions of CBD in humans. Since
then, researchers have echoed these investigations, finding a
remarkable result consistency in the pro-neurogenesis induced
by CBD (Table 1).

Much of the preclinical work aimed at delineating the
pro-neurogenic profile of CBD has mainly utilized two
immunostaining observables: doublecortin (DCX) and
BrdU/NeuN. Due to the prolonged presence of both markers
in different stages of the neurogenesis process (for a review
see Kempermann et al., 2015), it is difficult to elucidate the
phase specificity of CBD changes. CBD increased BrdU/NeuN
co-localization from 1 month after the injection of the thymine

incorporation tracer (Wolf et al., 2010; Fogaça et al., 2018), a
measure of late survival, to as early as 7 days (Luján et al., 2018,
2019), a correlate of early differentiation. The same consistency
has been found using DCX. Following the same treatment
protocol, CBD increased DCX staining from 7 days (Luján
et al., 2019) to 1 month (Luján et al., 2018) after the last CBD
injection. But in the work of Wolf et al. (2010), CBD did not
enhance, and even reduced, neural progenitor cell (BrdU/Nestin-
expressing type 1/2 cells) proliferation. More studies analyzing
markers of neural progenitor cell proliferation are needed
but, these results could imply that CBD pro-neurogenic
effects would take place after newborn neurons are generated,
and not before (Figure 1B). This goes in agreement with
molecular findings reflecting the facilitating effects of CBD on
postmitotic neuronal survival, differentiation, and maturation.
The brain-derived neurotrophic factor (BDNF) positively
regulates newborn neuron survival in the DG (Waterhouse
et al., 2012), and CBD increases BDNF protein content within
the hippocampus (Mori et al., 2017; Luján et al., 2018; Sartim
et al., 2018; Sales et al., 2019). Calbindin, a Ca2+-binding
protein used as a marker of mature neurons (Brandt et al.,
2003), is also increased in the hippocampus of CBD-treated rats
(Esposito et al., 2011). This idea has been further corroborated
by the discovery that CBD activates different survival and
synaptic remodeling cascades such as ERK1/2-CREB (Luján
et al., 2018), GSK3β and PSD95 (Campos et al., 2013) or
PI3K/mTOR/p70S6K (Renard et al., 2016; Giacoppo et al., 2017;
Lanza Cariccio et al., 2018).

CBD pro-neurogenesis also shows great consistency across
doses. Literature findings report increases in neuronal
proliferation and differentiation after CBD doses ranging
from 3 to 30 mg/kg, usually after prolonged treatments
(≥10 days; Table 1). Despite this, at least two studies point
to an inverted U-shaped dose-response curve effect. in vitro,
Campos et al. (2013) described that CBD enhanced neuronal
proliferation at medium concentrations (100, 250 nM), but
these effects disappeared at lower (50 nM) or higher doses
(500 nM). Similarly, Schiavon et al. (2016) showed that neuronal
proliferation enhancement (here assessed by DCX) could only
be observed after low (3 mg/kg) but not high (30 mg/kg) doses
in vivo. Inverted U-shaped dose-response curves usually suggest
the participation of multiple pharmacological mechanisms. In
this way, it has already been described that CBD also exerts a
similar anxiolytic dose-response curve (for a review see Jurkus
et al., 2016) and that it is due to the interaction of 5-HT1A and
TRPV1 mechanisms (Campos and Guimarães, 2009). Therefore,
one of the first neurogenic mechanisms that were evaluated
consisted of the activation of 5-HT1A receptors. However,
CBD-induced proliferation in HiB5 hippocampal progenitor
cells was not blocked by a 5-HT1A antagonist (Campos et al.,
2013) and so, an alternative candidate was considered: the
eCB system.

Evaluating CBD’s Endocannabinoid
Mechanisms to Promote Neurogenesis
The eCB system stands out as a key regulator of newborn
neuron generation, survival, maturation, and functional

Frontiers in Behavioral Neuroscience | www.frontiersin.org 4 June 2020 | Volume 14 | Article 109

https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/behavioral-neuroscience#articles


Luján
and

Valverde
C

B
D

and
N

eurogenesis

TABLE 1 | Literature assessing the effects of cannabidiol (CBD) in adult hippocampal neurogenesis.

Reference Animal, cell line CBD treatment protocol Markers Effect Experimental condition

Wolf et al. (2010) C57BL/6 female mice CBD-enriched diet, 6 weeks BrdU/Nestin/DCX– (early
proliferation)

– –

BrdU/Nestin/DCX+ (late
proliferation)

↓ –

BrdU/NeuN (late survival) ↑ –
Esposito et al. (2011) Sprague–Dawley male rats 10 mg/kg, i.p., 15 days DCX ↑ Aβ-inoculated rats
Campos et al. (2013) C57BL/6 male mice 30 mg/kg, i.p., 14 days DCX ↑ Naive, chronic unpredictable

stress
BrdU/NeuN ↑ Control

Hippocampal HiB5 progenitors 50, 100, 250, 500 nM, 18 h BrdU/NeuN (proliferation) 100, 250 mg/kg: ↑ –
50, 500 mg/kg: –

Shinjyo and Di Marzo (2013) Mouse neural stem/progenitor
cells

1 µM, 2 days Nestin ↑ –

Schiavon et al. (2016) Swiss CD-1 male mice 3 and 30 mg/kg, i.p., 15 days DCX (proliferation) 3 mg/kg: ↑ –
30 mg/kg: ↓

Mori et al. (2017) C57BL/6 male mice 10 mg/kg, i.p., 3 days DCX ↑ Ischemic mice
MAP-2 (dendritic maturation) ↑ Ischemic mice

Fogaça et al. (2018) C57BL/6 male mice 30 mg/kg, i.p., 14 days DCX – Control
↑ Chronic unpredictable stress

DCX-tagged cell migration – Control
↑ Chronic unpredictable stress

BrdU/NeuN – Control
↑ Chronic unpredictable stress

Luján et al. (2018) Swiss CD-1 male mice 20 mg/kg, i.p., 10 days BrdU/NeuN ↑ Control and
cocaine-consuming mice

DCX ↑ Cocaine-consuming mice
Luján et al. (2019) Swiss CD-1 male mice 10, 20 mg/kg, i.p., 10 days BrdU/NeuN ↑ Control and

cocaine-consuming mice
DCX ↑ Control and

cocaine-consuming mice
Bis-Humbert et al. (2020) Sprague-Dawley male rats 3, 10, 30 mg/kg, i.p., 6 days NeuroD – –

In vivo measures of BrdU incorporation or Ki67 not accompanied by a neuronal marker (e.g., NeuN) were not considered, given the difficulty to differentiate from the proliferation of non-neuronal cellular lineages. Abbreviations: BrdU,
5-bromo-2′-deoxyuridine; NeuN, neuronal nuclei; DCX, doublecortin; MAP-2, microtubule-associated protein 2. –, no change found; ↑, increase; ↓, decrease.
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integration in the adult hippocampus. Neural progenitor
cells, and their descendants, express a functional eCB
system and are subject to the effects of endocannabinoid
signaling (Prenderville et al., 2015). CB1 agonists induce
neural proliferation and differentiation in the DG (Andres-
Mach et al., 2017), which are also attenuated in CB1−/−

mice (Aguado et al., 2007; Zimmermann et al., 2016). The
same has been detailed for CB2 receptors (Palazuelos et al.,
2012; Avraham et al., 2014), although in a more complicated
fashion (Rodrigues et al., 2017; Mensching et al., 2019). That
is, CB1 receptors participate in the maintenance of adult
neurogenesis, whereas CB2 receptors seem to promote the
recovery from allostatic neurogenic states (Oddi et al., 2020).
Furthermore, the intricate downstream cellular pathways
engaged by cannabinoid receptors, mainly converging in
Akt/mTORC and MAPK/CREB pathways, are critically involved
in cell proliferation, differentiation, and survival and are
required for endocannabinoids to exert its pro-neurogenic
effects (Prenderville et al., 2015).

Given the mechanistic interactions between CBD and eCB
system, a plausible hypothesis originated stating that CBD
increases adult neurogenesis by modulating the eCB system.
Accordingly, in vitro and in vivo evidence has suggested
such interplay. The first evidence was given by Wolf et al.
(2010). In their study, a CBD-enriched diet facilitated newborn
neuron survival, an effect prevented in CB1−/− mice. The
seminal work of Campos et al. (2013) further explored
this idea and tested which molecular mechanisms could be
involved in vitro. CB1 and CB2 antagonists prevented the
pro-neurogenic effect of CBD in hippocampal HiB5 progenitor
cells. Furthermore, CB1 and CB2 receptor agonists, as well
as eCB degradation inhibitors mimicked the pro-neurogenic
effects of CBD. Interestingly, CBD effects were abrogated
when the FAAH was inhibited. Combined, these results
imply that the pro-neurogenic effects of CBD depending
on the increase of AEA concentration. Crucially, CBD is an
inhibitor of the FAAH and is well known to increase AEA
concentration (Bisogno et al., 2001; De Petrocellis et al.,
2011; Leweke et al., 2012; Petrosino et al., 2018). Note that,
in this case, the CBD-induced negative allosteric modulation
of CB1 receptors should not account for these results, as
they rely on the facilitation of CB1 function. Alternatively,
CBD can also increase the protein content of CB1 receptors
in the hippocampus (Luján et al., 2018). Recently, a similar
mechanism was revealed in vivo. After a CBD treatment
in chronically stressed mice, neuronal differentiation, and
late survival were found to be increased in CBD-treated
mice (Fogaça et al., 2018). Such pro-neurogenic effects
depended on CB1 and CB2 receptor activation, insofar
respective antagonists abolished said increase. Intriguingly,
CB1 antagonism only prevented the DCX-labeled neuronal
differentiation increase whereas the CB2 antagonist precluded
the increment of both, neuronal differentiation and late survival
(BrdU/NeuN; Fogaça et al., 2018). Regarding this divergence,
previous works have indicated that CB1 receptors may be
implicated in maintaining basal adult neurogenesis, while
CB2 receptors might be more physiologically relevant in

coping with neurotoxic brain insults (Oddi et al., 2020). In
the study of Fogaça et al. (2018), possibly the CB2 outshined
CB1 receptors because its relative contribution was exclusively
performed in chronically-stressed mice. So far, the differential
role of CB1 and CB2 receptors in the pro-neurogenic effects
of CBD in normal and allosteric conditions has not been
explored enough, and more studies are needed to address this
question. Altogether, studies interrogating the eCB system
in conditions in which CBD produced pro-neurogenic
effects have all encountered a suggesting implication.
Although promising, there remain important gaps to be
filled. For instance, no data is available as to the eCB-specific
downstream signaling pathways recruited by cannabinoid
receptors that would be facilitating neuronal survival and
differentiation, despite some approximations in this regard
(Luján et al., 2018). Furthermore, there also remain some
unexplored CBD mechanisms with potential pro-neurogenic
properties, such as GPR55 activation for coping reduction
of neurogenesis in response to inflammatory insults (Hill
et al., 2019). Noteworthy, a protective interaction involving
neuroinflammation processes has been already observed,
showing that CBD-mediated activation of PPARγ is associated
with increased neurogenic activity, as well as reduced reactive
gliosis, in the granule cell layer of the hippocampal DG
(Esposito et al., 2011).

THERAPEUTIC INSIGHTS FROM
PRECLINICAL PSYCHIATRIC MODELS

A considerable number of studies have reported the
pro-neurogenic effects of CBD, and some among them have
even related these with an eCB mechanism of action. But,
can the pro-neurogenic effects of CBD account for some of
its therapeutic applications? Answering this question requires
specialized experimental strategies designed to rule out CBD
pro-neurogenesis, leaving intact its other pharmacological
mechanisms and so, fewer experiments have been conducted.
Nonetheless, a handful of studies have addressed this
question, presenting evidence for a potential implication in
the protection against neurodegenerative diseases (Esposito
et al., 2011), anxiety- and mood-related disorders (Campos
et al., 2013; Fogaça et al., 2018), as well as drug addiction
(Luján et al., 2019).

Neurodegenerative and ischemic conditions are among the
circumstances in which hippocampal function can manifest
greater impairments (Shah et al., 2019). It was Esposito et al.
(2011) who firstly reported the pro-neurogenic effect of CBD in
a neuropathological disease model. In their work, they showed
how CBD could restore the neuronal differentiation levels after
β amyloid peptide inoculation in a rat model of Alzheimer’s
disease. This effect was shown dependent on the activation of
PPARγ receptors. Significantly, when a PPARγ antagonist was
co-administered, CBD did not induce neuronal differentiation
and, consequently, its neuroprotective effects were prevented
(Esposito et al., 2011). Although suggestive, these results will
need to be further verified, given the alternative protective
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consequences of PPARγ receptor activity by itself (Hughes
and Herron, 2019). Anxiety- and mood-related disorders
symptomatology is also critically dependent on hippocampal
function (Anacker and Hen, 2017). For this reason, Campos
et al. (2013) tested if the action of CBD on hippocampal
neurogenesis accounted for its anxiolytic and antidepressant
effects. Using a genetic-pharmacological approach, they were
able to report that the blockade of adult neurogenesis accounted
for the anxiolytic and antidepressant effects of CBD on the
elevated plus-maze and novel suppressed feeding tests. Using
a more indirect approach, Fogaça et al. (2018) have recently
supported these implications. The co-administration of CBD
and a CB1 or CB2 antagonist prevented both the increase in
adult hippocampal neurogenesis and the anxiolytic effects of
CBD. Again, this pharmacological strategy does not allow to
discard beneficial changes induced by CB1 or CB2 receptor
activity by itself, but the replication of the causal discovery
of Campos et al. (2013) is certainly meaningful. Finally,
our group also tried to unravel the participation of adult
neurogenesis in the protective actions of CBD on cocaine self-
administration, a rodent model of cocaine abuse. Based on the
findings that CBD-induced attenuation of cocaine voluntary
intake was accompanied by increased adult neurogenesis, as
well as MAPK/CREB pathway activity in the hippocampus
(Luján et al., 2018), we developed a pharmacological strategy
aimed to prevent the increases in adult neurogenesis induced
by CBD with the anti-mitotic agent temozolomide (Niibori
et al., 2012). Similar to Campos et al. (2013), we found that
such an increase was crucially required by CBD to reduce
cocaine voluntary intake in mice (Luján et al., 2019). Overall,
available data supports that CBD-induced adult neurogenesis
can account for the protective effects of CBD in certain
psychiatric conditions. The role of CBD neurogenesis in
other mental diseases remains largely unexplored. The case of
schizophrenia is especially suggesting. Decreased hippocampal
neurogenesis is observed in schizophrenic patients compared
with control subjects (Reif et al., 2006), and it is rescued
by atypical antipsychotics in rodents (Kusumi et al., 2015).
Noteworthy, the pro-neurogenic effects of CBD in mice exposed
to chronic unpredictable stress suggestively resembles that
of atypical antipsychotics such as clozapine in the same
model (Campos et al., 2013; Chikama et al., 2017; Morais
et al., 2017; Fogaça et al., 2018). Based on this observation,
studies dissecting the importance of CBD pro-neurogenic
effects on its antipsychotic properties are promising, as well as
highly needed.

CONCLUSION AND FUTURE DIRECTIONS

A significant amount of animal and human data has emerged
relating the neuro-modulatory role of adult hippocampal
neurogenesis, its interactions with broader hippocampal
circuits, and its implications on altered behaviors in different
neuropsychiatric disorders (Beckervordersandforth and
Rolando, 2020). Meanwhile, some pro-neurogenic compounds
have been experimentally employed to counteract maladaptive

neuroplasticity and improve hippocampal function. In the last
decade, there has been an increased interest in the psychiatric
therapeutic potential of CBD. Its protective brain effects, as
well as its endocannabinoid mechanisms, have been related
to its ability to facilitate the survival and differentiation of
newborn neurons of the DG. Crucially, key studies have
emerged linking this pro-neurogenic effect with reduced
anxiety-like states and improved emotional and motivational
processing in animal models of stress-, mood-, and substance
use-related disorders. Albeit convincing, investigations of
CBD’s pro-neurogenic effects are still in an early stage, and
further experimental efforts are required to answer several
open questions. Only two studies have so far fully addressed
the causal implication of such a CBD mechanism (Campos
et al., 2013; Luján et al., 2019). This lack of studies also
leads to several replication needs. For example, most of
the work has been developed in male mice, which hinders
possible interpretations regarding sex- or species-specific
effects. Also, evidence regarding the effects of CBD in the
pre-mitotic stages of neuronal proliferation is scarce. On
the other end, we still lack a direct electrophysiological
confirmation of the functional integration of maturing neurons
in conditions of elevated neurogenic state induced by CBD.
Answering such a question is vital to clarify the functional
relevance of CBD-induced neurogenesis and rule out an
epiphenomenon effect. From a theoretical perspective, we
also needed to better conceptualize the therapeutic potential
of increased neurogenic states in adults. Newborn neurons
necessarily remodel hippocampal circuitries upon functional
integration. Thus, increased neurogenesis can destabilize
consolidated memories (Chambers et al., 2004; Deisseroth
et al., 2004), which may promote forgetting (Akers et al.,
2014; but see Epp et al., 2016). Finally, indirect information
supportive of the occurrence of hippocampal neurogenesis in
humans treated with CBD is not yet available. Measures of the
1.28 ppm neurogenesis-specific peak using magnetic resonance
spectroscopy (Manganas et al., 2007) could be incorporated in
future clinical trials working with CBD treatments to shed more
light on the functional and therapeutic relevance of these CBD’s
neurogenic changes.
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