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A substantial body of evidence links differences in brain size to differences in brain
organization. We have hypothesized that the developmental aspect of this relation plays a
role in autism spectrum disorder (ASD), a neurodevelopmental disorder which involves
abnormalities in brain growth. Children with ASD have abnormally large brains by the
second year of life, and for several years thereafter their brain size can be multiple
standard deviations above the norm. The greater conduction delays and cellular costs
presumably associated with the longer long-distance connections in these larger brains is
thought to influence developmental processes, giving rise to an altered brain organization
with less communication between spatially distant regions. This has been supported
by computational models and by findings linking greater intra-cranial volume, an index
of maximum brain-size during development, to reduced inter-hemispheric connectivity in
individuals with ASD. In this paper, we further assess this hypothesis via a whole-brain
analysis of network efficiency. We utilize diffusion tractography to estimate the strength
and length of the connections between all pairs of cortical regions. We compute the
efficiency of communication between each network node and all others, and within local
neighborhoods; we then assess the relation of these measures to intra-cranial volume,
and the differences in these measures between adults with autism and typical controls.
Intra-cranial volume is shown to be inversely related to efficiency for wide-spread regions
of cortex. Moreover, the spatial patterns of reductions in efficiency in autism bear a
striking resemblance to the regional relationships between efficiency and intra-cranial
volume, particularly for local efficiency. The results thus provide further support for the
hypothesized link between brain overgrowth in children with autism and the efficiency of
the organization of the brain in adults with autism.
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INTRODUCTION
Brains differ dramatically in both size and structure across
species. These two dimensions of variation are not independent,
but large brains are not big small brains. The organization of both
gray- and white-matter varies with brain size, but not in a uni-
form manner. Larger brain size is associated with a greater white-
matter to gray-matter ratio (Rilling and Insel, 1999b; Zhang and
Sejnowski, 2000), but a reduced degree of long-distance connec-
tivity (Ringo, 1991; Rilling and Insel, 1999a; Karbowski, 2003;
Changizi, 2007), as well as with increased modular structure
(Changizi and Shimojo, 2005), greater surface convolutedness
(Jerison, 1982; Prothero and Sundsten, 1984; Hofman, 1985), and
various other morphological and cellular aspects of neural orga-
nization. Scaling laws capture much of the variation in structure
in terms of brain size (Jerison, 1982; Ringo, 1991; Karbowski,
2003; Changizi and Shimojo, 2005; Changizi, 2007). However,
significant structural variability remains unaccounted for by these
scaling laws.

The underpinnings of these scaling relationships are not well
understood, but are thought to be related to a design princi-
ple originally postulated by Ramón y Cajal: that neural circuit
design is under pressure to minimize cellular costs and conduc-
tion delays (Ramón y Cajal, 1995). Increased brain size provides
increased computational power, but at hugely increased cost.
Neural material is expensive to construct and to operate. The
human brain makes up only about 2 percent of the total body
weight, but its operation is responsible for approximately 15
percent of cardiac output, 20 percent of oxygen usage, and 25 per-
cent of glucose usage (Magistretti, 1999). These metabolic costs
are largely due to the cost of neural signaling, and maintaining
the resting potentials needed for neural signaling. These costs
increase with membrane surface area, which increases with the
number and size of the axons. Larger brains have a larger num-
ber of axons, and the longest of these axons are both longer and
slightly larger in diameter than are those of smaller brains; thus
the total membrane surface area is increased. Axon diameter does
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not increase sufficiently with brain size, however, to compensate
for the increased fiber lengths, so larger brains also have longer
conduction delays (Olivares et al., 2001). These greater costs and
conduction delays appear to be related to at least some of the
aspects of organization that scale with brain size, e.g. the reduced
degree of long-distance connectivity (Ringo, 1991; Rilling and
Insel, 1999a; Karbowski, 2003; Changizi, 2007).

The focus on cross-species differences, where differences in
brain size can be more than 1000-fold within classes, e.g.,
Mammalia, and 100-fold within orders, e.g., Primates, allows rela-
tionships between brain size and structure to be apparent despite
differences in structure unrelated to brain size. But, it ignores
potentially important differences in developmental brain growth
trajectories. There are substantial inter-species differences in rate
of brain growth, and developmental trajectories can even vary
considerably between individuals, e.g., brain size may differ by
as much as 50% in children of the same age (Giedd, 2008). Brain
size differences between adults account for some of the differences
in structure (Jäncke et al., 1997; Honey et al., 2009; Lewis et al.,
2009); differences in brain growth trajectories likely account for
additional structural variability.

Substantial neural reorganization occurs over development.
Neural development is largely a combination of over-exuberance
and competition-based elimination. Large numbers of transient
projections are produced during cortical development (Rakic
et al., 1986; LaMantia and Rakic, 1990), and which connections
are retained is determined by their metabolic demands and their
ability to compete for neurotrophins (Van Ooyen and Willshaw,
1999). Due to the lesser degree of myelination in the develop-
ing brain than in the mature brain, the differences in conduction
delays and metabolic costs associated with differences in fiber
length will be substantially greater (Chugani et al., 1987; Paus
et al., 1999; Thatcher et al., 2008). Thus, to the extent that
differences in brain size during development coincide with differ-
ences in brain size in mature individuals, normal developmental
processes may underlie at least some portion of the scaling rela-
tionships seen across and within species; moreover, differences in
brain size during development which do not coincide with dif-
ferences in brain size in mature individuals may account for a
portion of the structural variability that is not accounted for by
scaling laws.

This conjecture is clearly relevant to developmental disorders
showing abnormalities in brain growth trajectories. Autism spec-
trum disorder (ASD) is such a case. ASD is a disorder of neural
developmental defined by impairments in reciprocal social inter-
actions, impairments in verbal and non-verbal communication,
and a restricted repertoire of activities and interests (American
Psychiatric Association, 1994). The aetiology of ASD is unknown,
but there is now consensus that brain size during development is
increased. Infants who go on to a diagnosis of ASD show abnor-
mally rapid brain growth during the first years of life (Lainhart
et al., 1997; Redcay and Courchesne, 2005), and after the sec-
ond or third year of life children with ASD show increased head
size (Lainhart et al., 1997; Hazlett et al., 2005) and brain size
(Piven et al., 1995; Courchesne et al., 2001; Hazlett et al., 2005).
Early in development this size difference can be multiple standard
deviations above the norm (Redcay and Courchesne, 2005).

Lewis and Elman (2008) have shown via computational mod-
eling that the increased conduction delays presumably associated
with the early brain overgrowth in ASD may lead to the later
functional and structural long-range underconnectivity. Further,
in adults with ASD, Lewis et al. (2012) have shown that cal-
losal tract length adjusted for intra-cranial volume (ICV), an
index of maximum brain-size during development (Whitwell
et al., 2001; Aylward et al., 2002; Buckner et al., 2004), shows
the typical inverse relation to relative corpus callosum size,
and so the early brain overgrowth in autism appears to in
fact account for some portion of the later observed long-range
underconnectivity.

In the current paper we extended this work to assess the
impact of the early brain overgrowth in ASD on overall brain
organization. We performed a network analysis and assessed the
relation between the network metrics and ICV. Network analy-
sis methods have evolved over the past decade and a half, from
straightforward applications of graph theory, which assess only
network topology (Watts and Strogatz, 1998), to more sophis-
ticated approaches which take account of the spatial aspects
of connectivity to assess the efficiency of information trans-
fer within the network (Latora and Marchiori, 2001, 2003;
Achard and Bullmore, 2007; Bullmore and Sporns, 2012). Such
approaches utilize measures of the length and strength of con-
nections between all pairs of anatomical regions to estimate how
efficiently information can be transferred between regions. We
used probabilistic tractography to estimate the strength of con-
nectivity between all pairs of regions, and the length of the
connections between regions. We computed the efficiency of
communication from all regions to all others, and within local
neighborhoods. We then assessed the relation between both of
these measures of efficiency and ICV, as well as group differences
in efficiency. We predicted that there would be an inverse rela-
tion between ICV and both measures of efficiency, reflecting an
adverse effect of brain overgrowth on overall brain organization,
and that this would explain a portion of the group differences in
efficiency.

METHODS
PARTICIPANTS
A total of 44 adult males participated in the study: 22 with ASD
ranging between 19 and 51 years of age (mean 34.14; SD 10.67),
and 22 typical adult males ranging between 20 and 45 years of
age (mean 32.25; SD 9.98). All ASD participants met diagnos-
tic criteria for ASD on the DSM-IV as confirmed by a licensed
clinician. Eighteen of the twenty two ASD participants met the
DSM diagnosis for autistic disorder (classic autism) and, based
on absence of early language delay and no significant abnor-
mality in communication, four of the twenty two subjects addi-
tionally met diagnostic criteria for Asperger’s disorder. Autism
Diagnostic Interview, Revised (ADI-R) scores were available for
16 of the ASD participants; Autism Diagnostic Observation
Schedule (ADOS) scores were available for 18; and Childhood
Autism Rating Scale (CARS) scores were available for 12. Table 1
summarizes these data. In all but one case the ASD diagnosis
was confirmed by all of the available additional assessments; the
one exception was below the cutoff for the CARS, but above
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Table 1 | The behavioral data.

Cutoff Range Mean SD

ADI-R Social 10 13–54 27.06 8.74

ADI-R Communication (Verbal) 8 6–25 18.75 4.43

ADI-R Repetitive behaviors 3 3–14 8.25 2.91

ADOS Social 6 4–20 10.50 3.60

ADOS Communication 3 2–9 6.39 1.85

ADOS Stereotyped behavior 0–13 2.29 2.97

CARS 30 23.5–51.5 36.46 7.46

Cutoff scores for the Autism Diagnostic Interview, Revised (ADI-R) and the

Childhood Autism Rating Scale (CARS) are available only for autism; thus we

also used the autism cutoffs for the Autism Diagnostic Observation Schedule

(ADOS).

all cutoffs for the ADI-R and ADOS. General intellectual ability
in the ASD participants was evaluated by the Wechsler Adult
Intelligence Scale-Revised (WAIS-R) or the Wechsler Abbreviated
Scale of Intelligence (WASI). Mean scores were: Verbal IQ, 88.48
± 23.06; Performance IQ, 106.10 ± 15.91. Individuals with a
history of significant medical or neurological disorders includ-
ing seizures or with Fragile X syndrome were excluded from the
sample. Typical participants with a first degree relative with a
diagnosis of ASD were excluded from the sample. The partici-
pants were those from Lewis et al. (2012) augmented by new data
from individuals with ASD. Those subjects who were capable gave
informed consent; a caregiver gave informed consent for the oth-
ers. The study was approved by the Human Research Protections
Program at the University of California, San Diego.

IMAGING
All subjects were scanned at the UCSD Center for fMRI on a
GE Signa EXCITE 3.0T short bore scanner with an eight-channel
array head coil. Three types of images were acquired from each
subject: (i) one set of 3D T1-weighted images (Fast Gradient
Echo, SPGR;TE = 3.1 ms; flip angle = 12; NEX = 1; FOV =
25 cm; matrix = 256 × 256); (ii) two sets of diffusion weighted
images isotropically distributed along 15 directions (dual spin-
echo,EPI; TR = 15 s; TE = 89 ms; 45 axial slices; NEX = 2; FOV =
22 cm; matrix = 128 × 128; resolution = 1.875 × 1.875 × 3 mm;
3 mm interleaved contiguous slices; b value = 1400 s/mm2); and
(iii) fieldmaps matched to the diffusion-weighted images. During
acquisition scans were visually inspected to ensure that usable
data were collected. Where motion introduced visible artifacts in
multiple volumes, the scan sequence was aborted and reinitiated,
or an additional scan was acquired. Note that at least two sets
of diffusion weighted images were acquired, each with NEX = 2;
thus each image was acquired at least four times. Fieldmaps were
acquired before the first diffusion-weighted images were acquired,
and, in cases where there was between scan motion, an additional
set of fieldmaps was acquired after the second.

IMAGE PROCESSING
The T1-volumes were processed with CIVET, a fully auto-
mated structural image analysis pipeline developed at the
Montreal Neurological Institute. CIVET corrects intensity
non-uniformities using N3 (Sled et al., 1998); aligns the input

volumes to the Talairach-like ICBM-152-nl template (Collins
et al., 1994); classifies the image into white matter, gray mat-
ter, cerebrospinal fluid, and background (Zijdenbos et al., 2002;
Tohka et al., 2004); and extracts the white-matter and pial surfaces
(Kim et al., 2005). ICV was calculated via the atlas based spa-
tial normalization procedure described in Buckner et al. (2004).
The CIVET results were visually inspected to ensure that surface
construction was correct, and then used to construct the seed,
stop, and target masks for use with FSL’s probtrackx (Behrens
et al., 2007). Seed masks control from which voxels tracts are
seeded; seed masks were white-matter. Stop masks determine
where tract propagation is halted; stop masks were voxels on
the boundary of white-matter. Target masks determine the map-
ping from voxels of the stop masks to brain regions; target
masks were the voxels at the boundary of white-matter and the
cortex, and mapped these voxels to the Automatic Anatomical
Labeling (AAL) atlas (Tzourio-Mazoyer et al., 2002), shown in
Figure 1.

Each diffusion dataset was first corrected of distortions caused
by inhomogeneities in the magnetic field using the fieldmaps.
This was done using software developed by the UCSD Center for
fMRI. The resulting diffusion-weighted volumes were then sub-
jected to a quantitative quality control evaluation using DTIprep
(Liu et al., 2010). DTIprep corrects motion artifacts where pos-
sible, and excludes directions from the data when correction is
not possible. For each subject, the two diffusion-weighted vol-
umes with the fewest number of excluded directions were chosen
for further processing. The b0 volumes of both diffusion scans
were then affine registered to the T1-volume in stereotaxic space
using the Oxford University FMRIB Software Library’s (FSL)
flirt (Jenkinson and Smith, 2001), and the resultant transforms
used to align the two 4D volumes; the rotational component was
applied to the directional vectors. The two were then merged
using FSL’s fslmerge. The merged volume was then preprocessed
for probablistic tractography with FSL’s bedpostx (Behrens et al.,
2007). Probabilistic tractography, utilizing FSL’s probtrackx with
distance-bias correction (Behrens et al., 2003, 2007), was then
seeded from 10,000 random locations within each voxel of the
seed masks to generate the number of tracts connecting voxels in
the target mask. A native-scale 4D diffusion volume was gener-
ated using the same procedure, but with the scaling component
removed from the transforms; this was processed in the same
way to generate the lengths of the connections between voxels in
the target mask. These results were then compiled for each AAL
region generating matrices of the total number of connections
between each pair of AAL regions, and the mean length of those
connections. The total number of connections between each pair
of AAL regions was then divided by the mean size of the two
AAL regions to provide an index of the strength of connectivity
between pairs of regions.

ANALYSIS
The efficiency of communication was calculated for all regions,
based on the definition provided by Latora and Marchiori (2001,
2003). The relation of ICV to efficiency was assessed with
statistical linear models, as well as group differences in efficiency.
Correction for multiple comparisons was done using the false
discovery rate method (Benjamini and Hochberg, 1995).
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FIGURE 1 | The AAL atlas views: (A) left lateral, (B) left medial,

(C) anterior, (D) superior, (E) inferior, (F) right lateral, (G) right

medial, and (H) posterior. The regions are colored to identify region
boundaries. Similarity of colors between spatially separated regions is

not meaningful; all regions are spatially contiguous. The cortical
parcellation is based on anatomical landmarks, e.g., sulci. There are
78 cortical regions. These cortical regions serve as the nodes of the
network.

Latora and Marchiori (2001) defined the efficiency εij in the
communication between nodes i and j to be inversely propor-
tional to the shortest path length dij between nodes i and j. They
take the shortest path length dij to be the smallest sum of the phys-
ical distances throughout all of the possible paths from i to j in the
graph, i.e., the travel distance, not the number of edges nor the
Euclidean distance. The efficiency of a network, G, is then

E(G) =
∑

i �= j ∈ G εij

N(N − 1)
= 1

N(N − 1)

∑
i �= j∈ G

1

dij

where N is the number of nodes in the network graph G; εij is the
efficiency of the connection between nodes i and j; and dij is the
length of the shortest path, in terms of physical distances, between
nodes i and j. This measure is normalized by E(GIDEAL), the fully
connected network. Note that the measures of efficiency take into
account the physical distances involved in information transfer,
and so relate more closely to the neurobiological substrates than
do purely topological measures (Watts and Strogatz, 1998; Achard
and Bullmore, 2007; Rubinov and Sporns, 2010).

Latora and Marchiori (2001) apply this formulation to both
the entire network, which they refer to as global efficiency, and to
the subnetworks of the immediate neighbors of each node; they
define local efficiency as the mean of E(Gi), for all nodes i, where
Gi is the subgraph of all the neighbors of node i. These defini-
tions give a single measure of local efficiency and of global efficiency
for the entire network. But, the definitions can be given straight-
forward translations to provide measures of efficiency for each

node, or for collections of nodes. Achard and Bullmore (2007)
define nodal efficiency, which we will refer to as nodal global effi-
ciency, as the inverse of the harmonic mean of the minimum
number of edges between a node, i, and all other nodes in the net-
work. Utilizing the physical distances, as per Latora and Marchiori
(2001), the nodal global efficiency of node i is thus

Enodal global(G, i) =
∑

j ∈ G,i �= j εij

(N − 1)
= 1

(N − 1)

∑
j ∈ G, i �= j

1

dij

where N is the number of nodes in the network graph G; εij is
the efficiency of the connection between nodes i and j; and dij

is the length of the shortest path, in terms of physical distances,
between nodes i and j. The definition of local efficiency can like-
wise be parsed to provide a measure of nodal local efficiency; recall
that the local efficiency of a network is the mean of E(Gi), for all
nodes i, where Gi is the subgraph of all the neighbors of node i.
Thus, the nodal local efficiency of node i is simply

Enodal local(G, i) =
∑

j �= k ∈ Gi
εjk

NGi(NGi − 1)
= 1

NGi(NGi − 1)

∑
j �= k ∈ Gi

1

djk

where NGi is the number of nodes in the subgraph Gi consisting
of all of the neighbors of i; εjk is the efficiency of the connection
between nodes j and k; and djk is the length of the shortest path,
in terms of physical distances, between nodes j and k.

These definitions treat connections in a binarized fashion, i.e.,
as either existing or not. But, the strengths of the connections
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reflect, albeit poorly, biophysical properties of the underlying
axons that are related to conduction velocity and metabolic
costs, e.g., myelination. Moreover, weak long-range connections
between strongly connected modules have been argued to pro-
vide the shortcuts that make the brain an efficient small-world
architecture (Gallos et al., 2012). The strengths of the connections
in the brain may thus be critical to an accurate assessment of its
efficiency. Therefore, we utilize a version of these measures that
incorporates connection weight, i.e., the total number of tracts
connecting two regions, corrected for the distance-bias and region
size. Based on Rubinov and Sporns (2010), we define the weighted
distance between nodes i and j as

dw
ij =

∑
∀e∈S

le
we

where S is the set of edges in the shortest path between nodes i
and j; le is the length of edge e; and we is the connection weight for
edge e. Also based on Rubinov and Sporns (2010), our weighted
formulations of nodal global efficiency and nodal local efficiency are

E
weighted
nodal global(G, i) = 1

(N − 1)

∑
j ∈ G, i �= j

(
dw

ij

)−1

where N is the number of nodes in the network graph G; and dw
ij

is the shortest path, in terms of weighted distance, between nodes
i and j; and

E
weighted
nodal local(G, i) = 1

NGi(NGi − 1)

∑
j �= k ∈ Gi

((
dw

jk

)−1
wijwik

)1/3

where NGi is the number of nodes in the subgraph Gi consisting of
all of the neighbors of i; is the shortest path, in terms of weighted
distance, between nodes j and k; and wij and wik are the connection
weights between nodes i and j, and i and k, respectively. As per
Latora and Marchiori (2001), these measures are normalized by
considering the fully connected network.

The impact of maximum brain size during development on
efficiency was assessed, as well as the group differences in effi-
ciency. As per Lewis et al. (2012), we used ICV as an index of
maximum brain size during development (Whitwell et al., 2001;
Aylward et al., 2002; Buckner et al., 2004). The relation between
ICV and efficiency was assessed via statistical linear models, con-
trolling for age and total brain volume. Group differences in
efficiency were assessed via statistical linear models, controlling
for age. Potential group differences in the relationships between
ICV and measures of efficiency were assessed by considering the
group x ICV interaction term in models with both terms. In all
cases, correction for multiple comparisons was done using the
false discovery rate method (Benjamini and Hochberg, 1995).

RESULTS
The relation between ICV and nodal local efficiency is shown in
Figure 2. The t-statistic is negative over the entire cortex, thus
for all regions this is an inverse relation: larger ICV is associated
with less nodal local efficiency. This inverse relation is significant

over almost the entirety of the posterior of the brain, and also
the right hemisphere frontal lobe. The relation is conspicuously
less negative over left dorsal lateral frontal cortex, and does not
reach significance over much of left hemisphere dorsal lateral cor-
tex; the inverse relation is stronger over the medial surface, and is
significant over much of the medial surface of either hemisphere.

The ICV ∗ group interaction term was non-significant in
all regions, thus this inverse relation between ICV and nodal
local efficiency does not differ between individuals with ASD and
typical controls.

The group differences in nodal local efficiency are shown in
Figure 3. The t-statistic is negative over the entire cortex, thus
for all regions nodal local efficiency is reduced in individuals with
ASD. This reduction is significant over almost the entirety of
the posterior of the brain, and also the right hemisphere frontal
lobe. The t-statistic is conspicuously less negative over left lateral
frontal cortex, and the group difference does not reach signifi-
cance over much of the left lateral frontal cortex; the difference is
significant over much of the left medial surface. The group dif-
ference is non-significant for most of the right medial surface
anterior to the cuneus. Note that the pattern of group differ-
ences in nodal local efficiency parallels that of the inverse relation
between ICV and nodal local efficiency. The cosine similarity of
the two t-statistic vectors is 0.9848.

The relation between ICV and nodal global efficiency is shown
in Figure 4. The t-statistic is negative over most of the cortex, thus
this is again generally an inverse relation: larger ICV is associated
with less nodal global efficiency. Significant inverse relations are
seen in the left hemisphere in all lobes, notably in visual cortex,
the pre- and post-central gyri, and in primary auditory cortex;
significant inverse relations are seen in the right hemisphere in the
temporal lobe, the precuneus, and the paracentral lobule; and sig-
nificant inverse relations are seen bilaterally in the cingulate and
orbitofrontal cortex.

The ICV ∗ group interaction term was non-significant in
all regions, thus this inverse relation between ICV and nodal
global efficiency does not differ between individuals with ASD and
typical controls.

The group differences in nodal global efficiency are shown in
Figure 5. The t-statistic is negative over the entire cortex, thus for
all regions nodal global efficiency is reduced in individuals with
ASD. This reduction is significant over regions of all lobes in both
hemispheres. Note that these reductions overlap with those of the
relation of ICV and nodal global efficiency but are more extensive,
particularly in the right hemisphere. The cosine similarity of the
two t-statistic vectors is 0.9584.

Thus, both nodal local efficiency and nodal global efficiency
showed an inverse relation to ICV, and in neither case was the
ICV ∗ group interaction significant. Moreover, for both measures,
the pattern of results for the inverse relation between ICV and
efficiency was similar to the pattern of reductions in efficiency
in ASD.

DISCUSSION
Networks with a high degree of spatially local connectivity, but
with few long-range connections, i.e., shortcuts, have high local
efficiency and low global efficiency; networks with a high degree
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FIGURE 2 | Nodal Local Efficiency and ICV. The t-statistic (top) and the
p-statistic (bottom) for the relation between ICV and nodal local efficiency in
each region of the AAL atlas. A negative t-statistic represents decreasing
nodal local efficiency with increasing ICV. The t-statistic is overwhelmingly
negative. The p-statistic is FDR-corrected, and is blue where the inverse
relation is significant, and orange where a positive relation is significant. No

regions show a significant positive relation. Significant inverse relations are
seen bilaterally over the temporal lobes, the angular and supramarginal gyri,
the pars opercularis, orbital frontal cortex, and the superior frontal gyrus; the
right hemisphere shows this inverse relation more extensively over the
frontal and parietal lobe; the left hemisphere shows the relation more
extensively on the medial surface.
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FIGURE 3 | Nodal Local Efficiency and Group. The t-statistic (top) and the
p-statistic (bottom) for the group difference in nodal local efficiency in each
region of the AAL atlas. A negative t-statistic represents reduced efficiency in
ASD. The t-statistic is negative everywhere. The p-statistic is FDR-corrected,
and is blue where there is a significant reduction in nodal local efficiency in
ASD, and orange where there is a significant increase in ASD. No regions

show significantly increased nodal local efficiency in ASD. Significant
reductions are seen bilaterally in the temporal, occipital, and parietal lobes,
and in the pars opercularis; the right hemisphere additionally shows
reductions over lateral regions of the frontal lobe; the left hemisphere shows
more extensive reductions over the medial surface. Note the similarities to
the relation of nodal local efficiency and ICV.
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FIGURE 4 | Nodal Global Efficiency and ICV. The t-statistic (top) and the
p-statistic (bottom) for the relation between ICV and nodal global efficiency
in each region of the AAL atlas. A negative t-statistic represents decreasing
nodal global efficiency with increasing ICV. The t-statistic is predominately
negative. The p-statistic is FDR-corrected, and is blue where the inverse

relation is significant and orange where a positive relation is significant. No
regions show a significant positive relation. Significant inverse relations are
seen in the left occipital, parietal, and frontal lobes, and in primary auditory
cortex; in the right temporal lobe, precuneus, and paracentral lobule; and
bilaterally in the cingulate and orbitofrontal cortex.

Frontiers in Human Neuroscience www.frontiersin.org December 2013 | Volume 7 | Article 845 | 8

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Lewis et al. Network efficiency and brain overgrowth

FIGURE 5 | Nodal Global Efficiency and Group. The t-statistic (top)

and the p-statistic (bottom) for the group difference in nodal global
efficiency in each region of the AAL atlas. A negative t-statistic
represents reduced efficiency in ASD. The t-statistic is negative
everywhere. The p-statistic is FDR-corrected, and is blue where

there is a significant reduction in nodal global efficiency in ASD, and
orange where there is a significant increase in ASD. No regions
show significantly increased nodal global efficiency in ASD. Significant
reductions are seen bilaterally in all lobes. Note the similarities to
the relation of nodal global efficiency and ICV.
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of long-range connectivity, but which lack spatially local cluster-
ing, have high global efficiency and low local efficiency. Biological
systems in general, and neural networks in particular, tend to
balance global efficiency with local efficiency, having strong
local clustering mixed with sufficient long-range connectivity to
allow rapid communication between distant nodes; these have
been dubbed “small-world” properties (Watts and Strogatz, 1998;
Latora and Marchiori, 2001, 2003). The inverse relation shown
here between ICV and both nodal local and nodal global efficiency
suggests that deviation in brain growth trajectories impacts both
long-range communication and within-neighborhood commu-
nication, and impacts both similarly. The absence of a group ∗
ICV interaction in either case indicates that the same is true in
both typical adults and adults with ASD. The reductions in both
nodal local and nodal global efficiency seen in individuals with
ASD align with this inverse relation, in combination with the
brain overgrowth that occurs in ASD, to suggest that the brain
overgrowth may explain at least part of the reductions in effi-
ciency; and the similarity of the spatial pattern of reductions
in efficiency with the pattern of the relations between ICV and
efficiency further supports this conclusion.

These results complement our previous work showing an
inverse relation between the ICV-adjusted length of callosal fibers
and degree of inter-hemispheric connectivity in ASD (Lewis et al.,
2012), and our computational modeling work showing that the
early brain overgrowth in ASD may cause the later reductions in
long-range connectivity (Lewis and Elman, 2008). Those stud-
ies suggested that the brain overgrowth that occurs in ASD may
underlie the reductions in long-range connectivity seen in adoles-
cents and adults with ASD (Horwitz et al., 1988; Just et al., 2004,
2007; Kana et al., 2007). The current study extends that work to
network analysis, relating the brain overgrowth in ASD to overall
network organization.

The measures of efficiency utilized here do not directly cor-
respond to connectivity; efficiency is defined in terms of paths
through a network, not the strengths of individual connec-
tions. The network measures capture more complex aspects of
brain organization. The inefficiencies in ASD shown here sug-
gest a more random network organization, providing less well-
segregated local processing and a reduced capacity to integrate
information across the network. Reductions in nodal global effi-
ciency might stem from either generally weaker connections,
longer paths between nodes, or both. Topological measures show
shorter characteristic path length in ASD (Rudie et al., 2013),
meaning that communication between pairs of nodes is more
direct. Together with the reductions in nodal global efficiency
shown here this implies a more random configuration, with more
but weaker shortcuts. The reductions in nodal local efficiency sup-
port this interpretation. Since the degree to which a node is a
neighbor of another is determined by the strength of the direct
connection between them, the neighbors of a node may be spa-
tially distant. The local efficiency of a node thus reflects the spatial
clustering of its neighbors, as well as the strength of the connec-
tions between them. Topological measures show reductions in
modularity in ASD (Rudie et al., 2013), thus the reductions in
nodal local efficiency in ASD should not be interpreted as short-
distance under-connectivity, but as indicative of a more random

configuration with more diffuse processing clusters. The ineffi-
ciencies in ASD thus suggest both less segregation and less inte-
gration. The inverse relation between the measures of efficiency
and ICV suggests that these aspects of network organization are
impacted by differences in brain growth trajectories.

This study complements the substantial body of research
showing strong relationships between brain size and brain struc-
ture (Tower, 1954; Jerison, 1982; Ringo, 1991; Prothero, 1997;
Zhang and Sejnowski, 2000; Karbowski, 2003; Changizi, 2007;
Lewis et al., 2009). That research leaves unanswered the question
of the aetiology of these scaling relationships. We have hypothe-
sized that at least some of these scaling relationships come about
over development as a consequence of the impact on normal
developmental mechanisms of differences in metabolic costs and
conduction delays associated with differences in brain size (Lewis
and Elman, 2008; Lewis et al., 2012). Our hypothesis applies both
to individual variability in growth trajectories in typical develop-
ment, including gender differences, and to the atypical variations
that are generally present in developmental disorders. The current
results lend support to this conjecture.

ICV, however, is a very crude index of a very complex phe-
nomenon. In typically developing infants the brain increases from
approximately 25 percent of adult size at birth to approximately
75 percent of adult size by 2 years of age with substantial indi-
vidual variability in rate of growth as well as mature brain size
(Blinkov and Glezer, 1968; Dobbing and Sands, 1973; Courchesne
et al., 2000). Multiple parameters are required to capture even
the most basic aspects of such trajectories. ICV provides only
an index of maximum brain size during development. Likewise,
true efficiency of communication is determined by conduction
delays and metabolic costs, and the measures used here serve as
only crude proxies for such properties. The biophysical proper-
ties that determine conduction delays and metabolic costs, such
as the density of fibers, axon diameters, and the degree of myeli-
nation, are only weakly related to the probabilistic tractography
results used here as connection strengths. Further, the extent to
which the results reported here are robust to the variety of factors
that influence tractography-based estimates of connectivity, e.g.,
scan protocols, tractography parameters, and target parcellation
(Jones et al., 2012), remains to be explored. The inverse rela-
tions between ICV and efficiency thus suggest that brain growth
trajectories may account for a substantial part of the individual
differences in brain organization both in typical adults as well as
those with ASD, but the conjecture must be further tested utiliz-
ing methods which can provide more accurate estimates of brain
growth trajectories, metabolic costs, and conduction delays.
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