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Pediatric chronic pain is a significant global issue, with biopsychosocial factors
contributing to the complexity of the condition. Studies have explored
behavioral treatments for pediatric chronic pain, but these treatments have
mixed efficacy for improving functional and psychological outcomes.
Furthermore, the literature lacks an understanding of the biobehavioral
mechanisms contributing to pediatric chronic pain treatment response. In
this mini review, we focus on how neuroimaging has been used to identify
biobehavioral mechanisms of different conditions and how this modality can
be used in mechanistic clinical trials to identify markers of treatment
response for pediatric chronic pain. We propose that mechanistic clinical
trials, utilizing neuroimaging, are warranted to investigate how to optimize
the efficacy of behavioral treatments for pediatric chronic pain patients
across pain types and ages.
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Introduction

Pediatric chronic pain is a widespread, global burden, with epidemiological data

estimating that up to 83% of children experience chronic pain, depending on the pain

type (1). Pediatric chronic pain is particularly complex to manage and treat due to

developmental changes in the nervous system (2). Specifically, changes in the function

and density of nociceptive receptors and myelination, along with alterations in

endogenous inhibitory control, contribute to changing pain response and modulation

(2). The consequences of pediatric chronic pain are significant, as children with

chronic pain report experiencing a worse quality of life and more missed school days

(3) Chronic pain conditions also impose significant stress on parents and overall

family functioning (4–6).

The transition from acute to chronic pain is thought to be due to sensitization of the

central nervous system (CNS) leading to pain amplification (7). Ascending and
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descending pain modulatory systems constitute distributed

brain regions including the somatosensory cortices, prefrontal

and anterior cortices, amygdala, nucleus accumbens, thalamus,

and brainstem (8–12). Neuroimaging studies have consistently

reported the structural and functional associations of these

brain regions with pain perception (13–15).

In addition to neurological factors, the pain experience is

modified by psychological and social factors (e.g., pain

catastrophizing, parent protective responses), which contribute

to pain-related disability and pain treatment outcomes (16–

21). However, there is a general lack of understanding of how

these factors interact with other biobehavioral mechanisms

(e.g., brain metrics, inflammatory biomarkers) to impact pain

treatment outcomes. A recent commission on pediatric pain

by the Lancet Child & Adolescent Health Commission (2)

proposed four goals to improve the lives of children and

adolescents with pain as well as their families including: (i) to

“make pain matter”; (ii) “make pain understood”; (iii) “make

pain visible”; and (iv) “make pain better”. To achieve these

goals, there is a need to better elucidate the mechanisms

contributing to behavioral treatment response.

Currently, the literature has indicated mixed efficacy for

behavioral treatments for pediatric pain (studies include

children aged 7 to 18 years old) (22–27). There is a clear need

to move beyond randomized controlled trials (RCTs) of

behavioral pain treatments that solely rely on patient self-

reported outcomes. Instead, conducting mechanistic clinical

trials using mixed methods (e.g., neuroimaging, self-report,

biomarkers) will allow for a more comprehensive assessment

of treatment responders. We posit that personalized pediatric

pain treatment has remained elusive in large part due to a

dearth of research in this area, specifically mechanistic clinical

trials. Of note, there are only 23 published studies on

PubMed that describe their study design as a “mechanistic

clinical trial”, with only three focused specifically on adult

pain conditions and none focused on pediatric pain (28–30).

In this mini review, we focus specifically on how

neuroimaging has been used to identify the biobehavioral

mechanisms contributing to chronic pain and how this

modality could be instructive in mechanistic clinical trials as a

marker of treatment response.
Treating pediatric chronic pain

Psychological interventions, including cognitive behavioral

therapy (CBT), mindfulness-based therapy, and acceptance

and commitment therapy (ACT), have demonstrated efficacy

for treating pediatric and adult chronic pain (17, 21–27, 31–

45). Many studies found significant reductions in pain

intensity, functional disability, anxiety, and depression post-

treatment (see the recent Cochrane review (26) and others

(22, 25, 27, 32, 36, 40, 42)).
Frontiers in Pain Research 02
Psychological therapies for pediatric populations have

mixed efficacy for pain-related outcomes. Such behavioral

treatments have moderate effects on reducing pain intensity

post-treatment with Standardized Mean Difference (SMD)

effect sizes ranging from −0.43 to −0.57 (22, 25) and a

Needed to Treat ratio of 2.32 – meaning that two people

needed to be treated for one to benefit from the therapy

compared to controls (27). Therapies have been found to have

a small to moderate beneficial effect on disability post-

treatment (SMD −0.45 to −0.34) (22, 25) and a limited to no

effect on depression (SMD −0.05 to −0.07) and anxiety (SMD

−0.16 to −0.15) outcomes (22, 25). However, these

improvements (except for disability, SMD −0.27) were not

maintained in long-term follow-up (22, 25). It remains

unclear why psychological therapies may have short-term

effects but may not be maintained in the long-term.

Mechanistic clinical trials could help to address this gap.

Defined by the NIH, “a mechanistic clinical trial is designed to

understand a biological or behavioral process, the pathophysiology

of a disease, or the mechanism of action of an intervention” (46).

We posit that utilizing neuroimaging in mechanistic clinical trials

to examine the interaction of brain and behavior is critical. This

approach will enable us to better understand the processes and

pathophysiology of pediatric chronic pain, as well as the

mechanisms of action of behavioral pain treatment.
The potential for neuroimaging:
investigating pediatric chronic pain
mechanisms and treatment

Over the past few decades, several studies (47–59) have

examined the relationship between chronic pain and

neurocognition via performance-based neuropsychological

assessment. Results have been mixed. Most of the studies

show that patients with chronic pain or neuropathy-related

conditions such as fibromyalgia, back pain, and diabetes have

neurocognitive impairments including relatively poor

processing, psychomotor speed, attention and executive

function, memory, and learning (47–54). Still, other studies

have failed to find an association between chronic pain and

certain neurocognitive processes (55–59).

Furthermore, many observational studies have investigated

the role of the CNS in influencing behavior and brain

functions and demonstrated the significant impact of its

ascending and descending inhibitory systems on pain

modulation and perception (60–63). In addition, advances in

modern neuroimaging techniques enable objective assessment

of brain structural and functional properties, allowing for the

identification of brain-based markers of chronic pain (64–83).

These markers could be important therapeutic targets.

Chronic pain is a complex phenomenon, and its underlying

neural mechanisms are not fully understood. Current pain
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assessment methods primarily rely on observations of

individuals’ symptoms and context of their pain (84–86). As

such, it has been a significant clinical challenge to accurately

assess pain from the subjective evaluations of young patients

(87) or patients who are cognitively impaired or

developmentally delayed (88). The development of advanced

neuroimaging techniques (e.g., MRI, fNIRS) has the potential

to supplement subjective clinical pain evaluation to improve

accurate diagnoses and treatment plans for patients with

chronic pain. Additionally, unlike measures such as self-

report, neuroimaging could elucidate specific neurological

mechanisms underlying different pain conditions and pain

treatment response. For example, Dr. Maria Fitzgerald and

her team have demonstrated the utility of a range of

neuroimaging techniques to investigate neonatal pain

processing. Specifically, her team have used MRI, EEG, and

fNIRS to find that when exposed to innocuous and noxious

stimuli, newborns demonstrate distinct patterns of functional

brain activations (89–93). These results have elucidated

meaningful insights about appropriate clinical measurement

and treatment of infant pain.

In addition, the complex and diverse presentation of pain

conditions leads to difficulty for directing patients to specific

treatments for their pain condition. As a result, there are a

number of emerging neuroimaging studies aimed at better

delineating pain classifications and underlying biological

mechanisms to develop more personalized treatment (83, 94–

96). This approach has been used for years in other fields –

many psychiatry neuroimaging studies are underway or have

been conducted to identify brain-based markers and

predictors of treatment response for anxiety and depression.

These researchers highlight the goal of using these

neurological markers and predictors to develop more

personalized pharmacological therapies and to select suitable

candidates for different treatment approaches (97–103). A

similar approach using neuroimaging to identify treatment

response markers is needed to improve efficacy of pain

treatments for pediatric pain patients.
Using multimodal magnetic resonance
imaging (MRI) for adult chronic pain

The majority of the research using neuroimaging for

chronic pain has focused on adults (refer to Supplementary

Table 1). Structural magnetic resonance imaging (MRI) and

diffusion tensor imaging (DTI) have been used to investigate

brain structure and tissue architecture differences associated

with chronic pain. Specifically, one voxel-based morphometry

study showed gray matter (GM) volume and density

reductions in multiple cortical areas, including the cingulate

cortex and insular cortex, as well as subcortical regions, such

as the thalamus, in adult patients with chronic pain relative to
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healthy controls (69). The role of white matter fiber tracts has

also been investigated in relation to pain, with numerous DTI

studies demonstrating microstructure abnormalities measured

by fractional anisotropy, mean diffusivity, axial diffusivity, and

radial diffusivity in patients with chronic pain (104–110).

Extensive task-based and resting-state functional magnetic

resonance imaging (fMRI) studies have investigated a range of

chronic pain conditions including neuropathic pain,

fibromyalgia, chronic low back pain, headache, migraine, and

chronic osteoarthritis (70–81) (refer to Supplementary Table

1). After different non-pharmacological pain treatments,

including acupuncture, psychological therapies, and cranial

electrical stimulation, many studies show changes in brain

markers. Specifically, activation and functional connectivity

changes have been found in the somatosensory and motor

cortices (71–73), anterior cingulate cortex (74, 75), insula (76–

78), posterior cingulate cortex (79), prefrontal cortex (80),

orbitofrontal cortex (81), and thalamus (83).
Using functional near-infrared
spectroscopy (fNIRS) for adult
chronic pain

More recently, pain studies have used functional near-

infrared spectroscopy (fNIRS) (111–118), a non-invasive

optical technology that quantifies cortical concentration

changes in oxygenated and deoxygenated hemoglobin from

the absorption of near-infrared light through cortical tissues

(90). Unlike fMRI, fNIRS allows the investigation of brain

hemodynamics in a clinical setting, making it suitable for

broader use, such as during surgery (119–123).

For example, Gentile and colleagues utilize fNIRS to

investigate brain responses in adults with fibromyalgia across

several studies (114, 115, 124). They have consistently found

that fibromyalgia patients have significantly lower task-evoked

brain activation and electrical activity in the motor cortex

compared to healthy controls (114, 115, 124). These

consistent findings not only reveal potential motor and pain-

related circuit dysfunction in fibromyalgia but also validate

the reproducibility of fNIRS investigations in pain.
Using multimodal MRI and fNIRS in
pediatric chronic pain

Structural and functional MRI: pain processing
Structural and functional brain properties involved in pain-

evoked behavioral responses have been extensively examined in

adults, however, only a limited number of neuroimaging studies

have been conducted in pediatric patients (117, 118, 121, 125–

140) (refer to Supplementary Table 1). A few studies have used

fMRI to show that adults and newborn infants have similar
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neural activity during pain processing. Goksan et al. (2015)

found that activated brain regions during noxious stimulation

were very similar for both infants and adults – with

activations in the cerebellum, insula, putamen, and anterior

cingulate cortex, to name a few (131). In addition to this

overlapping activity, there were also distinct differences such

as hypoactivation of the amygdala and orbitofrontal cortex in

infants relative to adults (131). Furthermore, Goksan and

colleagues went on to investigate the role of the descending

pain modulation system (DPMS) (130). Infants with greater

functional connectivity in the DPMS prior to stimulation had

lower noxious-evoked brain activity (130). These results were

not replicated for the Control Network nor the Default Mode

Network – highlighting a specific mechanism of the DPMS

during pain experiences (130).

Many studies have investigated GM volume and resting-

state functional connectivity (FC) in children (ages 10 to 18)

with complex regional pain syndrome (CRPS) (125–127, 132,

134, 140) (refer to Supplementary Table 1). Results show

that relative to healthy controls, pediatric patients with CRPS

have altered structural and functional properties in various

networks related to cognitive and affective functioning (125–

127). In addition, CRPS patients showed reduced GM volume

and increased resting-state FC in the subcortical basal ganglia

of the sensorimotor network (125, 126). Decreased resting-

state FC of the habenula, a brain structure linked to pain

processing, has been found in children and adolescents (aged

10–17) (134). One study found decreased task-evoked brain

activity in many regions such as the precentral gyrus, inferior

frontal gyrus, supramarginal gyrus, and postcentral gyrus for

CRPS patients (aged 8–20) when completing a fearful face

paradigm (132). Widespread cortical changes were also

observed for CRPS patients (aged 9–18) directly after noxious

stimulation, with increased activation in areas involved in

sensation and emotional processing, as well as decreased

activation in frontal and parietal lobes, and in limbic system

structures (140). In recovery from evoked pain, CRPS patients

had persistent decreased activation in frontal, parietal,

temporal cortices and the hippocampus (140).

Such brain abnormalities have also been found in children

with migraine (aged 9 to 17), with demonstrated GM

volumetric abnormalities in the frontal and temporal lobe,

fusiform gyrus and putamen compared to healthy volunteers

(128). A study recently investigated structural and functional

properties in adolescents (aged 10 to 24) with peripheral

nerve injury of the ankle (133). In the ankle injury cohort,

there was reduced GM in the bilateral somatosensory cortices

compared to healthy controls and decreased resting-state FC

in the nucleus accumbens, amygdala, and the periaqueductal

gray – regions associated with affect and pain modulation

(133). In addition, the ankle injury cohort showed changes in

white matter integrity, with the superior parietal lobule,

inferior parietal lobule, and anterior thalamic radiation
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showing significant changes in mean diffusivity compared to

healthy controls. These tracts are associated with pain

processing and sensory integration (133). For peripheral

neuropathic pain, one study found that children and

adolescents aged 11 to 18 had stronger resting-state FC

between the right amygdala and right dorsolateral prefrontal

cortex, and enhanced resting-state FC between the right

amygdala and left angular gyrus compared to controls. These

trends were correlated with lower pain intensity, reflecting

pain inhibition-related resting-state FC differences (136).

Treatment effects on brain imaging measures
Several studies have investigated the effect of treatment on

brain functional connectivity and gray matter structures for

pediatric pain patients (125, 127). Simons et al. (2014) found

that pediatric CRPS patients (aged 10 to 17) who underwent

an intensive psychophysical treatment program had significant

decreases in connectivity between the left amygdala and

motor cortex, parietal lobe, bilateral cingulate and one lobule

of the cerebellum (127). In turn, these connectivity changes

were correlated with decreases in pain-related fear after

treatment, suggesting the potential for amygdala connectivity

as an indicator of psychological treatment response. Another

study also showed treatment-induced connectivity changes for

pediatric CRPS patients (125). Pre-treatment, CRPS patients

had negative connectivity between the dorsal-lateral prefrontal

cortex and periaqueductal gray, whilst post-treatment, a

positive connectivity was observed (125). The authors propose

this change may indicate that successful treatment response is

related to increased synchronicity between the structures

(125). Further, the patients had greater cortical thickness in

the dorsal-lateral prefrontal cortex and greater subcortical GM

volumes in several subcortical structures after treatment (125).

fNIRS: pain processing and treatment
A small, but growing number of studies have used fNIRS

imaging to investigate pain processing and pain treatment

response for children and infants, with a focus on acute and

procedural distress. Pettersson et al. (2019) measured pain

perception in healthy newborn infants (mean age of 39.9

weeks) during a hip examination, a routine medical

examination that is thought to cause discomfort for infants

(135). Compared to heart auscultation examinations, which

are non-painful, the hip examination evoked greater

oxygenated hemoglobin on bilateral somatosensory cortices.

This oxygenation was concurrent with greater Premature

Infant Pain Profile-Revised scores, which assesses procedural

pain in infants (135). Recently, Yuan et al. (2022) assessed

nociceptive prefrontal functional activation undergoing

circumcision in neonates (aged 1–2 days) (139). They found

that prefrontal activation significantly increased during

noxious events (e.g., local injection) and decreased with non-

noxious events (e.g., before incision) (139). Karunakaran et al.
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(2022) investigated the effects of continuous remifentanil on

cortical hemodynamics in pediatric patients (mean age of 15.8

years) in response to catheter ablation (121). They reported

that the placebo-controlled group showed greater oxygenated

brain activations in inferior and superior medial frontopolar

cortices compared to the remifentanil group (121).

Furthermore, the effects of pain-alleviating strategies for

newborn infant procedural pain has been investigated using

fNIRS in a few studies (118, 137, 138, 141). Ren et al. (2022)

found that a white noise intervention did not significantly

change cerebral oxygen saturation of newborn infants (aged

37–42 weeks) during a blood sampling procedure (137). Two

studies investigated the analgesic effects of glucose or sweet

solution administration to newborn infants during painful

procedures (118, 138). Bembich et al. (2015) found that

glucose did not evoke significant cerebral oxygenation changes

compared to a breast-feeding group during a heel prick

procedure (aged 38–41 weeks) (118). Intriguingly, Beken et al.

(2014) found that glucose significantly increased cerebral blood

volume after a blood sampling procedure for newborn infants

(median age of 38 weeks) (138). Bembich et al. (2015) also

found that breast-feeding evoked less intense pain behaviors

and caused greater generalized cortical activation in newborn

infants (118). Lastly, one study found that skin-to-skin contact

reduces the oxygenated hemoglobin activation of infants (aged

30 weeks) during a blood sampling procedure compared to no

skin-to-skin contact (141). It is possible that these pediatric

acute pain fNIRS studies could inform further research for

utilizing fNIRS for pediatric chronic pain treatment.

Improved understanding of the specific neural mechanisms

underlying pediatric chronic pain and treatment response will

allow for more targeted psychological and pharmacological

pain treatments. For example, specific behavioral interventions

may improve functional connectivity in key brain regions

implicated in chronic pain symptomatology, such as between

the amygdala and prefrontal structures (142). This insight

could direct patients with specific neural markers related to

amygdala connectivity to this intervention. In this way, neural

treatment response predictors and markers have the potential

to be transformative for pediatric chronic pain treatment.
Where to next?

Unanswered, yet important questions remain, including: Do

psychological interventions have similar neurological effects on

adults and children with chronic pain? Which pain condition

and at which age is a certain behavioral intervention the most

efficacious? We suggest the next step for answering these

questions is to deeply phenotype the psychological treatment

effects through neuroimaging. By starting with neuroimaging,

we can elucidate the neurological markers that may predict

treatment response. These neurological markers, in
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conjunction with patient self-report, can be used to formulate

pain treatment approaches. Considering the multiple, diverse

mechanisms of pain, mechanistic clinical trials using multiple

methods including neuroimaging is warranted for

comprehensive understanding of treatment response (143).
Mechanistic clinical trials

Given the complex pathophysiological mechanisms of pain,

different approaches have been used to examine pain’s

biological and behavioral etiology. Mechanism-based

approaches, which target patients’ specific pain-related

characteristics, could allow for the development of a more

personalized treatment approach (143). Pain researchers and

drug regulators highlight that conventional clinical trials are

insufficient for effective clinical analgesic development, as these

trials do not account for heterogeneous pain mechanisms

(143). Furthermore, the evidence base for pediatric chronic

pain mechanisms needs to be expanded to support the

conceptualization of pharmacologic and nonpharmacologic

pain treatment trials. Findings from adult chronic pain studies

cannot be relied on as the mechanisms of pediatric pain may

be significantly different with the interplay of a developing

nervous system (144). The Lancet Child & Adolescent Health

Commission’s 2020 report on pediatric pain highlights the

need for alternate approaches beyond the RCT to address gaps

in evidence-based treatment and to guide clinical practice (2).

Notably, there is a dearth of mechanistic clinical trials for

behavioral pain treatment and none for pediatrics. By studying

the mechanisms behind treatments, the mechanistic clinical

trial approach could also help identify risk factors of chronic

pain to aid clinical efforts to prevent the onset of chronic pain (2).

Early mechanistic clinical trials have discussed shortcomings

of this approach, including the failure to identify apparent

differences in treatment response, the lengthy process, and

general participant discomfort for pain assessment. However,

recent mechanism-based studies have simplified methods and

used more patient-friendly paradigms for assessing pain

mechanisms (145). For example, Wang et al. implemented two

double-blind, placebo-controlled trials that investigated the

mechanisms of serotonin–norepinephrine reuptake inhibitor

(SNRI) antidepressant medication for adults with persistent

depressive disorder using MRI (145). Using this mechanism-

based approach, they found that antidepressants decreased

functional connectivity compared with placebo within a

thalamo-cortico-periaqueductal network, which has previously

been associated with the experience of pain (145). This reduced

functional connectivity was also correlated to improvements in

depressive symptoms and pain symptom severity in the

medication group. Wang and colleagues have revealed the

utility of using a mechanism-based approach. By using MRI,

Wang’s group were able to investigate neurological mechanisms
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underlying symptom severity changes during antidepressant

treatment. This approach can help develop more specific

targets for antidepressant therapeutics and bolster our

understanding of depression in general.

Mechanistic clinical trials are gaining momentum (29, 30,

97, 98, 146–157). One feasibility study has been successfully

conducted, which assessed the feasibility of examining the

beneficial metabolic effects of bariatric surgery in adults using

a mechanistic clinical trial design (151). Five ongoing

mechanistic clinical trials with published protocols aim to

improve treatment outcomes in adult patients. These include

optimizing pain interventions for patients with fibromyalgia

(30), identifying biomarkers for pharmacoresistant depression

treatment response (97), diet as a treatment for acute

coronary syndrome (148), mental stress on coronary heart

disease (147), and ventilator-induced diaphragm dysfunction

(146). We suggest a similar model should be used for

pediatric chronic pain to better understand the neural

mechanisms underlying pain processing, higher intervention

accuracy, and neurological and biomarker advancement.

The saturation of RCTs and significant gaps in knowledge in

the adult and pediatric chronic pain literature warrants a new

research approach. Mechanistic clinical trials that incorporate

neuroimaging offer an avenue to investigate brain-behavior

interactions underlying pediatric pain treatment. Understanding

the underlying processes will allow for developing personalized

treatments with more optimal outcomes.
Discussion

Despite the significant prevalence and impact of pediatric

chronic pain, there remains a lack of understanding of

etiology and effective treatment. The psychological

components of pain and pain-related functional outcomes are

well-documented and have precipitated a rise in studies

investigating psychological treatment interventions for

pediatric chronic pain. Thus far, results are promising, with

treatments correlated to decreased pain interference and

intensity, improved affective measures, reduction in disability,

and improved quality of life. However, these effects are far

from consistent, and it remains unknown why some patients

experience improvements while others do not.

Neuroimaging, particularly fNIRS imaging, is a promising

technique to elucidate the underlying neurological mechanisms

of pediatric chronic pain. Although fNIRS has its inherent

limitations including relatively lower spatial resolution and lack

of sufficient penetration depth of near infrared light for

capturing subcortical brain activities (158), the technology

offers unique and significant benefits. Advantages include the

portability of the device and low sensitivity to head motion for

monitoring pain evaluation in clinical settings (159–162). In

addition, development of innovative techniques, such as
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machine learning, which detects patterns, rules, and causal

dependencies in large chronic pain study data sets, have

enabled objective data evaluations of chronic pain by

incorporating temporal and spatial features of fNIRS imaging

data (163, 164). Integration of machine learning in pain

research makes it possible to investigate neural predictors of

treatment responses, and even provide recommendations for

appropriate, effective treatments for chronic pain.

Future research should utilize neuroimaging techniques and

integrative analysis to investigate the neurological mechanisms

behind pediatric chronic pain and treatment response. In

addition, large, multicenter mechanistic clinical trials

investigating the neurological and psychosocial mechanisms of

change for psychological treatment interventions is warranted.

Only once the heterogeneous mechanisms of pediatric chronic

pain and treatment response are understood can we begin to

develop precision medicine to optimize care for all pediatric

chronic pain patients.
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