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A need for more accurate and reliable radiation dosimetry has become increasingly important due to the
possibility of a large-scale radiation emergency resulting from terrorism or nuclear accidents. Although
traditional approaches provide accurate measurements, such methods usually require tedious effort and at
least two days to complete. Therefore, we provide a new method for rapid prediction of radiation exposure.
Eleven microarray datasets were classified into two groups based on their radiation doses and utilized as the
training samples. For the two groups, Student’s t-tests and resampling tests were used to identify
biomarkers, and their gene expression ratios were used to develop a prediction model. The performance of
the model was evaluated in four independent datasets, and Ingenuity pathway analysis was performed to
characterize the associated biological functions. Our meta-analysis identified 29 biomarkers, showing
approximately 90% and 80% accuracy in the training and validation samples. Furthermore, the 29 genes
significantly participated in the regulation of cell cycle, and 19 of them are regulated by three well-known
radiation-modulated transcription factors: TP53, FOXM1 and ERBB2. In conclusion, this study
demonstrates a reliable method for identifying biomarkers across independent studies and high and
reproducible prediction accuracy was demonstrated in both internal and external datasets.

R
adiation exposure has become an important concern for human beings in everyone’s daily life, because a
person may receive irradiation from many different sources. For example, radiological weapons are able to
cause radiation exposure to many people in a short time even if they are only small dirty bombs. A nuclear

power plant may change into a dangerous radiation source when natural disasters happen, such as the devastating
tsunami in Fukushima in Japan. In such cases, a large number of people will receive different amounts of radiation
exposure and suffer a corresponding variety of ill effects.

Several literature reports have shown that distinct biological functions and damage patterns are triggered in
cells in response to different doses of ionizing radiation (IR)1–3. Therefore, how to estimate the radiation exposure
of IR-treated samples, which is called radiation dosimetry, has become a critical and urgent issue.

Several methods have been developed for assessing the radiation doses received by exposed samples4–6, but their
applications may be limited in a severe radiation emergency. For instance, the dicentric assay requires much effort
and at least three days to be completed6,7. Another popular approach is to observe the declining lymphocyte
counts in the first 48 hours after irradiation4; however, such measurement still takes at least two days to be done,
which may make it difficult to be used in a large-scale radiation emergency. Therefore, developing a new
methodology to assess radiation exposure in tissue samples more quickly is necessary and beneficial for future
applications.

With the advancement in high-throughput technologies, data from DNA microarrays and next-generation
sequencing provide a good basis to address this issue. In recent years, several studies have demonstrated the
success and effectiveness of predicting radiation doses based on gene expression levels7–9. For example, Paul et al.
identified a 74-gene signature that can be utilized to predict four radiation doses from human peripheral blood7,
and Dressman et al. reported a 25-gene signature to classify irradiated human samples based on the radiation
doses8. Such studies had high prediction accuracies within their own datasets; however, challenges arise when
trying to validate the predictions in independent datasets.
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It is well known that biomarkers identified in one microarray
dataset are usually irreproducible across studies, even if the investi-
gated samples have similar clinical parameters10,11. The reasons for
such high inconsistency in identified biomarkers across datasets may
be attributed to different microarray platforms, various experimental
protocols, and dissimilar statistical approaches. Consequently, the
practical application of the identified biomarkers is limited. One
possible approach to address this issue is to perform a large-scale
meta-analysis of microarray data in the public domain12.

In this study, 11 microarray datasets from tissue samples irra-
diated by c–rays were retrieved from the Gene Expression
Omnibus (GEO) and utilized as an integrated training set. A set of
29 biomarkers associated with different radiation doses was iden-
tified based on several criteria, such as Student’s t-test and resam-
pling tests. Furthermore, a machine learning algorithm, called
support vector machine (SVM), was used to develop a prediction
model based on the genes’ expression ratios. More than 80% accuracy
was shown in classifying samples treated with higher and/or lower
doses of radiation using 10,000 repetitions of 10-fold cross-validation
in the training set. The prediction model showed similar accuracy in
four independent datasets, suggesting its potential application to
predict radiation doses across different studies.

Methods
Data collection and pre-processing. A protocol to identify differentially expressed
(DE) genes associated with radiation dosage is illustrated in Figure 1. A total of 11

microarray datasets retrieved from the GEO13 were utilized as the training set
(Table 1). To reduce the effects of confounding factors, only samples irradiated
with c–rays and collected 4–8 hours after radiation exposure were included.
Furthermore, distinct cell lines were considered as different signatures and
analyzed separately. Two pre-processing steps, including log2 transformation and
quantile normalization, were performed to eliminate systematic biases across
different platforms.

Identification of biomarkers associated with different radiation doses. Based on
the radiation dosage, each microarray was classified as higher ($8 Gy) or lower
(#2 Gy) dose. To reduce redundancy and difficulty in processing multiple probes
targeting the same gene, only probes with the largest coefficient of variation (CV)
were retained for further analyses. Student’s t-test was performed to compare the gene
expression levels in radiation-treated cells to those in untreated cells. The estimated
false discovery rate (Q-value) was computed to address the issue of multiple test
correction and only those genes with Q-values ,0.1 were selected12,14. The formula for
calculating Q-value is Q 5 (P*N)/I, where P is the P-value from the t-test, N is the
total number of genes, and I is the ranking of the P-value among N (Figure 1: Step 2.1).

To exclude genes identified by chance, a resampling test was performed12. The
number of DE genes for each signature was set from previous analyses, but genes in
each DE signature were randomly selected. We repeated this procedure 10,000 times
and tallied the number of signatures that each gene was selected as a DE gene to
establish a null baseline. In other words, a null baseline of identifying one gene as a DE
gene in the number of signatures was simulated after 10,000 repetitions. In this way,
an empirical P-value for each gene was determined according to its number of
significance in multiple signatures versus the null baseline. Only genes with empirical
P-values less than 0.05 were included for the following analyses (Figure 1: Step 2.2).

To consider multiple signatures simultaneously, we adopted an approach to
estimate the minimum meta-false discovery rate (mFDRMIN)12 as shown in the fol-
lowing equation:

mFDRMIN ~ Minimum Eiz1½ �= Ni½ �ð Þ for i ~ 1 to S,

Figure 1 | Flowchart for identification of differentially expressed genes associated with radiation doses and development of a prediction model. The

number of genes shown in the right dotted box denotes the union of genes across multiple signatures.
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where S denotes the number of signatures, Ei denotes the number of DE genes selected
at random, and Ni denotes the number of DE genes present in the ith signature,
respectively. This measurement estimates the possibility of randomly identifying DE
genes in multiple signatures (Figure 1: Step 3.1). Lastly, Student’s t-test was used to
select biomarkers showing significant differences between microarrays exposed to
higher or lower dose radiation (Figure 1: Step 3.2, P , 0.05).

Development of a prediction model using support vector machine. After
identification of the DE genes associated with radiation dosage, a machine learning
algorithm, SVM15, was utilized to develop a classifier for predicting the radiation
exposure of tissue samples (Figure 1: Step 4). For each biomarker identified in Step
3.2, the ratio of gene expression levels between radiation treated and untreated cells
was used as an input variable for the SVM model. As shown in Table 1, for the samples
treated with higher radiation dose, GSE26835 has 362 samples compared to only 23
samples in total from the other four datasets (GSE36720, GSE8917, GSE35372,
GSE30043). In order to compensate the imbalanced sample size, we randomly
selected 23 samples from dataset GSE26835, and combined them with the 23 samples
from the other four datasets to develop the prediction model. A 10-fold cross-
validation was performed for 10,000 iterations to calculate the accuracy and stability
of prediction performance in the training samples. In addition, the reproducibility of
the proposed classifier in independent datasets was evaluated by using several
microarrays collected at different time points after irradiation (Table S1).

Results
Identification of biomarkers associated with radiation dosage. As
shown in Figure 1, several filtering and selection steps were utilized to
identify DE genes associated with radiation dosage. A signature was
defined as one set of genes summarized from one cell line or one
dataset. The results of Student’s t-test (Step 2.1) showed that 5,949
genes in the higher-dose group and 11,413 genes in the lower-dose
group had differential expression in at least one signature. To address
multiple hypothesis testing and concurrently integrate different
signatures, a resampling test following Rhodes’s study12 was
adopted and repeated 10,000 times (Step 2.2). As shown in

Table 2, only 502 and 697 genes were found to be significantly DE
(P , 0.05) in response to higher or lower doses of radiation. These
results showed that more than 90% of the DE genes identified in Step
2.1 were excluded due to their high possibility of being selected
randomly, suggesting that such a resampling test (Step 2.2) is
useful to exclude false positive genes.

Next, we utilized an approach called mFDRMIN to determine the
cutoff value of a biomarker in multiple signatures (Figure 1, Step 3.1).
This study aimed to develop a prediction model, and large numbers
of biomarkers would make it difficult to use the model for practical
applications. Therefore, to considering the issues of practicability
and false positive rates simultaneously, we determined that a bio-
marker must be identified in at least five signatures in response to
higher-dose radiation and three signatures in response to lower-dose
(Table 2). This cutoff of significance in multiple signatures was deter-
mined based on the low mFDR (Q # 0.3) and an acceptable number
of biomarkers (N , 100). The results indicated that 35 genes in
higher dose and 51 genes in lower dose were significantly different
from untreated cells (Table 3). Among them, Student’s t-test was
performed to exclude genes having no differences in expression in
response to higher and lower doses of radiation (Figure 1, Step 3.2; P
, 0.05). A set of 29 biomarkers showed significant differences at both
higher and lower radiation doses, and thus all 29 biomarkers were
included for developing the prediction model (Table 3).

Internal 10-fold cross-validation of the 29 biomarkers. After
identifying the final set of 29 biomarkers, a prediction model was
developed based on the ratios of gene expression in radiation treated
versus untreated cells using the SVM algorithm. A 10-fold cross-
validation was repeated 10,000 times to evaluate the prediction

Table 1 | Characteristics of training samples

Accession No.a Sample No. Cell type Dose (Gy) Time after radiation (h)

GSE26835 362 Lymphoblast 10.0 6
GSE36720b 9 LNCap, PC3, DU145 10.0 6
GSE8917 5 Peripheral blood 8.0 6
GSE35372 6 HL60, RV1 8.0 4
GSE30043 3 U87 8.5 4
GSE23515c 12 Peripheral blood 2.0 6
GSE25772 4 Fibroblast 2.0 8
GSE30044d 3 HEK 2.0 4
GSE8917 5 Peripheral blood 2.0 6
GSE6971 4 Fibroblast 1.5 6
GSE7075 6 Fibroblast 1.5 6
aGEO accession number.
bSamples treated with multiple-fraction irradiation were excluded.
cSamples from smokers were excluded.
dSamples treated with DNA minor groove binding ligand were excluded.

Table 2 | Numbers of identified biomarkers in different steps in Figure 1

# of signatures

Higher Dose ($8 Gy) Lower Dose (#2 Gy)

# of DE genes
(Q , 0.1: Step 2.1)

# of Sig genes
(P , 0.05: Step 2.2)

mFDRMIN

(Step 3.1)
# of DE genes

(Q , 0.1: Step 2.1)
# of Sig genes

(P , 0.05: Step 2.2)
mFDRMIN

(Step 3.1)

8 0 0 -- -- -- --
7 1 1 1.00 -- -- --
6 5 5 0.20 0 0 --
5 29 29 0.03 1 1 1.00
4 83 83 0.01 6 6 0.16
3 551 258 0.53 44 44 0.02
2 2,534 126 0.95 603 595 0.01
1 8,210 0 1.00 5,295 51 0.99
Total 11,413 502 5,949 697

#: Number; DE: differentially expressed; Sig: Significant; mFDRMIN: minimum meta-false discovery rate.
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performance and consistency in the training samples. As shown in
Figure 2A, the average values of accuracy in the training samples
were approximately 0.9 for the identified 29 biomarkers. The
standard deviations were only around 0.03 for the 10,000
repetitions, suggesting that the prediction performances of the 29
biomarkers were highly consistent, even if the 23 samples from
GSE26835 were used. In addition, a 10-fold cross-validation was
performed by using all 419 samples shown in Table 1, and the
prediction accuracy (0.86) was highly similar to that obtained from
using 80 training samples. Therefore, these results demonstrated that
the prediction model based on the 29 biomarkers was accurate in
classifying samples treated with higher versus lower radiation doses.

Comparisons with published signatures. To further evaluate the 29
biomarkers, their predictive performance was also compared with
two published signatures for predicting radiation dosage7,8. Only the
genes that existed in the training samples and showed no missing
values were included in the analysis (Table S2). The same 10-fold
cross-validation approach described previously was performed to
investigate their performance. The 29 biomarkers identified in our
approach showed significantly (P ,0.05) better accuracy than the
other two signatures (Figure 2A). Notably, the standard deviations
were also not high for the two published studies and thus the random
selection of samples in GSE26835 was not a critical factor in affecting
the prediction performance.

External evaluations of the 29 biomarkers in independent
datasets. To validate the prediction performance of the 29
biomarkers and the two published signatures, four microarray
datasets collected within 3–6 hours after irradiation treatments
were examined (Table S1). As described previously, a total of
10,000 analyses were performed to calculate the accuracy. The
results are summarized in Figure 2B, which shows that the 29
biomarkers identified in this study were significantly better
predictors than the genes obtained from Paul’s study. The accuracy
of the 29 biomarkers in the samples treated with higher-dose
radiation was similar to that of the meta-genes obtained from
Dressman’s study. However, compared with the 29 identified
biomarkers, Dressman’s genes showed poor performance in the
prediction of the samples treated with lower-dose radiation. The
29 identified biomarkers showed around 90% accuracy in
classifying samples treated with higher-dose radiation, 65%
accuracy in lower-dose radiation samples, and 83% accuracy overall.

Functional characterization of the 29 biomarkers. Ingenuity
pathway analysis was used to explore possible upstream regulators
and characterize associated biological pathways of the 29 biomarkers
(Table S3). As shown in Figure 3, 19 out of the 29 biomarkers can be
regulated by three genes including TP53, FOXM1, and ERBB2. All
three regulators have been reported to have pivotal roles in
modulating radiation responses16–18. In addition to transcription
regulators, two major biological pathways—cell cycle regulation
and the pyrimidine salvage pathway—were significantly enriched

(P , 0.01). Several studies also have shown that irradiation is able
to cause transcriptional changes in genes involved in these two
functions16,19,20, suggesting that the 29 biomarkers not only can be
used for predicting radiation doses but also participate in important
functions in response to radiation exposure.

Discussion
A large-scale radiation emergency may affect many people at one
time, and thus how to efficiently and accurately measure radiation
exposure becomes an important issue. Several studies have identified
predictive biomarkers for radiation dose using gene expression
microarrays7–9. However, the generalizability (i.e., reproducibility)
of those reported biomarkers was not evaluated and validated in
external independent datasets, which makes them difficult to apply.
To address this issue, this study developed a meta-analysis flowchart
to select biomarkers across independent microarray datasets. The 29
identified biomarkers had approximately 90% accuracy in the train-
ing samples, which were composed of 11 datasets, and had more than
80% accuracy in four independent datasets, suggesting the effective-
ness of our proposed method.

Two different approaches can be used to identify biomarkers for
predicting radiation exposure across independent datasets. One pos-
sibility is to select one dataset as the training set and then validate the
identified biomarkers in external samples21,22. Notably, the most
important limitation of such an approach is that a dataset with a
large sample size is required because potential biomarkers are
selected based solely on it. However, the sizes of irradiated micro-
array datasets that are available in the published domain are usually
not very large, which makes this approach difficult to execute. In
addition, most of these datasets were investigated by distinct plat-
forms, including both one-color and two-color systems. Challenges
arise when trying to merge those datasets into one integrated meta-
dataset due to their huge discrepancy and systematic biases.
Therefore, we chose an alternative approach (Figure 1) in which
multiple datasets were considered individually.

The 29 biomarkers identified by our methods were compared with
two published sets of biomarkers shown in Table S2. Six and zero of
the 29 biomarkers were in common with those obtained from Paul’s
study and Dressman’s study, respectively, illustrating the fact that
biomarkers identified in one microarray dataset rarely overlap with
those reported in other studies11. As shown in Figure 2, the prediction
performance of the 29 biomarkers was generally higher than that of
Paul’s and Dressman’s studies, except the accuracy of external sam-
ples treated with higher radiation dose (91% in our study versus 95%
in Dressman’s). Notably, Dressman’s biomarkers showed much bet-
ter performance in classifying samples treated with higher radiation
doses than classifying those with lower doses. One possible reason for
this imbalance is that most of their original samples were irradiated
with 200-1,350 cGy, which fell primarily into the higher radiation
dose group in the current study. Since radiation doses in future
samples are unknown, a balanced prediction performance is more
practical for real-world applications.

Table 3 | Identified biomarkers for samples treated by higher and/or lower radiation doses

Group (Gene No.) Gene symbol

Higher Dose (35) TPX2, ASPM, AURKB, CDCA3, CENPA, CENPF, AURKA, BIRC5, C12orf5, CCNB1, CCNF, CDC6, CDC20, CDCA2,
CENPE, DLGAP5, E2F5, FAM83D, GTSE1, KIAA1333, KIF2C, KIF20A, MTIF2, MXD3, NDC80, NEK2, NIF3L1, PLK1,
PRR11, PSRC1, RAD54L, RFC5, SPTBN1, TMEM19, TNFRSF10B

Lower Dose (51) CDKN1A, FDXR, FHL2, GADD45A, MYC, TP53I3, TRIAP1, ACAP1, AEN, AFF1, APOBEC3H, BLOC1S2, BST1, C12orf5,
C13orf30, C14orf128, COL27A1, CPT2, DDB2, ECHDC1, FANCE, FBXL4, FXYD2, GRIA1, IGFBP7, JAM2, LY9,
MCM3, MDM2, MSH6, NMT2, NSRP1, NSUN7, PHLDA3, PITHD1, PLK2, PLK3, REV3L, RPS27L, SAP30, SESN1,
SESN2, SLBP, SLFN11, SS18L2, TNFRSF10B, TNFSF4, TRIM22, VWCE, WHSC1L1, ZDHHC14

High and Low Doses (29) AEN, ASPM, AURKB, BIRC5, CCNB1, CCNF, CDC20, CDCA3, CENPA, CENPE, CENPF, DLGAP5, FBXL4, FDXR, FHL2,
GTSE1, KIF20A, KIF2C, LY9, MXD3, NDC80, NEK2, PLK1, PLK2, PSRC1, RPS27L, SESN1, SLBP, TPX2

www.nature.com/scientificreports
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Figure 2 | Prediction performance of the three sets of biomarkers. A 10-fold cross-validation was repeated 10,000 times and the accuracies in the samples

treated with higher and/or lower radiation doses were plotted. (A) Training samples (46 higher-dose and 34 lower-dose). (B) External independent

datasets (64 higher-dose and 30 lower-dose).
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There are some limitations of the prediction model developed in
this study. First, the collection of microarray datasets analyzed in this
study included only samples that were treated with c–rays and har-
vested 3–8 hours later. It is well known that the radiation source
plays an important role in driving downstream gene expression,
and different signaling pathways are triggered in response to the
different types of irradiation23,24. In addition, dissimilar genes and
biological functions are induced in cells at different time points after
radiation exposure25,26. To reduce potential variations in gene
expression levels, a unified radiation source (c–ray) and post-irra-
diation time period (3–6 hours) were utilized in the analyses.
Therefore, the prediction model only showed about 55% accuracy
in identifying radiation dose in samples harvested 24 hours after
irradiation (Figure S1), suggesting this model is useful in classifying
radiation exposures during the early-response period but not the
late-response period. Furthermore, the prediction model classified
samples into higher or lower radiation dose groups, instead of
numerically estimating their exposed radiation dose. Although spe-
cific definition of exposed radiation dose in samples may provide
better classification performance, the sizes of published irradiated
microarrays are not sufficient to develop a prediction model.
Meanwhile, some variations in gene expression levels were still
observed, even if the samples were reclassified in the opposite group,
especially the lower-dose ones. This may be attributed to the fact that
transcriptional changes in response to radiation are not linear, and
genes may be switched on/off after a certain threshold of radiation
exposure1,27. However, more samples irradiated by different doses are
required to develop a regression model across independent datasets.

Analyses of upstream regulators (Figure 3) and biological func-
tions were performed to elucidate how the 29 biomarkers participate
in the radiation response. Unsurprisingly, TP53 was a consistently
significant regulator (P , 10210) in the three-biomarker sets for
samples treated with higher and/or lower radiation doses (Table
S4). A previous report demonstrated that inhibition of FOXM1
expression can elevate radiation sensitivity in cells after 8 or 10 Gy
c–ray irradiation17, which is consistent with our finding that FOXM1
was the most significant regulator (P 5 2.04 * 10220) after higher-

dose radiation exposure. As the second most significant regulator
after higher-dose irradiation (P 5 1.07 * 10214), ERBB2 is able to
reduce radiation induced apoptosis by activating NFkB-related sig-
naling in cells exposed to 5 Gy18. In addition, the 29 biomarkers were
significantly involved in cell cycle regulation and in the pyrimidine
salvage pathway. Undoubtedly, the identified biomarkers were assoc-
iated with these pathways because deoxyribonucleotide synthesis
was observed in two irradiated cell lines with different radiosensitiv-
ities20. We conclude that these 29 biomarkers not only are regulated
by well-known radiation modulators but also have important roles in
response to radiation exposure.
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