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A hypothesis of ‘direct mineral cycling’

Half a century ago in an Amazonian rainforest, Went and
Stark [1, 2] observed ‘endotrophic mycorrhizal’ hyphae
proliferating in leaf litter adjacent to mycorrhizal roots.
They inferred the fungi were accessing, and subsequently
transferring, litter-bound mineral nutrients to host plants in a
phenomenon they called ‘direct mineral cycling.’ This
hypothesis was consistent with acceptance of fungi as pri-
mary decomposers in forest ecosystems and mycorrhizal
fungi as symbionts that transfer mineral nutrients (hereafter,
‘nutrients’) to host plants. ‘Endotrophic mycorrhizas,’ as
used by those authors, were later termed ‘arbuscular
mycorrhizas’ and involve a phylogenetically distinct group
of fungi from the phylum Glomeromycota [3]. Early
observations of arbuscular mycorrhizal (AM) fungi pro-
liferating in organic matter led researchers to surmise
saprotrophic capabilities [4–6]. However, attempts to cul-
ture AM fungi independent of host plants were unsuccess-
ful, and researchers now understand AM fungi as obligate
symbionts entirely dependent on host plant roots for carbon
[7, 8]. In fact, AM fungi appear incapable of producing the
lytic enzymes necessary to cleave organic molecules [9, 10]
and evidence still largely, but not universally, suggests
these fungi are limited to assimilating inorganic forms of

nutrients (nitrogen reviewed by Hodge and Storer [11];
phosphorus by Smith et al. [12]). Thus, AM fungi alone are
unlikely to access litter-bound nutrients as Went and Stark
[1, 2] originally envisioned, and ‘direct mineral cycling’ has
languished in the bin of unsupported hypotheses.

Yet AM fungi colonize litter in a variety of habitats
(Table 1), and AM host plants are often successful in
organic soils despite predictions that these plants are largely
restricted to mineral soils where inorganic nutrients pre-
dominate [13, 14]. In this Perspective, we argue for a
reconsideration of the ‘direct mineral cycling’ hypothesis;
not because we believe that these fungi can directly mobi-
lize organically bound nutrients, but because of ample
evidence that AM fungi can influence degradation of
organic matter and subsequently acquire and transfer a
portion of released nutrients to their associated host plants
[15, 16]. Therefore, the functional consequences of AM
fungi growing into leaf litter may match those of ‘direct
mineral cycling.’ We review the literature and present new
data that unequivocally show rapid colonization by AM
fungi inside dead leaves in coniferous-dominated forests in
the Pacific Northwest. Thus, we argue that AM fungal
colonization of litter and not-yet-decomposed plant matter
may be a global phenomenon that could have far-reaching
implications for plant–plant interactions and nutrient
cycling in both natural and managed ecosystems. Finally,
we outline a set of questions that we hope will spur cross-
disciplinary research into what we believe is an often
overlooked and under-researched topic.

Mycorrhizal fungi types in organic versus mineral
soils: AM fungi defy the rules

Initially, the ‘direct mineral cycling’ hypothesis was
appealing because it explained an incongruity in tropical
forests. Tropical forest soils are notoriously infertile due to
leaching and phosphorus-sorption, yet they support abun-
dant plant biomass. A closed nutrient cycle could explain
how plant biomass is maintained despite low levels of
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plant-available nutrients in soil. Although arbuscular
mycorrhizas are known to improve host plant mineral
nutrition in infertile soils, most nutrients in tropical systems
are recycled from litter, and therefore, presumed to be
initially inaccessible to AM fungi. Despite advances in
mycorrhizal ecology, the success of AM hosts in tropical
forests has remained a paradox.

In contrast to AM fungi, some ectomycorrhizal (EM)
fungi seem capable of direct decomposition. EM fungi can
produce lytic enzymes to release organically bound nutri-
ents [17] and a growing body of evidence supports
decomposer capabilities in some taxa [18]. This contrast
suggests that EM, but not AM, fungi access organically
bound nutrients. Read [13], and later Read and Perez-
Moreno [14], proposed that this functional difference
between mycorrhizal types explains the global distribution
of their host plants. Under this framework, the abundance of
AM fungi would be inversely related to concentrations of
soil organic matter (SOM) and soil fertility would delineate
the occurrence of AM plant species. If true, AM hosts
should predominate at mid to low latitudes and low eleva-
tions where rapid decomposition results in thin litter layers
and low SOM concentrations. Yet, AM hosts are prevalent
throughout northern and central latitudes in Europe [19],
and a global survey failed to find any correlation between
SOM and abundance of AM fungi [20]. Further, AM fungi
and their plant hosts can be widespread in SOM-rich eco-
systems, including alpine meadows [21], tropical cloud
forests [22], and the Arctic [23]. Although AM fungal
community composition may shift with SOM at a global
level [24] if not a landscape level [25], AM fungi and their
hosts clearly are not restricted to mineral soils.

AM fungi colonize leaf litter and recently fallen
leaves across ecological regions

Proliferation of AM fungi in leaf litter (Table 1), well above
the mineral soil horizon, further contradicts the predictions
of Read [13] and Read and Perez-Moreno [14]. Evidence of
this phenomenon has recently become even more compel-
ling with molecular data indicating the presence of Glo-
meromycotan fungi in leaf litter in temperate forests (this
study; [26, 27]). Not only do AM fungi occur in the litter
horizon, they also may colonize plant leaves that have not
yet substantially decomposed [28].

In this Perspective, we add to previous work and
unequivocally show rapid AM fungal colonization of dead
leaves in mixed maritime forests dominated by the EM host,
Douglas fir (Pseudotsuga menziesii; Fig. 1a, Supporting
Information Table S1). We combined the inherent strengths
of molecular (targeting the small subunit ribosomal RNA
[rRNA] gene) and microscopic techniques. Microscopic
observations can reveal spatial relationships and a measure

of abundance, and molecular data can provide indisputable
evidence that the observed fungi truly are Glomeromycotan.
Using litterbags with newly fallen leaves (Fig S1) and
cleaning leaf surfaces prior to molecular assessments of AM
fungi using the AM fungi-specific primer pair WANDA-
AML2 (Table S2), we observed AM fungus-like hyphae
growing inside intact leaf litter within 3 months of litter bag
deployment (Fig. 1b). Hyphal densities (based on mor-
phological features) in leaf litter correlated with total
sequence abundances of AM fungi in soil (r= 0.81, t6=
3.4, p= 0.015; Fig S2). Concordantly, total sequence
abundances of AM fungi in leaf litter correlated with those
in soil (ln[x+ 1] transformed; r= 0.76, t6= 2.8, p= 0.030;
Fig S3). This is logical given our understanding that the
obligately root-associated fungi would extend between roots
in the soil and leaf litter, and implies that AM fungi enter
leaf litter near AM host plants. In addition, we found sub-
stantial variation in the number of AM fungal sequences in
leaf litter among sites, which may reflect a patchy dis-
tribution of AM host plants in these forests. Dominant AM
fungi virtual taxa (VT) assemblages in soil were distinct
from those in leaf litter (Fig. 1c, Tables S3 and S4 Fig S4).
However, VT detected only in leaf litter did not cluster
phylogenetically, but instead were closely related and
sometimes identical to VT detected only in soil (Fig. S5).
This suggests niche differentiation similar to what has been
found with EM fungi [29] and fungi in general [27], but
differentiation may occur within, rather than among, phy-
logenetic clusters. Importantly, our results show that AM
fungi may enter leaf litter even in forests dominated by EM
host plants.

Our data corroborate and strengthen previous findings
that AM fungi colonize leaf litter across a wide array of
ecological and climatic regions. Furthermore, AM fungi
appear to penetrate new litter within a few months and AM
fungal taxa may differ in their preference for leaves or soil.
Our methods and full results can be found in Supplemental
Information.

What stimulates AM fungi to colonize leaf litter?

Perhaps we should not be surprised if AM fungi frequently
colonize leaf litter. Although AM fungal hyphae typically
grow through the soil matrix and in the cortical tissue of
plant roots, they also have been observed within other
substrates. AM fungal hyphae and vesicles have been found
in plant parts other than root cortical tissues, i.e., root
xylems and rhizome scales [30, 31], and AM fungal spores
have been found within oribatid mites, dead seeds, and even
other spores [32–35]. The propensity of AM fungi to grow
into ‘tiny holes’ has long been inferred from their successful
exploitation of such nutrient-rich soil microsites, and that
attribute alone might explain the presence of AM fungi in
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these unusual substrates. However, these substrates all are
‘high quality’ organic materials (i.e., have low carbon to
nitrogen ratios). Conventional views on AM fungi would
predict fungal growth occurring after decomposition of the
substrate has begun and at least some mineralization has
occurred. However, our observation of active colonization
of new leaf litter implies AM fungi instead might
‘recognize’ substrates as a source of nutrients prior to
decomposition.

AM fungi responding to litter-bound nutrients may have
been considered unlikely at one time, but this is changing.
Although AM fungi are best known for scavenging inor-
ganic phosphorus from the soil, they also can access orga-
nically bound phosphorus when grown with other soil biota
[36], particularly in phosphorus-limited environments [37].
Furthermore, when nitrogen is limiting, AM fungi can sense
and upregulate genes in response to organic nitrogen [38].
In fact, attraction to nitrogen may underlie the contrast
between the typical positive growth response of AM fungi
to high quality organic matter amendments (e.g., organic
soil particles [8]; cattle manure [39]; and broadleaf litter
[40, 41]) versus a neutral to negative response to low-

quality amendments (e.g., cellulose [42–44]; but see [45,
46]). In some instances, AM fungi may find organically
bound nutrients in litter even more accessible than inorganic
forms in the underlying soil [47]. Thus, colonization of litter
by AM fungi may occur when litter is rich in nutrients that
are otherwise scarce in the soil matrix, even if those nutri-
ents are organically bound.

How can AM fungi access nutrients in leaf litter?

In the absence of other soil biota, AM fungi are unable to
mobilize or access organically bound nutrients (i.e., under
gnotobiotic conditions [48]; but see [49]). However, in the
presence of other soil biota, AM fungi can accelerate
decomposition of complex organic materials like grass litter
[15, 50]. Thus, the effects of AM fungi on decomposition
must be mediated through other organisms. In fact, experi-
mental systems that have demonstrated transport of nutrients
from organic matter to host plants via AM fungi typically
include the methodological step of equalizing initial micro-
bial communities across the mycorrhizal and non-
mycorrhizal treatments (e.g., [15, 16, 51]). Consequently,

Fig. 1 a Bigleaf maple (Acer macrophyllum) litter (foreground) on the
floor of a temperate, North American, Pacific Northwest forest. Indian
plum (Oemleria cerasiformis) and sword fern (Polystichum munitum)
grow up through the litter. These leaves may have fallen from the
mature bigleaf maple tree (seen here as a moss-covered, large trunk on
the left), but bigleaf maple litter is also found in stands with the
dominant overstory tree, ectomycorrhizal Douglas fir (Pseudotsuga
menziesii; dark horizontal branches of Douglas fir are shown just to the
right of the bigleaf maple trunk). b Arbuscular mycorrhizal (AM)
fungus-like spore with associated hyphae as well as other fungus

hyphae in bigleaf maple litter. Leaf veins also are visible. Litter was
cleared and stained with Trypan blue and then viewed with light
microscopy at 400 × . c Nonmetric multidimensional ordination of
predominant arbuscular mycorrhizal fungi amplified from leaf litter
and adjacent soil samples. Fungal communities amplified from litter
and soil were distinct from each other (p= 0.004, Table S4). SSU
sequence data were resampled to 114 sequences/sample. Samples with
fewer sequences were dropped from this analysis. Full dataset (pre-
rarefaction) is available in Table S2

1894 R. A. Bunn et al.



this nutrient pathway most likely results from an interaction
between AM fungi and the microbial community, rather than
the fungi alone. In such interactions, AM fungi may release
labile carbon into their hyphosphere, stimulating activity of
microbial decomposers [52] and increasing degradation rates
of SOM [53, 54] in a version of priming effects [55]. The
involved microbes might be specialized, living primarily on
hypha surfaces and forming a kind of secondary symbiosis
with mycorrhizal fungi in which access to organically bound
nutrients is traded for mycorrhizal carbon (i.e., ‘hypersym-
bionts,’ [56]). Alternatively, the microbes could be free-
living organisms, which respond to any labile carbon source.
Researchers are just beginning to untangle pathways from
organically bound nutrients to AM fungi and to identify the
involved organisms. For instance, while investigating path-
ways of nitrogen, Bukovská et al. [44] found a correlation
between hyphal proliferation and prokaryotic ammonium
oxidizer abundance, suggesting ammonium-oxidizers may
control the availability of nitrogen to AM fungi. Yet, by
including a non-mycorrhizal control in a subsequent study,
Bukovská et al. [57] observed that ammonium oxidizers
were actually repressed by AM fungi, and instead, eukar-
yotic protists appeared to be the important players in nitro-
gen recycling. Pathways for phosphorus, which include
mutually beneficial interactions between AM fungi and
phosphate-solubilizing bacteria [58], may be less compli-
cated. In phosphorus-limited environments, AM fungi and
free-living phosphate-solubilizing bacteria benefit each other
by providing the essential carbon or phosphorus that the
other needs [59], which can increase mineralization of
organically bound phosphorus [60].

No matter the pathway, an active role of AM fungi in
stimulating decomposition implies a tight coupling between
AM fungi and decomposers, groups that have historically
been considered separate.

Consequences of AM fungi colonizing leaf litter and
future research directions

Based on these cumulative research findings, we propose
that Went and Stark’s [1, 2] hypothesis may be accurate
regarding the net effects of AM fungal colonization of leaf
litter despite a misunderstanding of the underlying
mechanisms. If AM fungi really are cued to colonize leaf
litter because the litter is a nutrient source, and subsequently
promote decomposition through stimulation of other
organisms, then colonization of leaf litter may be an
important pathway for cycling nutrients from litter to host
plant. This is the essence of the ‘direct mineral cycling’
hypothesis. If true, then this nutrient pathway bypasses the
soil matrix and allows AM hosts to be successful in infertile
soils, potentially explaining the tropical forests paradox.
Furthermore, if AM hosts have access to organically bound

nutrients, they may be more competitive with EM hosts in
organic soils than previously recognized. Yet, the extent to
which AM hosts have access to nitrogen acquired by AM
fungi varies widely for reasons that are not yet understood
[11]. Thus, the significance of this pathway requires further
investigation. Nevertheless, by assimilating nutrients before
they reach the soil matrix AM fungi likely increase overall
nutrient retention within ecosystems. Indeed, AM fungi are
known to dramatically decrease leaching losses of inorganic
phosphorus [61] and nitrogen [62, 63]. Recent evidence
suggests the same may also be true for organically bound
nutrients [64], which may partially occur through AM
fungal colonization of leaf litter.

Many aspects of these ideas are preliminary. We do not
yet have comprehensive data about the geographic extent of
the phenomenon of AM fungi in leaf litter or the abundance
of AM fungi relative to fungal decomposers in leaf litter,
nor do we understand the biotic and abiotic factors that
affect such colonization. We do not know if AM fungi are
frequently coupled with decomposers, or if the studies cited
here are isolated cases. Quantifying the abundance of AM
fungi in leaf litter using either quantitative PCR or neutral
lipid fatty-acid analyses through time might begin to
address such questions. We have yet to determine if nutri-
ents immediately acquired from litter and transferred to host
plants are of sufficient quantity to affect plant fitness.
Moreover, many of the studies cited here (e.g., [15, 41, 43,
57, 59]) are based on only one or two AM fungal taxa. This
is a serious handicap because the functional differences
among AM fungi are not well understood [65] and com-
munity effects are difficult to predict from single taxon
studies. Yet, all these limitations are open doors for future
research. We present questions that we consider most
pressing (Table 2), but additional lines of inquiry could be
formulated. We believe full answers to these questions will
be possible only with cooperation across a wide range of
scientific skill sets. For instance, on a molecular level,
biochemists and microbiologists are needed to identify the
pathways by which nutrients may move from bound in leaf
litter to being assimilated into the mycorrhizal symbiosis;
biogeochemists are needed to quantify the relative magni-
tude of nutrients potentially cycled through this pathway;
and on an organismal to landscape level, plant and soil
ecologists are needed to determine if this nutrient pathway
is significant for individual plants and if it helps explain the
competitive success of AM hosts in forest ecosystems.

Conclusions

We corroborate and extend findings of AM fungi colonizing
leaf litter across climatic regions. In addition, we find dif-
ferent AM fungal taxa predominated within leaf litter and
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soil, suggesting that those fungi may differ in their tendency
to colonize leaf litter, which could result in niche differ-
entiation between substrates. Taking our findings together
with previous work on AM fungi and organic substrates, we
suggest that mycorrhiza research may be missing a large
and important part of AM fungal function. Although root
colonization by AM fungi and extraradical hyphal density
in mineral soil are frequently quantified, all too rarely has
the spread of AM fungal hyphae within litter been investi-
gated. Such spread may be a ‘hidden’ indication of the
importance of AM fungi in forest ecosystems where their
functions may include promoting the release of nutrients
from leaf litter and transferring nutrients to host plants,
thereby retaining nutrient capital. If true, AM fungi are
providing host plants access to nutrient pools hitherto
thought to be limited to hosts of other types of mycorrhizal
fungi, which may help explain the success of AM host
plants in both organic and tropical soils.
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