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Osteoarthritis (OA) is a degenerative joint disease, the prevalence of OA is

increasing, and the elderly are the most common in patients with OA. OA

has a severe impact on the daily life of patients, this increases the demand

for treatment of OA. In recent years, the application of non-invasive brain

stimulation (NIBS) has attracted extensive attention. It has been confirmed that

NIBS plays an important role in regulating cortical excitability and oscillatory

rhythm in specific brain regions. In this review, we summarized the therapeutic

effects and mechanisms of different NIBS techniques in OA, clarified the

potential of NIBS as a treatment choice for OA, and provided prospects for

further research in the future.
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Introduction

As a general degenerative disease and the most common form of arthritis,
osteoarthritis (OA) is pathologically characterized by cartilage degeneration,
subchondral bone sclerosis, and osteophyte formation (Pereira et al., 2015). Cartilage
degeneration is also a hallmark of OA (Egloff et al., 2012). The major clinical symptoms
of OA are joint pain and activity disorders. The new subchondral bone tissue that
results from subchondral bone sclerosis and osteophyte formation contains new blood
vessels and nerve fibers, which may be related to OA pathogenesis and pain perception
(Walsh et al., 2010). These in turn cause the patient’s dysfunction, poor sleep, and
low mood; these conditions seriously affect the quality of life (QOL) of patients. In
accordance with statistics, the prevalence rate of OA in people over 60 years old can
reach 50%, it in people over 75 years old is as high as 80%, the prevalence in women
is higher than that in men, and the disability rate of the disease can reach 53% (Zhang
et al., 2020). Patients with OA worldwide are expected to exhibit an increasing trend
in the next few decades (Mantovani et al., 2016) partly due to increasing risk factors
for OA, such as genetics, obesity, lack of exercise, or exercise injury (Hawker, 2019;
Kakouris et al., 2021). The disease not only exerts a huge influence on the QOL of
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patients but also considerably increases the economic burden
of society. At present, however, the complex pathological
mechanism of OA is not yet fully known; it mostly involves
increased inflammatory components, mechanical overload,
altered metabolic changes, and cellular aging (Jeon et al., 2017).
In contrast with other inflammatory joint diseases, varying
responses to different parts of OA further complicate treatment,
and thus, treatment for OA remains a challenge (Hermann et al.,
2018).

OA is currently mainly treated with drugs (Guo et al.,
2022), mainly non-steroidal anti-infective drugs, which have
anti-inflammatory and analgesic effects, but these drugs have
many adverse reactions, and long-term use can lead to different
degrees of cardiovascular complications (da Costa et al., 2017).
Intra-articular injections such as glucocorticoids can reduce
joint adhesion and promote cartilage repair, but they only
have short-term effects, and long-term injections may cause
infection (Kavanaugh et al., 2016). Cartilage protective drugs
such as glucosamine can reduce joint edema, maintain synovial
fluid viscosity, and inhibit inflammation, but long-term use
has serious adverse reactions to gastrointestinal function and is
expensive (Arden et al., 2021). Joint-targeted drug therapy only
works in the diseased part and has no effect on other normal
parts, which is conducive to cartilage repair and pain relief
(Zhang et al., 2022). However, the current targeted therapy is
still in the clinical trial stage, and the potential adverse reactions
are not yet clear. Therefore, it is considered to explore a non-
drug-safe treatment method for OA.

OA is also mostly treated with physical therapy, mainly
exercise therapy, hydrotherapy, and extracorporeal shock wave
therapy (Griffin et al., 2020). Anti-blocking exercise combined
with hydrotherapy is prone to adverse events such as worsening
pain (Waller et al., 2017) and other symptoms in patients with
moderate to severe OA, and hydrotherapy has had only a small
short-term clinical effect in patients with OA (Bartels et al.,
2016) and does not appear to have a significant effect on the
patient’s drug dose or quality of life (Forestier et al., 2016).
Extracorporeal shock wave therapy (ESWT) is important for
the protection of articular cartilage in patients with early OA,
but it can only slow down the course of OA. Moreover, the
experimental subjects are mostly mice, and the doses for humans
have not been standardized (Chou et al., 2019). Whole-body
vibration therapy also does not improve joint stiffness in patients
with OA (Qiu et al., 2022).

Bioelectronic medicine uses the body’s electrical signals
to improve the diagnosis and treatment of disease. As an
emerging bioelectronic medical technology, Non-invasive brain
stimulation (NIBS) has been widely used in clinical treatment,
particularly for pain (Xiong et al., 2022), neuronal function
regulation, brain function cognition, behavior, and other aspects
of the evident treatment effect (Miniussi and Ruzzoli, 2013).
NIBS not only brings hope for treating diseases that cannot
be solved by common drugs and medical means, but also

provides drug alternatives with rapid and precise targeting. This
paper describes the therapeutic effects and possible mechanisms
of six commonly used NIBS methods in OA, namely single
pulse transcranial magnetic stimulation (TMS), repetitive
transcranial magnetic stimulation (rTMS), transcranial direct
current stimulation (tDCS), transcranial alternating current
stimulation (tACS), transcranial random noise stimulation
(tRNS), transcranial focused ultrasound stimulation (tFUS), to
provide directions for future research.

Methods

A comprehensive literature search was
conducted in PubMed and Web of Science
databases using [Osteoarthritis(Title/Abstract)] OR
[OA(Title/Abstract)], [Osteoarthritides(Title/Abstract)]
OR [Osteoarthrosis(Title/Abstract)] OR
[Osteoarthroses(Title/Abstract)] OR [Arthritis,
Degenerative(Title/Abstract)] OR [Arthritides,
Degenerative(Title/Abstract)] OR [Degenerative
Arthritides(Title/Abstract)] OR [Degenerative
Arthritis(Title/Abstract)] OR [Arthrosis(Title/Abstract)]
OR [Arthroses(Title/Abstract)] OR [Osteoarthrosis
Deformans(Title/Abstract)], [Non-invasive brain
stimulation(Title/Abstract)] OR [NIBS(Title/Abstract)],
rTMS[Title/Abstract] and Osteoarthritis, Single-pulse
TMS[Title/Abstract] and Osteoarthritis, tDCS[Title/Abstract]
and Osteoarthritis, tFUS[Title/Abstract] and Osteoarthritis,
tACS[Title/Abstract] and Osteoarthritis, tRNS[Title/Abstract]
and Osteoarthritis. From the date initially provided until
November 2021, it is not limited to randomized controlled trials
(RCT). Firstly, irrelevant articles were excluded according to
the article titles or abstracts, and after reading and summarizing
the remaining articles, the articles with high relevance, in-depth
research, or lack of research were selected for inclusion.

Non-invasive brain stimulation

NIBS has become an effective and multi-field treatment
technology in recent years. It is used to study the behavioral
correlation of specific brain regions; neuronal regulatory
function and its related perceptual, cognitive, and behavioral
characteristics play a huge role (Plewnia et al., 2015),
significantly deepening researchers’ understanding of NIBS.
However, NIBS is more dependent on brain state and task
content, and some variability can be observed even among or
within individuals. And the long-term effects of NIBS have not
been explored (Polanía et al., 2018). Recent research trends on
NIBS are presented in Figures 1A,B.

Clinically, common NIBS technologies include TMS (Ansari
et al., 2021) and transcranial electrical stimulation (tES)
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FIGURE 1

(A) Publications accumulated by year. (B) From 1990 to 2020, publications were classified annually in accordance with different non-invasive
brain stimuli in categories that included repetitive transcranial magnetic stimulation (rTMS, orange), single-pulse transcranial magnetic
stimulation (single-pulse TMS, blue), transcranial direct current stimulation (tDCS, gray), transcranial alternating current stimulation (tACS,
yellow), transcranial random noise stimulation (tRNS, light blue), and transcranial focused ultrasound stimulation (tFUS, green).
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(Abhishek and Doherty, 2013; Terranova et al., 2018). Among
TMS techniques, single-pulse and rTMS are more commonly
used. Meanwhile, tES can be divided into tACS and tDCS. In
addition, tFUS (Badran et al., 2020) and tRNS (Battaglini et al.,
2020) are also commonly used methods of NIBS (O’Connell
et al., 2018).

TMS is a late-model neurophysiological technique based
on the theory of the principle of electromagnetic induction
(Barker et al., 1985; Hallett, 2007). Its principle is to use the
rapidly changing magnetic field that emerges when a high-
voltage current passes through a coil, acting on a certain region
of the cerebral cortex, or the corresponding skull surface; hence,
the magnetic field produces an induction current, which, in turn,
changes the neural cell excitability in that region (Klomjai et al.,
2015). Such changes can be recorded on effectors through the
neural pathway. TMS is divided into three categories: single
pulse TMS, double pulse TMS, and rTMS (Auvichayapat and
Auvichayapat, 2009; Ansari et al., 2021). There is also an
emerging TMS model called Theta Burst Stimulation (TBS).
rTMS is a new neuroelectrophysiological technology. rTMS
not only affects the local function of the cerebral cortex, but
relatively distant cortical function can also achieve cortical
function reconstruction. High-frequency TMS can enhance
the metabolism of nerve cells, while low-frequency TMS can
inhibit nerve cell metabolism (Du et al., 2019). Thus rTMS can
produce lasting changes in cortical excitability (Pell et al., 2011)
and has become a new treatment for neurological disorders.
However, rTMS remains in the preliminary exploration stage.
Its treatment effect and optimal treatment parameters have
not been scientifically confirmed, and its treatment mechanism
also requires further research and discussion (D’Agati et al.,
2010). Single-pulse TMS emits only one stimulation pulse
at a time; such pulse can depolarize neurons and cause a
measurable response (Mathew and Danion, 2018), primarily for
the detection of neural pathways, i.e., motion-evoked potential
or measurement of a motor threshold. Single-pulse magnetic
stimulation can also be used to detect central conduction time,
and resting time, accurately map the motor cortex, and measure
the motor evoked potential amplitude related to motor cortical
conduction (Zorn et al., 2012). However, the aforementioned
studies, have no targeted disease or standardized parameters.
Dual-pulse magnetic stimulation refers to the emission of
two consecutive pulses or one pulse pair after each issued
instruction; it can be used in the research on cortical excitability
(de Goede et al., 2020). TBS is similar to the frequency of theta
waves in the hippocampus of the brain and is a special type of
rTMS. It uses short pulses in clumps, with an intra-frequency of
50 Hz and an inter-frequency of 5 Hz (Ferrarelli and Phillips,
2021), which has the advantages of short stimulation time, long
duration of therapeutic effect, and closer to the physiological
state of neurophysiological activity. Different TBS models have
different effects on neuronal excitability. Intermittent TBS
(iTBS) acts by continuous stimulation for 2 s with 8 s intervals,

which can increase neuronal excitability. On the other hand,
continuous TBS (cTBS) provides continuous stimulation at a
frequency of 5 Hz, which reduces neuronal excitability (Bai et al.,
2022). This article mainly describes two ways of treating OA,
rTMS and Single-pulse TMS.

tDCS (Ahn et al., 2019a) is a pair of electrodes that use
constant, low-intensity current (1–2 mA) on specific brain
regions to regulate cortical neural activity (Cucca et al., 2019).
It is widely used in the clinical treatment of Parkinsonism and
other neurological diseases; it can also be used to improve
motor, language, cognitive, and swallowing functions (Santos
Ferreira et al., 2019). However, the exact mechanism of tDCS
is not yet completely clear. Its clinical application remains
in the incremental research phase, and a single mechanism
cannot explain the multiple effects of tDCS; moreover, no
unified scheme is available for the choice of stimulation
intensity, time, and location of tDCS (Palm et al., 2016a).
Currently, for tDCS, the widely recognized mechanism of
action is the effect on membrane potential and ion channels,
synaptic plasticity, cortical excitability (Nitsche and Paulus,
2000), bilateral hemispheric excitability, and regulation of local
cortical and brain network connections (Lapenta et al., 2018).

tACS (Antal et al., 2008) is a special mode of NIBS that
transmits sinusoidal alternating current electricity to the scalp,
mostly affecting the excitability of cortical neurons (Bland and
Sale, 2019). The currently recognized action mechanism of
tACS is to regulate brain function by guiding brain oscillations
(Antal et al., 2008) and inducing synaptic plasticity over a
long period to regulate cognitive processes (Elyamany et al.,
2021); it can also link cellular neuronal activity to brain network
mechanisms to recover disturbed brain oscillations and perfect
behavioral outcomes (Del Felice et al., 2019). tACS can be
used as a practical means to judge the diagnosis, classification,
and prognosis of mental diseases. tACS is relatively safe and
non-invasive (Matsumoto and Ugawa, 2017); hence, it exhibits
considerable potential in basic research and as a tool for clinical
care. However, information on how tACS ultimately affects
neural activity (Vieira et al., 2020) is minimal, and the two
practical factors of tACS and electric field are difficult to focus
on accurately, which is a common problem in tACS; thus, this
technique should be further optimized and studied (Wu et al.,
2021).

tRNS is a type of TMS, which exhibits the potential to
induce improvements with a lasting perception when combined
with assignments such as a contrast detection test (Terney
et al., 2008). Nevertheless, the mechanism of these long-
range improvements is not yet fully determined. tRNS can
strengthen contrast sensitivity after one training cycle; however,
this early onset also depends on the characteristics of the
stimulus (Battaglini et al., 2020). tRNS can sense the effect
of duration (Mioni et al., 2018). Interference with persistent
neuronal oscillations can ultimately generate neuroplasticity
effects if suitable parameters are applied (Paulus, 2011).
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tFUS has a higher spatial resolution and can reach deeper
organizations compared with other NIBS methods (di Biase
et al., 2019). tFUS acting on the brain can modulate human
cortical function (Legon et al., 2014). For example, two 10-
min tFUS in the front of the thalamus will induce analgesic
effects in healthy individuals (Badran et al., 2020). tFUS can
also be used to regulate emotion regulatory networks in the
prefrontal cortex (Goh et al., 2020; Sanguinetti et al., 2020). Low-
intensity tFUS enhances the neuromodulatory effect of human
autonomous motor-related cortical activity (Yu et al., 2021).
Through an in-depth study, tFUS was found to be safe, and
adverse reactions rarely occur. However, under high stimulation
intensity or rate, tFUS may lead to bleeding, cell death or injury,
and accidental opening of the blood–brain barrier. Thus, the
study of tFUS is necessary to set up a good and secure framework
for the application and promotion of clinical treatment of tFUS
(Pasquinelli et al., 2019).

The six methods of NIBS are commonly used in clinical
treatment, and they exhibit unique characteristics, including
their respective sites of action, as indicated in Figure 2.

Therapeutic effects of
non-invasive brain stimulation on
osteoarthritis

Relieve pain

Pain is a common symptom in patients with OA (Perrot,
2015), and with an increase in incidence in OA and the risk
factors that affect OA, pain places heavy burdens on the daily

life of patients with OA and society. The treatment of pain
of patients with OA is particularly important. NIBS has been
shown to exhibit a therapeutic function on the pain brought
by OA in many studies. For example, Jean-Paul Nguyen et al.
(2019) performed a monthly rTMS treatment of 10 Hz in the
right motor cortex of an elderly female patient suffering from
left knee OA. One week after the third treatment, the pain was
significantly reduced, and after 1 year of follow-up, the effect
of pain reduction continued. Ahn et al. (2017) performed a
tDCS intervention of 2 mA per day in middle-aged and elderly
patients with knee OA, placing the anode on the primary motor
cortex (M1) and the cathode on the contralateral supraorbital
(SO). After five interventions, the patient’s NRS scores decreased
significantly and the Short-Form McGill Pain Questionnaire
(SF-MPQ-2) scores also improved. The therapeutic effect of pain
relief was found to be maintained after the 3-week follow-up.
Ahn et al. (2018) also evaluated the pain sensitivity of 400 elderly
patients with knee OA and conducted five tDCS interventions.
Their results showed that the experimental pain sensitivity of
the patients was reduced, and tDCS exerted a beneficial effect
on the improvement of clinical pain. tFUS is frequently used in
chronic neuropathic pain. However, targeted studies on the pain
of OA are few. Research on tACS, Trns, and single-pulse TMS
with regard to the pain of OA remains in its infancy and requires
further exploration.

Alleviate symptoms of depression

Depression and other bad moods are closely related to OA.
The occurrence of OA may aggravate depressive symptoms

FIGURE 2

Six major non-invasive brain stimuli and their site of action. rTMS generally functions in the dorsolateral PFC (DLPFC) (Lefaucheur et al., 2020).
Single-pulse TMS uses frequent sites of action, such as the primary motor cortex (M1) (Savoie et al., 2020). tDCS and tACS cathode and anode
positions: contralateral orbit (SO), primary sensory cortex (S1) (Marlow et al., 2013; May et al., 2021). tRNS: cerebral cortex. tFUS: thalamus (Th)
(Palm et al., 2016b; Badran et al., 2020).
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(Zheng et al., 2021), and the long-term accumulation of these
symptoms may aggravate the pain grade and joint dysfunction
of patients with OA (Rathbun et al., 2018, 2020). NIBS has
been widely used in research related to depressive symptoms.
Depression assessment, such as the Hamilton Depression Rating
Scale, was used as a secondary evaluation index in the research
of Nguyen et al. (2019) on the program of rTMS intervention
in the treatment of OA. Patients with 20 years of OA showed
a significant increase in their HAD scores after ten rTMS
interventions. This suggests that rTMS is effective in treating
depression in patients with OA. Ahn et al. (2019b) evaluated
the efficacy of remotely supervised tDCS for the treatment
of OA patients, elderly KOA patients did not experience
significant improvement in anxiety and depression scores after
10 consecutive tDCS interventions. This may be the result of
various factors, such as autonomously improper use of tDCS.
Luz-Santos et al. (2017) and Tavares et al. (2018) also studied
tDCS for depression in OA patients, although the results were
not available. This requires further research by researchers.
The other basic NIBS methods have minimal research on the
depressive symptoms of OA, and more studies are still required
to confirm their result.

Improve joint motor function

The articular cartilage, as an important basic structure of
joints, is the major structure affected by OA, which can cause
joint deformities, joint swelling, and a decrease in the range
of motion (Abhishek and Doherty, 2013), resulting in limited
motor function in patients with OA. In severe cases, joint
replacement surgery should be considered. Drug therapy is
mostly used in the early treatment of OA, but the efficacy of
drug therapy is limited (Cao et al., 2022). The safety and non-
invasive characteristics of NIBS make it indispensable in the
auxiliary treatment of OA. In a randomized controlled trial
of tDCS combined with conventional physical therapy on the
functional ability of patients with OA, Fatemeh Rahimi et al.
(2021) used the anode of tDCS to intervene in the left primary
motor cortex (Ahn et al., 2017), primary sensory cortex (Ahn
et al., 2018), and dorsolateral PFC. The subjects were evaluated
functionally with the Keen Injury and OA Outcome Score rating
scale, the range of motion of the knee joint, 30-s chair standing,
and 4 × 10-m walking training before and after treatment. The
results show that various functional indicators were significantly
improved after tDCS intervention. The strength of the muscles
around the joints is also an important factor affecting joint
function. Quadriceps weakness is a typical symptom of KOA.
Kittelson et al. (2014) performed TMS stimulation on subjects
with this symptom. After stimulation, quadriceps torque was
reduced, resting motion threshold was also decreased, and the
Western Ontario and McMaster Universities OA Index (Luz-
Santos et al., 2017) scores increased. All these findings suggested

the improvement of the motor function of subjects. The effects
of tACS, tRNS and other methods on joint motor function have
not yet been confirmed.

Quality of life

As a common degenerative disease of the elderly, OA is
becoming increasingly in many young individuals at present,
and it is one of the major factors that affect the daily activities
and QOL of patients (Sabashi et al., 2021). Studies have shown
that (Paget et al., 2021) the QOL of young people is more affected
by OA than that of older patients in ankle OA. In the research
protocol of Tavares et al. (2018) on elderly KOA patients with
defective endogenous pain-inhibitory systems, health-related
QOL (HRQOL) was included in the evaluation indicators of OA
subjects after tDCS intervention. In the subsequent trial (Tavares
et al., 2021), 2 mA tDCS intervention at the stimulation site of
M1 and SO for 20 min at 15 times in 3 weeks did not significantly
improve the HRQOL and WOMAC scores, and did not exert
an evident effect on the QOL of patients with OA. However,
in patients with OA after total knee replacement surgery, the
SF-36 score was significantly improved, and the QOL of the
patients was also improved after 6 weeks of treatment with
electroacupuncture and exercise therapy combined with tDCS
(Li et al., 2021). The curative effect of NIBS in the QOL of OA
patients remains uncertain, and other factors should be excluded
for further research. The detailed process and results of other
research are provided in Table 1.

Mechanisms of non-invasive brain
stimulation for osteoarthritis

Controlling central sensitization

OA has a complicated physiological mechanism. Studies
have shown that (Fingleton et al., 2015; Perrot, 2015; Vincent,
2020) nerve mediators such as the nerve growth factor (NGF)
and central sensitization are closely related to the severity of OA
pain. An excitatory–inhibitory mechanism has been proven in
the corticospinal system that is related to the degree of pain
and the disorder of pain downward control (Passard et al.,
2007). rTMS can inhibit the corticospinal system’s excitability
by stimulating it, modifying the central pain regulation system
(Tarragó et al., 2016), and activating a large number of structures
involved in pain processing bilaterally, leading to the long-term
relief of chronic extensive pain. The high-frequency rTMS of
the motor cortex can also restore the endoscopic suppression
control associated with pain relief, and further reduce the
pain of OA. tDCS interrupts mechanical pain processing,
regulates high-order neuronal circuits that are altered by central
sensitization, and weakens the mechanical stimulation response
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TABLE 1 Characteristics of the research literature of the six NIBS methods for the treatment of OA.

Authors/
Publication
time

Journal N Stimulation Evaluation
indicators

Experimental
results

Treatment
methods

Duration Intensity Rate

rTMS

Ansari et al.
(2021) 2021-4

ACS Chem
Neurosci

_____________ rTMS can improve
muscle fibrous pain.

Nguyen et al.
(2019) 2019-4

Front Neurosci 1 (71 years old, female,
KOA)

rTMS 10 months 10 Hz Once a
month

HAD, LISO,
NRS

rTMS is particularly
appealing to treat

pain associated with
KOA

Single-pulse TMS

_____________

tDCS

Sajadi et al.
(2020)
2020-10

Neurophysiol
Clin

40 (Adult, KOA) Knee
strengthening

exercises + tDCS,
knee

strengthening
exercises + TENS

2 weeks 1–2 mA Six times VAS?WOMAC Effects of tDCS and
TENS were not

significantly different
on the pain and

function of patients
with KOA

Fillingim et al.
(2020)
2020-11

Contemp Clin
Trials

60 (NHBs and NHWs
with KOA)

Four groups of
BAT (real vs.

sham) + tDCS
(real vs. sham)

1 week 1–2 mA Five times a
week

QST, WOMAC,
SPPB

–

Pollonini et al.
(2020b) 2020-11

J Neuroimaging 19 (The elderly with
KOA)

MBM + tDCS,
sham

MBM + tDCS

2 weeks 2 mA Five times a
week

fNIRS, NRS,
WOMAC

Combining tDCS
and MBM reduced

experimentally
induced pain and

pain perception on
KOA.

Ahn et al. (2017)
2017-9

Brain Stimul 40 (50–70-year-old,
KOA)

tDCS, sham
tDCS

5 days 2 mA Once a day NRS, WOMAC,
SF-MPQ-2, 6
MWT, SPPB

tDCS was efficacious
in reducing of
clinical pain

perception in
patients with KOA.

Ahn et al.
(2019a)
2019-8

J Clin Neurosci 20 (50–85-year-old,
KOA)

tDCS 10 Days 2 mA Once a day PROMIS, VAS,
WOMAC,
SF-MPQ

tDCS was feasible
and beneficial in

alleviating pain in
older adults with

KOA

Pollonini et al.
(2020a)
2020-4

Neurophotonics 10 (9 females, 1 male,
62.4 ± 6.9 years,

OA-related pain suffering
37.7 ± 31.5months,

affected by right KOA
from the greater

Houston community)

tDCS 2 weeks 2 mA Five times a
week

VAS, WOMAC,
fNIRS

tDCS can increase
cortical excitability

and alleviate pain in
patients with KOA.

Teixeira et al.
(2020) 2020-4

Princ Pract Clin
Res

Adult, KOA > 3 months tDCS + PTM,
PTM alone,

PTM + sham
tDCS

_____________ VAS Potential analgesic
effect of tDCS in

combination with
PTM for

fibromyalgia and
KOA.

Ahn et al. (2018)
2018-9

J Pain Res 40 (50–70 years with
KOA pain)

tDCS, sham
tDCS

5 days 2 mA Once a day NRS, WOMAC,
QST

tDCS can reduce
experimental pain

sensitivity and
facilitate pain

inhibition in older
patients with KOA.

Ahn et al.
(2019b) 2019-12

J Clin Neurosci 30 (50–85 years old with
symptomatic KOA)

MBM + tDCS,
sham

MBM + sham
tDCS

10 days 2 mA Once a day NRS, WOMAC,
QST

Promising clinical
efficacy of

home-based tDCS
paired with MBM

for older adults with
KOA

(Continued)
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TABLE 1 (Continued)

Authors/
Publication
time

Journal N Stimulation Evaluation
indicators

Experimental
results

Treatment
methods

Duration Intensity Rate

Rahimi et al.
(2021) 2021-9

Neurophysiol
Clin

80 (KOA) PT + tDCS in M1,
PT + tDCS in S1,

PT + tDCS in
DLPFC, sham

PT + sham tDCS

1 month 2 mA Once every
3 days

VAS, KOOS tDCS can be a
beneficial additional
treatment for pain

relief, disability
reduction, and

functional
improvement in

patients with KOA.

Luz-Santos et al.
(2017) 2017-12

Trials 80 (KOA) Active anodal
tDCS + sham PES,

sham tDCS + active
PES, sham

tDCS + PES, active
tDCS + PES

5 days 2 mA Once a day SF-36, VAS,
WOMAC, HAD

–

da
Graca-Tarragó
et al. (2019)
2019-1

J Pain Res 60 (women with KOA,
aged 50–75 years old)

a-tDCS/a-EIMS,
s-tDCS/s-EIMS,
a-tDCS/s-EIMS,
s-tDCS/a-EIMS

5 days 2 mA Once a day VAS, WOMAC,
PPT

tDCS combing with
EIMS can improve
pain measures and

descending pain
inhibitory controls

in KOA.

Suchting et al.
(2020a) 2020-1

Biol Res Nurs 40 (50–70 years with
KOA)

Sham tDCS, tDCS 5 days 2 mA Once a day IL-1β, IL-6,
IL-10 TNF-α,
CPR, cortisol,
β-endorphin

Active Tdcs can
reduce inflammation

in patients with
KOA.

Chang et al.
(2015) 2015-8

BMJ Open 20 (age over 50 years,
morning stiffness lasting

less than 30 min, a
minimum pain score of
40 on a 100 VAS, KOA)

Active
tDCS + exercise,

sham
tDCS + exercise

8 Weeks 2 mA Two times a
week

VAS, WOMAC –

Laste et al.
(2012) 2012-8

Exp Brain Res 18 (rats) Sham tDCS, tDCS 8 days 500 µA Once a day Von Frey test tDCS induced
significant,

long-lasting,
neuroplastic effects

of OA

Suchting et al.
(2020b) 2020-11

Pain Med 60 (aged 50–85 years,
with self-reported

unilateral or bilateral
KOA pain)

tDCS 2 weeks 2 mA Five times a
week

VAS, WOMAC,
QST

tDCS improved pain
in older adults with

KOA

Li et al. (2021)
2021-6

Med Sci Monit 80 (KOA who underwent
TKA)

tDCS +
electroacupuncture

6 weeks 1.5 mA Five times a
week

SF-36, VAS,
FOOS, HSS

tDCS plus
electroacupuncture
effectively reduces

pain following TKA

Chang et al.
(2017) 2017-6

PLoS One 57 (age over 50 years,
morning stiffness lasting

less than 30 min, a
minimum pain score of
40 on a 100 VAS, KOA)

Sham
tDCS + exercise,

active
tDCS + exercise

8 weeks 1 mA Two times a
week

VAS, WOMAC AT + EX may
improve pain,

function and pain
mechanisms in KOA

Tavares et al.
(2021) 2018-10

JMIR Res Protoc 94 (KOA, pain in the
knee for a minimum of

6 months)

tDCS, sham tDCS 3 weeks 2 mA Five times a
week

NRS, BPI, PPT –

Tavares et al.
(2018) 2021-5

Brain Stimul 104 (age over 60 years
with KOA pain and a
dysfunctional DPIS)

tDCS, sham tDCS 15 days 2 mA Once a day BPI, the 12-item
short form

health survey
questionnaire,
MMSE, 0–100

VAS

–

tACS

_____________

tRNS

_____________

tFUS

(Continued)
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TABLE 1 (Continued)

Authors/
Publication
time

Journal N Stimulation Evaluation
indicators

Experimental
results

Treatment
methods

Duration Intensity Rate

di Biase et al.
(2021) 2021-6

Neurol Res Int _____________ VAS tFUS has huge
research potential in

the field of pain
management.

NRS, numeric rating scale; BPI, the Brief Pain Inventory; MMSE, the Mini-Mental State Examination; VAS, 0–100 visual analog scale; WOMAC, the Western Ontario and McMaster
Universities Osteoarthritis Index; PPT, pressure pain threshold; QST, quantitative sensory testing; TKA, total knee arthroplasty; KOOS, Knee Injury and Osteoarthritis Outcome
Score; SF-36, The Short Form-36 Health Survey; HSS, the Hospital for Special Surgery; TNF-α, tumor necrosis factor-α; IL, interleukin; CRP, C-reactive protein; MBM, mindfulness-
based meditation; HAD, the hospital anxiety and depression scale; LISO, The lequesne index of severity for osteoarthritis; BAT, Breathing and Attention Training; SPPB, Short
Physical Performance Battery; fNIRS, functional near-infrared spectroscopy; SF-MPQ-2, Short-Form McGill Pain Questionnaire; PROMIS, the Patient-Reported Outcomes Measurement
Information System; PTM, physical therapy modality; EIMS, intramuscular electrical stimulation.

FIGURE 3

Picture showing the likely mechanism of action of different forms of NIBS in the treatment of osteoarthritis.

of spinal dorsal horn neurons (Meeker et al., 2019), controlling
central sensitization and alleviating pain. Single-pulse TMS can
also act on the motor cortex of the brain to increase the overall
excitability of the corticospinal cord and the inner periphery of
the patient (Woods et al., 2016), reducing quadriceps torque and
improving motor function.

Reducing inflammatory factors

Inflammation has been proven to play an important role
in OA (Sokolove and Lepus, 2013). Compared with healthy
people, OA patients have higher levels of inflammatory
factors, such as the tumor necrosis factor-α (Hong et al.,
2020), interleukin-1β (Cao et al., 2022), and IL-6 (Wang
and He, 2018). The increase of these inflammatory factors
may damage the articular cartilage, synovium, and other

structures (Mathiessen and Conaghan, 2017); it can also cause
the release of adipokines such as leptin, which indirectly
causes OA. rTMS can act on microglia, induce the capability
of synaptic plasticity, promote the secretion of the anti-
inflammatory factor IL-10, and inhibit the production of
pro-inflammatory factors, reducing inflammatory response
(Lenz et al., 2021). Under the stimulation of cathodic tDCS,
endogenous neural stem cells (NSCs) exhibit a tendency to
increase (Ryu et al., 2009), inducing a strong regenerative
response and reducing the inflammatory response. Neuritis
has beneficial and harmful effects on the prevention of
secondary tissue damage (Stoll et al., 2002), regeneration,
and recovery. Therefore, the parameters of NIBS should be
controlled to promote the beneficial aspects of inducing
the recruitment of endogenous NSCs and minimizing
inflammation as much as possible (Mabuchi et al., 2000).
Promoting the production of factors is conducive to
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FIGURE 4

Effects of six major NIBS on OA.

the normal growth of chondrocytes and slows down the
development of OA.

Influencing gene expression

Mitochondria are the cell organelles where genetic genes
are replicated and transcribed; they also have their gene-
mitochondrial (Blanco et al., 2018), and the variation of
mtDNA directly affects OA phenotypes (Blanco et al., 2018).
Therefore, different gene expressions exert varying effects on
the OA process. Among them, rTMS can effectively affect
the regulation of astrocytes related to the expression of pro-
inflammatory or anti-inflammatory genes (Hong et al., 2020)
and may change the cell membrane potential and cell function
of astrocytes (Ruohonen and Karhu, 2012) to produce anti-
inflammatory mediators for the neuroprotection effect, further
reducing inflammation response (Liddelow et al., 2017). rTMS
can promote the increase of Nrf2 nuclear metastasis (Tian
et al., 2020), and Nrf2 can activate genes via antioxidant
response, which can effectively protect cells under inflammatory
conditions and can also inhibit the expression of signal
channels that induce inflammation, effectively reducing the
inflammatory response. In addition, tDCS can stimulate the
regulation of osteopontin (Rabenstein et al., 2015, 2019).
OPN can increase the survival, proliferation, migration, and
neuronal differentiation of endogenous NSC (Rabenstein
et al., 2015); enhance the proliferation and migration of
neuronal precursors after cerebral ischemia (Denhardt et al.,
2001), and play an important role in organizational balance,
wound healing, immune regulation, and other aspects. These
conditions can alleviate secondary damage in patients with

OA, promote cartilage repair, and accelerate functional recovery
in patients with OA. Although tACS, tFUS, and other
methods still lack research on OA gene expression, NIBS
plays a role in the pathological mechanism of OA gene
expression.

Improving cortex excitability

Studies suggest that higher cortical excitability may be
a mechanism of OA and is closely linked to chronic pain
and motor capacity in OA patients (Kittelson et al., 2014;
Simis et al., 2021). OA patients with lower cortical inhibition
had higher degrees of pain and a more obvious decrease in
quadriceps motor function. As one of the NIBS methods for
stimulating nerve cells in the superficial brain area (Fan et al.,
2021), rTMS can regulate cortical excitability and recovery
through different frequency stimulations (Barker, 1991). Among
the rehabilitation studies based on the hypothesis of cross-
hemisphere competition (Chen and Seitz, 2001), low-frequency
rTMS may cause a short-term decline in the excitability
of the unaffected hemisphere cortex (Wang et al., 2019),
balance the excitability of the cerebellum, improve patients’
learning ability, and increase walking ability. By contrast,
high-frequency rTMS can enhance the cortical excitability
of the affected hemisphere during exercise (Goh et al.,
2020), reducing competition and gradually improving the
exercise capacity of patients. The improvement of specific
motor functions by tDCS is also related to changes in
the excitability of the motor cortex. The tDCS acting
on M1 can increase the activity of the cerebral cortex,
reduce the body’s response time, and better activate a
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patient’s motor function (Stagg et al., 2012). Therefore, NIBS
might alleviate the symptoms of OA by improving cortical
hyperexcitability.

Adjusting endocrine

Obesity is an important risk factor for OA, and obesity
is driven by complex endocrine mechanisms (Steidle-Kloc
et al., 2018). Under the intervention of rTMS, the serum
lipid level is significantly reduced (Ren et al., 2017), while the
contents of thyroid-stimulating hormone and thyroxine are
increased simultaneously. This finding indicates that rTMS can
regulate serum lipid metabolism by changing the hypothalamic–
pituitary–thyroid axis (George et al., 1996). Therefore, rTMS has
the functions of regulating endocrine, improving PFC metabolic
activity (Trojak et al., 2011), and regulating serum metabolic
activity of lipid levels, thereby stabilizing blood lipid levels,
reducing the incidence of obesity, and ultimately decreasing the
effect of obesity on OA. tDCS is also extremely important in the
control of obesity, but its specific mechanism remains unclear
(Araujo et al., 2018), and the endocrine regulation mechanism
that affects OA should be further explored.

In summary, on the basis of its role in complex
pathophysiological mechanisms, NIBS can be further applied to
OA to test its therapeutic mechanism and efficacy of OA. We
summarize the mechanism and effects of six commonly used
NIBS methods on OA, as shown in Figures 3, 4.

Future perspectives

Although NIBS has been proven to be effective and feasible
in the treatment of OA, there are still some limitations that
need to be improved. First, existing research has focused on
the tDCS and rTMS methods. Studies on OA treatment of
single-pulse TMS, tACS, tRNS, and tFUS are few. Second,
although NIBS, as a mature treatment technique, has been
extensively applied to the treatment of clinical diseases in
many fields in recent years, the treatment of OA is still in
its infancy. No uniform treatment standard for regulating the
treatment of OA by NIBS is available. Moreover, when OA
occurs in different joints, it will exhibit different symptoms
and require more targeted treatment. In addition, current
NIBS studies have mostly focused on the pain symptoms of
OA, and the treatment of other symptoms lacks evidence
to confirm. In summary, the understanding of NIBS in the
treatment of OA is limited, and more in-depth exploration
can be performed from the aforementioned aspects, such that
OA can be treated with more standardized NIBS, enabling
OA patients to participate better in family and social life, and
reduce social burdens.

Conclusion

With the continuous research on NIBS, the feasibility
and effectiveness of NIBS in the treatment of OA have been
confirmed by research. This paper summarizes the current
research progress of NIBS for OA, describes the main clinical
effects and possible mechanisms of NIBS in treating OA, and
provides a basis for further research on NIBS in the therapy of
OA in the future. However, the treatment protocol of NIBS for
the treatment of OA is not unified, which provides a research
direction for future research.
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