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Abstract: Endometrial hyperplasia (EH) is a common gynecological problem and may progress to
carcinoma. Early detection and management of EH are mandatory for the prevention of endometrial
cancer. Activation of the renin–angiotensin system and angiotensin II signaling are involved in the
progression of precancerous and cancerous lesions. However, no studies have evaluated the role of
this system in estradiol benzoate (EB)-induced EH and atypia. Irbesartan (IRB), an angiotensin II
receptor blocker with peroxisome proliferator-activated receptor gamma (PPARγ) agonistic activity
was administered (30 mg/kg/d) in EB-treated (60 µg/100 g bodyweight, intramuscularly, three times
per week) or untreated rats for 4 weeks. Uterine weight changes, malondialdehyde, superoxide
dismutase (SOD), tumor necrosis factor-alpha (TNFα), survivin, cleaved caspase 3, interleukin-10
(IL10), and PPARγ were measured in addition to undergoing histopathological examination. Results
showed that EB-induced EH and atypia significantly increased the uterine body weight, malondi-
aldehyde, TNFα, and survivin, accompanied with significantly decreased SOD, cleaved caspase 3,
IL10, and PPARγ, with typical histopathological changes of EH and atypia. Coadministration of
IRB significantly prevented EB-induced biochemical and histopathological changes. The protective
effects of IRB may be attributed to its anti-inflammatory and antioxidant properties, reduction of
survivin, and increased levels of cleaved caspase 3.

Keywords: endometrial hyperplasia; irbesartan; estradiol benzoate; tumor necrosis factor-alpha;
survivin; cleaved caspase 3; interleukin-10; peroxisome proliferator-activated receptor gamma

1. Introduction

Endometrial hyperplasia (EH) is a significant gynecological problem, especially during
childbearing age. It is a uterine pathology representing several morphological and endome-
trial changes. The hyperplastic changes originate from the uterine endometrial glands
with an increase in the gland-to-stroma ratio compared with the regular endometrium.
Unfortunately, about 40% of EH patients with atypia develop carcinoma, the most common
fatal gynecological malignancy [1]. The revised 2014 WHO classification divides EH into
two categories: (1) hyperplasia without atypia and (2) atypical hyperplasia, based upon the
presence or absence of cytological atypia [2]. Hyperplasia without atypia is not associated
with relevant genetic changes. However, about 1–3% of the cases progress to invasive
cancer under the influence of prolonged estrogen exposure, especially if accompanied by
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relative progesterone insufficiency. Atypical EH exhibits mutations, which are typical for
invasive endometrioid adenocarcinoma [2,3].

Suppression of apoptotic signaling pathways, including caspase 3 cascade, by in-
creased estrogen levels, contributes to the development of EH and endometrial cancer
(EC). Apoptotic cell death usually protects against DNA replication and repair errors,
and somatic mutations. Thus, suppression of such protective mechanisms promotes EH,
and subsequent malignancy [4]. The unopposed estrogen-mediated signaling in the en-
dometrium increases inflammation via the release of the pro-inflammatory agents [5].
Moreover, induction of inflammation contributes to the initiation and progression of the
disease via the release of interleukins (ILs), growth factors, and cytokines to facilitate
immune cell recruitment and cell proliferation with sustained tumor growth [6]. One of the
essential pro-inflammatory cytokines is tumor necrosis factor-alpha (TNFα) that induces
the excessive formation of free radicals, rapid cell division, and DNA damage [4].

The imbalance between oxidative and antioxidant pathways is pivotal to the hyper-
plastic and cancerous changes in the endometrium. This imbalance starts and maintains
an abnormal inflammatory state by activating pro-inflammatory cytokines such as TNFα.
Subsequent activation and translocation of the transcription factor nuclear factor-kappa B
(NF-κB) to the nucleus increases the expression of survivin, an inhibitor of the apoptotic
process, upregulation of anti-apoptotic genes, excessive cell proliferation, differentiation,
hyperplasia, and dysplasia [7,8]. Moreover, the inhibitor of apoptosis proteins (IAPs) can
positively modulate NF-κB signaling to further support cell survival and tumorigenesis.
Previous studies demonstrated the ability of c-IAP1 and c-IAP2 to interact with TNF
receptor 1 and augment TNFα-stimulated NF-κB activation. Furthermore, the survivin–
XIAP complex activates NF-κB, promoting further transcription of both growth and anti-
apoptotic genes [9]. On the other hand, the anti-inflammatory cytokine interleukin-10 (IL10)
opposes the TNFα/NF-κB/oxidative stress axis that is essential to endometrial hyperplasia
and carcinogenesis. IL10 acts as an antitumor cytokine by inhibiting the NF-κB-induced
pro-inflammatory cytokine expression. Furthermore, IL10 ameliorates the TNFα-induced
reduction of superoxide dismutase (SOD) and increased lipid peroxidation [8,10].

Dysregulation of the endometrial renin–angiotensin system could predispose to EH
and EC [11,12]. Previous studies implicated angiotensin II (AngII) and AngII type 1 recep-
tor (AT1R) in the development of EC [13–16]. The ability of telmisartan, an AT1R blocker
and a peroxisome proliferator-activated receptor gamma (PPARγ) agonist, to inhibit EC
cell proliferation and tumor growth in nude mice adds further evidence to such hypothe-
ses [17]. AngII-mediated activation of survivin signaling could explain its effect on tumor
progression [18]. On the other hand, activation of PPARγ decreases the gene expression
of survivin [19]. Survivin, which is widely expressed in different precancerous lesions
and cancers, promotes cell survival and inhibits apoptosis [9]. Thus, drugs that could
antagonize survivin hold promise for treating many forms of cancer [20,21]. Therefore,
the aim of the present work was to investigate the probable protective mechanisms of the
AT1R blocker with PPARγ agonistic activity irbesartan (IRB) against estradiol benzoate
(EB)-induced EH and atypia in rats.

2. Results
2.1. Effect of IRB on Uterine Weight, Malondialdehyde (MDA), and SOD

MDA level and SOD activity were measured as markers of uterine oxidative stress.
The EH-induced group showed a significant increase in uterine weights and MDA levels
and a significant decrease in SOD activities compared to the normal control group. In
contrast, the administration of IRB showed a significant decrease in uterine weights and
MDA levels and a significant increase in SOD activities compared to the EH-induced group
(Table 1).
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Table 1. Effect of irbesartan (IRB) on uterine weights, malondialdehyde (MDA), and superoxide
dismutase (SOD) in estradiol benzoate-induced endometrial hyperplasia (EH) and atypia in rats.

Group Uterine Weight
(g)

MDA
(nmol/g Tissue)

SOD
(U/g Tissue)

Control 1.0 ± 0.05 27.0 ± 2.7 3701 ± 374
IRB 0.9 ± 0.05 26.7 ± 2.4 4050 ± 275
EH 5.3 ± 0.20 a 87.2 ± 5.2 a 1440 ± 150 a

EH + IRB 2.0 ± 0.06 ab 33.7 ± 2.1 b 2463 ± 238 ab

At the end of the experiment (4 weeks), uterine weight changes, MDA, and SOD were determined. Values are
mean ± SEM (n = 6–7). a,b Significantly different (p < 0.05) from control and EH groups, respectively.

2.2. Histopathological and Immunohistochemical Evaluation
2.2.1. Macroscopic Examination

Uteri of control and IRB groups had no macroscopic abnormalities. There was marked
dilation of the uterine horns in the EH group containing a thick turbid fluid. Uteri of the
EH+IRB group had less uterine horn dilation than observed in the EH group and contained
only serous fluid.

2.2.2. Histopathological Evaluation

Examination of control and IRB groups (Figure 1a,b; Table 2) revealed no histopatho-
logical abnormalities; surface and glandular epithelium were low cuboidal with fine
eosinophilic cytoplasm and central regular nuclei. No glandular crowdedness with abun-
dant endometrial stroma in between the glands. The EH group (Figure 1c; Table 2) showed
EH features, as there were crowded irregularly shaped glands. The epithelial lining showed
hypertrophy and stratification. Focal atypical EH was detected in variable areas. The irregu-
larly shaped glands were compact together, with almost no stroma in between. Nuclei were
vesicular, exhibiting atypical features with loss of polarity, anisonucleosis, and prominent
nucleoli. The EH+IRB group (Figure 1d; Table 2) showed a picture suggestive of almost
normal-looking disordered endometrial glands; few were cystic. The lining epithelium
was low columnar with no features of EH.
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Figure 1. Effect of irbesartan (IRB) on histopathological changes in estradiol benzoate-induced
endometrial hyperplasia (EH) and atypia in rats (hematoxylin and eosin, ×200; (n = 7/group).
(a,b) Control and IRB groups, respectively, reveal no histopathological abnormalities. (c) In the EH
group, the epithelial lining shows hypertrophy and stratification (blue arrow). The insert (×400)
shows vesicular nuclei exhibiting atypical features with loss of polarity, anisonucleosis, and promi-
nent nucleoli (red arrow), and the stomas show excessive leukocytic infiltration (asteroid). (d) The
EH+IRB group shows a picture suggestive of almost normal-looking disordered endometrial glands,
and the lining epithelium was low columnar.
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Table 2. Effect of irbesartan (IRB) on the severity of histopathological lesions in estradiol benzoate-
induced endometrial hyperplasia (EH) and atypia in rats.

Group
Glandular

Irregularity and
Crowdedness

Epithelial
Hypertrophy and

Stratification

Focal Atypical
Cellular
Changes

Leukocytic Cell
Infiltration

Control - - - +
IRB - - - +
EH +++ +++ +++ +++

EH + IRB + + - ++
Score (-) is considered no change. Scores (+), (++), and (+++) are mild, moderate, and severe changes.

2.2.3. Evaluation of TNFα (Immunohistochemistry and ELISA)

To evaluate the effect of IRB on the inflammatory pathway, the level of the uterine
expression of the pro-inflammatory cytokine TNFα was evaluated. There was grade 1
(≤25% stained cells) TNFα expression in control, IRB, and EH+IRB groups (Figure 2a,b,d).
On the other hand, the EH group showed grade 4 (>75% stained cells) TNFα expression
(Figure 2c). Semiquantitative densitometrical analysis of uterine sections showed that
TNFα expression was significantly higher in the EH group compared to the control group
and significantly lower in the EH+IRB group compared to the EH group (Figure 2e). The
same pattern was seen with the TNFα level measured with ELISA kit (Figure 2f).
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Figure 2. Effect of irbesartan (IRB) on uterine tumor necrosis factor-alpha (TNFα) in estradiol
benzoate-induced endometrial hyperplasia (EH) and atypia in rats. Images are from representative
sections of the rat uterus (×400) stained for detection of TNFα in (a) control, (b) IRB-treated, (c) EH,
and (d) EH + IRB-treated groups. A semiquantitative analysis of TNFα expression (percent of
TNFα positive cells/field) (e), as well as the protein levels of uterine TNFα level (pg/mg tissue) as
determined by ELISA (f), are shown. Results represent the mean ± SEM (n = 6–7). a,b Significantly
different (p < 0.05) from control and EH groups, respectively.

2.2.4. Evaluation of Survivin Expression

To evaluate the effect of IRB on the cell-survival pathway, the level of the uterine ex-
pression of an inhibitor of apoptosis survivin was measured. Negative survivin expression
was observed in control, IRB, and EH+IRB groups (Figure 3a,b,d). In contrast, the EH group
showed positive survivin expression (Figure 3c). Semiquantitative densitometrical analysis
showed that survivin expression was significantly higher in the EH group compared to
the control group and significantly lower in the EH+IRB group compared to the EH group
(Figure 3e).
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Figure 3. Effect of irbesartan (IRB) on uterine survivin immunohistochemical staining in estradiol
benzoate-induced endometrial hyperplasia (EH) and atypia in rats. Images are representative sections
of the rat uterus (×400) stained for detection of survivin in (a) control, (b) IRB-treated, (c) EH, and
(d) EH+IRB-treated groups. Semiquantitative analysis of survivin expression in different groups was
carried out (e). Results represent the mean ± SEM (n = 6–7) of the percentage of survivin positive
cells/field. a,b Significantly different (p < 0.05) from control and EH groups, respectively.

2.2.5. Evaluation of Cleaved Caspase 3 Expression

Negative cleaved caspase 3 expression was observed in control, IRB, and EH groups
(Figure 4a–c). Meanwhile, the EH+IRB group showed positive cleaved caspase 3 expres-
sion (Figure 4d). Semiquantitative densitometrical analysis showed that cleaved caspase
3 expression was significantly higher in the EH+IRB group compared to control and EH
groups (Figure 4e).
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estradiol benzoate-induced endometrial hyperplasia (EH) and atypia in rats. Staining of cleaved
caspase 3 in representative sections of rat uterus (×400) is shown in (a) control, (b) IRB-treated,
(c) EH, and (d) EH+IRB-treated groups. Data in (e) show the results of the semiquantitative analysis
of cleaved caspase 3 expression. Data represent the mean ± SEM (n = 6–7) of the percentage of
cleaved caspase 3 positive cells/field. a,b Significantly different (p < 0.05) from control and EH
groups, respectively.

2.3. Effect of IRB on IL10 Gene Expression

Real-time polymerase chain reaction (PCR) was used to quantify the relative expres-
sion of the IL10 gene in different groups. Glyceraldehyde-3-phosphate dehydrogenase
(GAPDH) was chosen as a reference gene to standardize mRNA expression. The analysis
revealed the upregulation of the IL10 gene in the form of 1.1 fold in the IRB group and 1.3-
fold in the prophylactic group (EH+IRB) compared with the control group. The IL10 gene
expression in the EH group was not detected (Figure 5).
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2.4. Effect of IRB on PPARγ Level

The EH-induced group showed a significant decrease in uterine PPARγ levels com-
pared to the normal control group. In contrast, the administration of IRB showed a
significant increase in uterine PPARγ levels compared to the EH-induced group (Figure 6).
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3. Discussion

Endometrial carcinoma is the most common gynecological malignancy, and EH
is its precursor [1]. There is a strong relationship between the renin–angiotensin sys-
tem and AngII receptors’ overexpression, and initiation and progression of EH and EC.
Koyama et al. [17] evaluated the PPARγ agonistic effect of telmisartan, another AT1R
blocker, as PPARγ induces apoptosis in uterine endometrial carcinoma [22]. This di-
rected our attention to examine the possible unexplored protective mechanisms of IRB,
an AT1R blocker with PPARγ agonistic activity [23], in EH. For example, IRB shows
anti-inflammatory and antioxidant properties [24–26], two actions that are expected to be
efficacious in the prevention of EH. The results showed that EB succeeded in the induction
of EH as evidenced by the significant increase in uterine weights, MDA, TNFα, survivin
with a concomitant decrease in SOD, cleaved caspase 3, IL10, and PPARγ, besides typical
histopathological features of EH and atypia. Coadministration of IRB with EB significantly
improved the biochemical and histopathological changes seen in the EB group.

Oxidative stress plays an important role in EH. Pejić et al. [27] reported that patients
with EH and EC had elevated lipid peroxidation and decreased uterine SOD activities.
Estrogen metabolites produce reactive oxygen species capable of inducing peroxidative
damage to cellular membranes [28]. In agreement with the present study, previous re-
ports [29,30] showed similar findings relating to the ability of EB to increase the lipid
peroxidation product MDA, a known marker of oxidative stress, in EB-induced EH in
female rats. Similarly, EB can increase oxidative stress in EH by decreasing the endoge-
nous antioxidant enzyme SOD [29,30]. SOD effectively shields from oxidative stress by
dismutation of superoxide radicals to hydrogen peroxide [31]. In the current study, IRB
administration afforded protection to the uterus against EB-induced oxidative stress. Con-
sistent with this result, several previous studies demonstrated similar findings relating to
the ability of IRB to decrease oxidative stress through a significant reduction in MDA level
with a significant increase in SOD activity [24,25], may be partly through AT1R blockade,
as Ang II can result in oxidative stress [32], and PPARγ agonistic activity [33].

Inflammation plays an important role in the development and progression of EH [34].
In the present study, EB-induced EH was associated with increased inflammation, evident
by increased uterine pro-inflammatory cytokine TNFα and decreased anti-inflammatory
cytokine IL10. TNFα can contribute to the pathogenesis of EB-induced EH through in-
duction of oxidative stress [35], generation of angiogenic factors [36], increase estrogen
production [37], and activation of NF-κB-induced anti-apoptotic genes (Bcl-2 and survivin),
inflammatory responses, and cyclooxygenase-2 [4]. In the present study, the increase in
uterine TNFα is in harmony with the results of Abdelzaher et al. [38] who reported a
significant increase in TNFα in estradiol valerate-induced EH in rats. In contrast, the
expression of the IL10 gene did not change in patients with EH [39], although in the current
study, EH was associated with decreased IL10 expression. The EH+IRB-treated rats showed
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lower uterine TNFα and enhanced IL10 compared to EH untreated rats. In agreement
with these results, IRB decreased TNFα and increased IL10 in cyclophosphamide-induced
ovarian damage in rats [40], high salt-induced hypertensive mice [41], and monocyte cul-
ture supernatants from hypertensive patients with left ventricular hypertrophy [26]. The
anti-inflammatory effect of IRB may be in part due to AT1R blockade [16] and the PPARγ
agonistic activity [42].

Survivin, a potent inhibitor of apoptosis, plays an essential role in EH [43,44].
He et al. [44] reported an increase in survivin in EB-induced EH, which is in line with the
present study results. On the other hand, survivin was significantly lower in the EH+IRB
group compared to the EH group. To our best knowledge, the present study is the first to
report the effect of AT1R blockade on downregulation of survivin. However, as AngII is
known to increase survivin [18,45–48], it is not a surprise it is inhibited by AT1R blocker.
Moreover, PPARγ activation, which regulates cell proliferation and apoptosis, resulted in
decreased survivin expression [19].

Consistent with the current study, previous reports [29,49] demonstrated similar
findings in connection with the ability of EB to decrease cleaved caspase 3, an apoptosis
marker, in EB-induced EH in rats. On the other hand, the EH+IRB-treated rats showed
higher uterine cleaved caspase 3 compared to EH untreated rats. Compatible with these
results, IRB increased cleaved caspase 3 in IRB-sensitive tumors in CBA mice [50]. The
apoptotic effect of IRB may be partly owing to a decrease in survivin that inhibits the
apoptotic process via suppressing caspase activities [9].

PPARγ has antiproliferative activity against EH [17] and EC [22]. In the present
study, a significant decrease in PPARγ level was noticed in the EH group compared to the
control group, while a significant increase in its level was detected in the EH+IRB group
compared to the EH group. This reflects that PPARγ deficiency can be a contributing factor
in mediating the pathogenesis of EH. As mentioned above, the PPARγ-mediated inhibition
of EH can be due to a decrease in oxidative stress [33], inflammation [42], survivin [19], and
an increase in cleaved caspase 3 [17]. In addition, PPARγ activation mediates IRB-induced
adiponectin upregulation [51], which was found to be linked with decreased EC risk [52].

Finally, compatible with previous reports [29,30], the current study showed the char-
acteristic histopathological changes of EB-induced EH and atypia. On the other hand, IRB
was able to prevent the damage produced by EB administration, thus providing further
support to the suggestive mechanism of action of IRB. Taken together, the protective effects
of IRB against EB-induced EH and atypia may be mediated via anti-inflammatory (by
modulating the pro-inflammatory cytokine TNFα and the anti-inflammatory cytokine IL10)
and antioxidant (by modulating MDA and SOD) pathways, and possibly the reduction of
survivin and increase in cleaved caspase 3 and PPARγ.

4. Materials and Methods
4.1. Chemicals

IRB was from Sanofi Egypt (Cairo, Egypt). EB was from Misr Pharma (Qaliubiya,
Egypt). Polyclonal rabbit/anti-rat TNFα, survivin, and cleaved caspase 3 antibodies,
biotinylated goat anti-rabbit secondary antibody (staining detection kit), TNFα ELISA kit,
and quantitative real-time PCR kit were from Thermo Fisher Scientific (Waltham, MA,
USA). PPARγ ELISA kit was from MyBioSource (San Diego, CA, USA).

4.2. Animals and Experimental Design

Adult female Wistar rats weighing 250–300 g were obtained from National Research
Center (Giza, Egypt). Animals were kept in standard housing conditions in cages, 3 rats/cage,
and left to acclimatize for one week. Rats were supplied with laboratory chow and tap
water. This work was conducted in the Pharmacology Department, Faculty of Medicine,
Minia University, Egypt, and the animal experimental protocol was approved (716:12/2020)
by the Institutional Research Ethics Committee.
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Rats were randomly assigned into 4 groups (n = 7 each). Group I received the vehicles
(1% carboxymethylcellulose orally/day and intramuscular (i.m.) injection of olive oil
3 times/week) for 4 weeks. Group II received an oral daily dose of IRB (30 mg/kg) [53]
and an i.m. injection of olive oil (3 times/week) for 4 weeks. Group III received 1%
carboxymethylcellulose orally/day and i.m. injection of EB (60 µg/100 g; 3 times/week)
for 4 weeks [44]. Group IV received an oral daily dose of IRB (30 mg/kg) plus i.m. injection
of EB (60 µg/100 g; 3 times/week) for 4 weeks.

4.3. Preparation of Uterine Homogenate

At the end of the experiment, animals were weighed and euthanized. Each uterus was
weighed, and part of the uterus was kept at −80 ◦C. Another part of the uterus was used
to prepare tissue homogenate, for biochemical analysis, in 20% w/v in ice-cold phosphate
buffer (0.01 M, pH 7.4). The homogenate was centrifuged at 4000 rpm for 15 min at 4 ◦C,
and the supernatant was kept at −80 ◦C till used.

4.4. Biochemical Analysis
4.4.1. Determination of Uterine MDA Level

Lipid peroxidation was assessed as thiobarbituric acid reacting substance and ex-
pressed as equivalents of MDA, using 1,1,3,3-tetramethoxypropane as a standard. The
results were expressed as nmol/g tissue [54].

4.4.2. Determination of Uterine SOD Activity

Briefly, uterine homogenates were mixed with Tris-HCl (pH 8.2) and pyrogallol
(15 mM), and the absorbance of the sample was monitored against blank at 420 nm over a
period of 3 min. The activity of SOD was expressed as unit/g tissue [55]. One unit of SOD
could be defined as the amount of enzyme that inhibits the oxidation of pyrogallol by 50%.

4.5. Macroscopic Examination and Histopathological Evaluation

An examination of the uterus was performed to check for any macroscopic abnormali-
ties. Regarding histopathological evaluation, the horn was dissected from each rat at the
middle third, fixed in 10% formalin for 24 h, processed, and embedded in paraffin wax.
Serial sections were prepared and stained with hematoxylin and eosin. The evaluation was
conducted in a blind fashion using light microscopy.

Grading of histopathological changes was based on the following findings: glandular
irregularity and crowdedness, epithelial lining hypertrophy and stratification, focal atypical
cellular changes (loss of polarity, anisonucleosis, and prominent nucleoli), and stromal
leukocytic infiltrate. The severity of the changes was graded semiquantitatively depending
on the degree of the microscopic abnormalities as follow: ‘0’ for no changes, ‘+’ for mild
changes, ‘++’ for moderate changes, and ‘+++’ for severe changes.

4.6. Immunohistochemistry

Paraffin-embedded sections on positively charged slides were used for staining.
Briefly, uterine sections were deparaffinized in xylene and rehydrated in a graded al-
cohol series. Endogenous peroxidase was blocked with 0.3% hydrogen peroxide for 30 min
to inactivate endogenous peroxides. Antigen retrieval was conducted by microwaving in
sodium citrate buffer (pH 6.0). The sections were incubated with diluted primary antibod-
ies TNFα (1:100, overnight), survivin (1:50, for 1 h), and cleaved caspase 3 (1:10, overnight).
The sections were washed and then treated with biotinylated secondary antibody for
30 min at room temperature. Visualization was performed using 3,3′-diaminobenzidine
chromogen, and Mayer’s hematoxylin was used for counterstaining. To evaluate the
cytoplasmic TNFα expression, the percentage of positive cells was graded as follow: 0,
no stained cells; 1, ≤25% stained cells; 2, >25% and ≤50% stained cells; 3, >50% and
≤75% stained cells; 4, >75% stained cells [56]. Cytoplasmic survivin and cleaved caspase
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3 expression was evaluated as the percentage of positively stained cells and was considered
positive when ≥10% of the cells showed cytoplasmic expression [57].

4.7. Real-Time PCR

Total RNA was extracted from homogenized uterine specimens using RiboZol RNA
extraction reagent (AMRESCO, Solon, OH, USA) following the manufacturer’s instructions.
cDNAs were synthesized using RevertAid™ First Strand cDNA Synthesis kit (Thermo
Fisher Scientific). Real-time PCR was performed using Maxima SYBR Green qPCR Mas-
ter Mix (Thermo Fisher Scientific) with specific primers in the Real-Time PCR Detection
System (Kapa Biosystems, Wilmington, MA, USA). The sets of primers used were as fol-
lows: IL10 forward primer, 5′-AAAGCAAGGCAGTGGAGCAG-3′ and reverse primer,
5′-TCAAACTCATTCATGGCCTTGT-3′ [58] and glyceraldehyde-3-phosphate dehydroge-
nase (GAPDH) forward primer, 5′-GTCGGTGTGAACGGATTTG-3′ and reverse primer
5′-CTTGCCGTGGGTAGAGTCAT-3′ [59]. The SYBR green data were analyzed with a
relative quantification to GAPDH as a reference gene. Fold changes of IL10 mRNA levels
were calculated using the comparative cycle threshold method [60]. The fold change in
gene expression was scaled relative to the control, where control samples were set at a
value of 1.

4.8. ELISA

The inflammatory cytokine TNFα and the type II nuclear receptor PPARγ were de-
termined in the uterine homogenate using TNFα and PPARγ ELISA kits according to the
manufacturer’s instructions.

4.9. Statistical Analysis

Data were analyzed by one-way ANOVA followed by Dunnett Multiple Comparison
Test. The values were represented as means ± SEM. Statistical analysis was conducted
using GraphPad Prism software version 5 (San Diego, CA, USA). The differences were
considered significant when the calculated p value was less than 0.05.
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