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A neural field model of the corticothalamic-basal ganglia system is developed that

describes enhanced beta activity within subthalamic and pallidal circuits in Parkinson’s

disease (PD) via system resonances. A model of deep brain stimulation (DBS) of typical

clinical targets, the subthalamic nucleus (STN) and globus pallidus internus (GPi), is

added and studied for several distinct stimulation protocols that are used for treatment

of the motor symptoms of PD and that reduce pathological beta band activity (13–30 Hz)

in the corticothalamic-basal ganglia network. The resulting impact of DBS on enhanced

beta activity in the STN and GPi, as well as cortico-subthalamic and cortico-pallidal

coherence, are studied. Both STN-DBS and GPi-DBS are found to be effective for

suppressing peak STN and GPi power in the beta band, with GPi-DBS being slightly

more effective in both the STN and the GPi for all stimulus protocols tested. The largest

decrease in cortico-STN coherence is observed during STN-DBS, whereas GPi-DBS

is most effective for reducing cortico-GPi coherence. A reduction of the pathologically

large STN connection strengths that define the parkinsonian state results in enhanced

6 Hz activity and could thus represent a compensatory mechanism that has the side

effect of driving parkinsonian tremor-like oscillations. This model provides a method for

systematically testing effective DBS protocols that agrees with experimental and clinical

findings. Furthermore, the model suggests GPi-DBS and STN-DBS have distinct impacts

on elevated synchronization between the basal ganglia and motor cortex in PD.
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1. INTRODUCTION

Deep brain stimulation (DBS) has become an effective treatment for Parkinson’s disease (PD),
dystonia, and tremor (Benabid et al., 1996; Krack et al., 1998; Vidailhet et al., 2005; Moro et al.,
2010), and its use is expanding to other neurological and neuropsychiatric conditions (Boon et al.,
2007; Figee et al., 2013). In DBS treatments for Parkinson’s disease, high frequency (>80 Hz)
electrical stimulation is applied as a series of pulses via a chronically implanted electrode, typically
in either the globus pallidus internus (GPi), subthalamic nucleus (STN) (Rodriguez-Oroz et al.,
2005), or the ventral intermediate nucleus of the thalamus (Cury et al., 2017). Despite the efficacy
of these treatments, the underlying therapeutic mechanisms of DBS remain poorly understood.
Furthermore, it is unclear what stimulation protocols and target regions are most effective.
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A framework for systematically determining efficacious stimulus
parameters would prove valuable since these are hard to optimize
for an individual and have been estimated by trial and error to
date.

Pathologically synchronous activity within the
corticothalamic-basal ganglia network is a prominent feature of
Parkinson’s disease and its animal models (Brown et al., 2001;
Tachibana et al., 2011). Enhanced 4 − 8 Hz and 13 − 30 Hz
coherent oscillations are observed within and between the
basal ganglia (BG), thalamus and motor cortex (Marsden et al.,
2001; Levy et al., 2002a,b; Williams et al., 2002; Timmermann
et al., 2003; Kühn et al., 2005; Wang et al., 2005; Rivlin-
Etzion et al., 2006; Weinberger et al., 2006; Tass et al., 2010).
STN activity in the 13 − 30 Hz beta range has also been
shown to correlate with the motor symptoms of human
PD (Neumann et al., 2016; Beudel et al., 2017). Furthermore,
studies of PD patients combining either simultaneous
EEG (electroencephalography), ECoG (electrocorticography),
or magnetoencephalography (MEG) and intracranial LFP (local
field potential) recordings have shown that cortico-STN
coherence (Fogelson et al., 2005b; Litvak et al., 2010; Hirschmann
et al., 2011) and cortico-GPi coherence (Wang et al., 2018)
within the beta band may be of physiological and pathological
significance.

Therapeutically effective dopamine supplementation and deep
brain stimulation in PD patients reduce both the power of beta
activity in the STN (Beudel et al., 2017) and GPi (Wang et al.,
2018), as well as cortico-STN coherence (Marsden et al., 2001;
Williams et al., 2002; Kühn et al., 2008; Hirschmann et al., 2013;
Oswal et al., 2016) and cortico-GPi coherence (Wang et al., 2018)
about these frequencies.

A biophysical theory was previously developed that
incorporated both a description of both PD as well as the
impact of deep brain stimulation on parkinsonian states (Müller
and Robinson, 2018). Here we further develop this theory and
compare the effectiveness of distinct stimulation protocols and
target regions for suppressing pathologically coherent beta
activity in the corticothalamic-basal ganglia network.

2. MATERIALS AND METHODS

A description of the CTBG model and how DBS is incorporated
is given next.

2.1. Corticothalamic-Basal Ganglia Model
Physiologically based neural field theory enables a tractable
framework for the analysis of large-scale neuronal dynamics
by averaging microscopic structure and activity (Wilson and
Cowan, 1973; Nunez, 1974; Jirsa and Haken, 1996; Wright
and Liley, 1996; Robinson et al., 1997). Neural field theory
incorporates realistic anatomy of neural populations, nonlinear
neural response, interpopulation connections; and dendritic,
synaptic, cell-body, and axonal dynamics (Wilson and Cowan,
1973; Wright and Liley, 1996; Robinson et al., 1997, 1998,
2001, 2002, 2005; Rennie et al., 1999; Deco et al., 2008). Neural
field models have been successful in accounting for many
characteristic states of brain activity, including sleep stages,

eyes-open and eyes-closed waking, nonlinear seizure dynamics,
anesthesia, and many other phenomena (Jirsa and Haken, 1996;
Robinson et al., 1997, 1998, 2002; Steyn-Ross et al., 2004; Liley
and Bojak, 2005; Breakspear et al., 2006; Roberts and Robinson,
2008).

The corticothalamic-basal ganglia system is divided into nine
distinct populations over three brain regions, as shown in
Figure 1. The cerebral cortex contains populations of excitatory
pyramidal neurons, e, and inhibitory interneurons, i. The
thalamus is divided into an excitatory population for the specific
relay nuclei (SRN), s, and an inhibitory population for the
thalamic reticular nucleus (TRN), r. The basal ganglia (BG)
contain two inhibitory populations within the striatum, one
expressing the D1 dopamine receptor, d1, and one expressing
the D2 dopamine receptor, d2. The striatum projects to two
inhibitory populations, the globus pallidus pars externa, p2,
and a population representing the globus pallidus pars interna
and substantia nigra pars reticulata, p1. The subthalamic
nucleus (STN) is represented by an excitatory population, ζ .
Deep brain stimulation is represented as an external input
source, x. The substantia nigra pars compacta (SNc) and ventral
tegmental area (VTA) are not explicitly included as populations
within the present model, since they are not the focus of this
study, but are shown in Figure 1 as an indication of the neural
pathways affected by dopamine.

2.2. Firing Rates
The mean firing rate, Qa(r, t) of a neural population at position r

and time t can be approximately related to its mean membrane
potential, Va(r, t), by Wilson and Cowan (1972) and Freeman
(1975)

Qa(r, t) = Sa[Va(r, t)], (1)

=
Qmax
a

1+ exp[−{Va(r, t)− θa}/σ ′]
, (2)

where Qmax
a is the maximal firing rate, Va is the average

membrane potential relative to resting, θa is the mean neural
firing threshold, and σ ′π/

√
3 is the standard deviation of this

threshold.

2.3. Axonal Propagation
A number of experimental studies have revealed waves of neural
activity spreading across the cortex (Burns, 1951; Nunez, 1974;
Chervin et al., 1988; Golomb and Amitai, 1997), which have
been analyzed theoretically (Beurle, 1956; Nunez, 1995; Jirsa
and Haken, 1996, 1997; Robinson et al., 1997; Bressloff, 2001;
Bressloff et al., 2003; Deco et al., 2008). This propagating activity
is represented as a field of mean spike rates in axons, φa,
where φa is approximately related to Qa by the damped wave
equation

Da(r, t)φa(r, t) = Qa(r, t), (3)

where

Da(r, t) =
1

γ 2
a

∂2

∂t2
+

2

γa

∂

∂t
+ 1− r2a∇

2. (4)
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FIGURE 1 | Schematic of stimulation targets and the corticothalamic-basal ganglia system. (A) Schematic of STN-DBS in the CTBG system. (B) Schematic of

GPi-DBS in the CTBG system.

Here γa = va/ra represents the damping rate, where va is
the propagation velocity in axons and ra is the characteristic
axonal length for the population. The propagation of these
waves is primarily via the relatively long-range white matter
axons of excitatory cortical pyramidal neurons. Later in our
model the local interaction approximation rb ≈ 0 is made
for b = i, r, s, d1, d2, p1, p2, ζ due to the short ranges of the
corresponding axons which implies φb(r, t) = Qb(r, t) for these
populations (Robinson et al., 1997, 2001, 2002, 2004; Rennie et al.,
1999; Rowe et al., 2004).

2.4. Synaptodendritic and Somatic
Response
The mean soma potential Va of a population a at position r and
time t is given by sum of the postsynaptic potentials (PSPs):

Va(r, t) =
∑

b

Vab(r, t), (5)

where Vab(r, t) is the postsynaptic potential generated by
projections arriving at population a from population b. The
influence of incoming spikes to population a from population b
is weighted by a connection strength parameter, νab = Nabsab,
where Nab is the mean number of connections between the two
populations and sab is the mean strength of response in neuron
a to a single spike from neuron b. The postsynaptic potential
response in the dendrite is given by

DαβVab(r, t) = νab(r, t)φab(r, t − τab), (6)

where τab is the average axonal delay for the transmission of
signals to population a from population b. The operator Dαβ

describes the time evolution of Vab in response to synaptic input,
and is given by

Dαβ =
1

αβ

d2

dt2
+

(

1

α
+

1

β

)

d

dt
+ 1, (7)

where β and α are the overall rise and decay response rates of the
synaptodendritic and soma dynamics.

2.5. Steady States
It has been shown that nominal brain activity is well characterized
by perturbations about a mean value (Rennie et al., 2002;
Robinson et al., 2002, 2003). Hence, we first determine the time
independent states of the CTBG system. Following the approach
of previous neural field models, excitatory and inhibitory
synapses in the cortex are assumed proportional to the numbers
of neurons (Wright and Liley, 1996; Braitenberg and Schüz,
1998). This random connectivity approximation results in νee =
νie, νei = νii, and νes = νis, which implies Ve = Vi and Qe = Qi.
Inhibitory population variables can then be expressed in terms of
excitatory quantities and are thus not neglected even though they
do not appear explicitly below. The steady states are obtained by
setting all time derivatives to zero in Equations (3), (4), and (6),
and considering the simultaneous zeros of the five functions

F(Ve) = Ve −
[

(νee + νei)φe + νesφs

]

, (8)

F(Vs) = Vs −
[

νseφe + νsrφr + νsp1φp1 + νsnφn

]

, (9)
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F(Vd1 ) = Vd1 −
[

νd1eφe + νd1sφs + νd1d1φd1

]

, (10)

F(Vd2 ) = Vd2 −
[

νd2eφe + νd2sφs + νd2d2φd2

]

, (11)

F(Vp2 ) = Vp2 −
[

νp2d2φd2 + νp2p2φp2 + νp2ζ φζ

]

. (12)

The roots of Equations (8)–(12) are computed numerically
using the MATLAB function fsolve(), which implements
the Levenberg-Marquardt (Marquardt, 1963) and trust-
region methods (Coleman and Li, 1996), with a tolerance of
10−15 V.

2.6. Resonances and Gains
A linearized form of the CTBG model can be used to derive the
transfer function of the system (van Albada and Robinson, 2009;
van Albada et al., 2009; Müller et al., 2017). This is a function
of the internal gains of the system, which represent the additional
activity generated in postsynaptic nuclei per additional unit input
activity from presynaptic nuclei, and are (Robinson et al., 1998,
2002)

Gab = ρaνab, (13)

where

ρa =
dQa

dVa

∣

∣

∣

∣

V
(0)
a

=
φ
(0)
a

σ ′

[

1−
φ
(0)
a

Qmax
a

]

. (14)

2.7. Numerical Simulations
In this work we formulate the CTBG model for the case
of spatial uniformity because the main point of comparison
between model outputs and experimental recordings are the
temporal structure of local field potential measurements of
the parkinsonian BG. These recordings result from aggregate
neural activity and their spatial structure has not been well
explored.

All numerical simulations of the CTBG neural field model
are performed using the NFTsim code package detailed by Sanz-
Leon et al. (2018). This package is used to solve Equations (1)–(7)
numerically for the spatially uniform case where the ∇2 in (4)
can be omitted. The solutions to these delay differential equations
are found using a fourth-order Runge-Kutta method (Sanz-Leon
et al., 2018) with a time step of 10−4 s.

Nominal brain states have been found to exist near stable fixed
points (Robinson et al., 2002), so all simulations in this work are
performedwith the system initialized to the low firing steady state
found in section 2.5 using the parameters given in Table 1, unless
otherwise specified.

2.8. Power Spectrum and Coherence
Power spectrums of population activity are computed
numerically using the fast Fourier transform, as implemented in
MATLAB’s fft() function (Frigo and Johnson, 1998), averaged
over 8 epochs.

The coherence of activity between two populations Qa(t) and
Qb(t) is given by

γ 2
ab =

|Sab(f )|2

Saa(f )Sbb(f )
, (15)

TABLE 1 | Nominal parkinsonian parameters (Müller and Robinson, 2018).

Quantity Value Unit

r 80 mm

σ ′ 3.3 mV

φ
(0)
n 1 s−1

γe 116 s−1

α 50 s−1

β 200 s−1

τre, τse 45 ms

τes 35 ms

Qmax
e , Qmax

r , Qmax
p2

300 s−1

Qmax
d1

, Qmax
d2

65 s−1

Qmax
p1

250 s−1

Qmax
ζ

500 s−1

θe 14 mV

θr , θs 13 mV

θd1 , θd2 19 mV

θp1 , θζ 10 mV

θp2 9 mV

νee 1.2 mV s

νei −1.5 mV s

νes 1.1 mV s

νre 0.1 mV s

νrs 0.1 mV s

νse 1.5 mV s

νsr −0.1 mV s

νsp1 −0.2 mV s

νsn 0.5 mV s

νd1e 0.1 mV s

νd1s 1 mV s

νd1d1 −0.02 mV s

νd2e 0.1 mV s

νd2s 0.1 mV s

νd2d2 −0.02 mV s

νp1d1 −0.2 mV s

νp1p2 −0.02 mV s

νp1ζ 1 mV s

νp2d2 −0.8 mV s

νp2p2 −0.2 mV s

νp2ζ 2.4 mV s

νζe 1.29 mV s

νζp2 −0.2 mV s

where Sab(f ) is the cross spectral density of the two signals, and
Saa(f ) and Sbb(f ) are the power spectral density functions for
Qa(t) and Qb(t). The coherence is averaged over 150 epochs with
50% overlap.

2.9. Stimulation Protocols
Several different stimulation functions are used in this work
which capture stimulus protocols found in clinical and
experimental DBS. Each function defines an external pulse rate,
φx(t) made up of rectangular pulses with a width twidth = 2−11 s
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(∼ 500 µs) and an amplitude φmax
x = 1 s−1. The time-integral

of φx(t) over the pulse width twidth is the average number of
additional spikes generated in the target axon by the applied
stimulation. The external stimulus φx(t) is then coupled to a
target population a via a connection parameter νax.

The pulse function, defined in Figure 2i, is a regular train of
pulses that occur at a frequency fpulse = 1/Tpulse, which defines
Tpulse.

The burst function, defined in Figure 2ii, is a regular train of
pulses and is parameterized by two distinct frequencies. Pulses
occur during a bursting phase at a rate fpulse = 1/Tpulse, which is
then followed by a quiescent interval before another burst occurs,
with a burst frequency fburst = 1/Tburst.

In order to compare the pulse and burst functions, the number
of pulses over the burst period, Tburst, is normalized to the same
value for both functions, as shown in the gray box of Figure 2.
Here, this is done by setting a ratio of two pulses per burst with
the burst frequency fburst set equal to half the pulse function
frequency. Each burst thus consists of two pulses which occur at
fpulse set to be twice the pulse function frequency. An example
of this normalization is shown by the gray box in Figures 2i,ii.
The total number of pulses over the burst period is two in this
case.

In a later section the normalized pulse and burst functions are
compared using two forms that we term low frequency (LF) and
high frequency (HF) stimulation, as defined in Table 2.

A variation of the pulse function is also used that introduces
randomness by selecting consecutive inter-pulse intervals from
a normal distribution parameterized by a mean interval and
standard deviation. An example time series of this random
function is given in Figure 2iii.

2.10. Stimulation Coupling
Following the approach of Müller and Robinson (2018), we
assume that electric potentials applied via an implanted electrode
result in activation of axons in close proximity to this electrode
for typically used stimulus parameters. STN-DBS, as shown
in Figure 1A, is then described by an external stimulus drive
coupled to both the STN and also to the pallidal populations to
which it projects. The strength of the stimulus to STN coupling is
determined by adding together all intrinsic coupling parameters
mapping pallidal and cortical inputs to the STN. The strengths

TABLE 2 | Stimulus frequency formats.

Name Parameters

LF-pulse function fpulse = 128 Hz

LF-burst function fpulse = 256 Hz, fburst = 64 Hz

HF-pulse function fpulse = 256 Hz

HF-burst function fpulse = 512 Hz, fburst = 128 Hz

FIGURE 2 | Example of stimulus protocols used. Each function consists of rectangular pulses which have a width twidth. (i) The pulse function is a regular train of

pulses with a frequency fpulse. (ii) The burst function is a train of pulses at frequency fpulse that occur during each burst which is then followed by a quiescent interval

before the next burst repeats at the burst frequency, fburst. (iii) The random pulse function is a train of pulses where each consecutive pulse interval is drawn from a

random normal distribution parameterized by a mean period, Tpulse, and standard deviation σ .
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of the stimulus couplings to the internal and external segments
of the pallidus are set equal to the intrinsic STN-GPe and STN-
GPi coupling strengths, respectively. The parameters used for
STN-DBS coupling are explicitly defined in Table 3.

Similarly to STN-DBS, GPi-DBS is described by coupling
stimulation to the GPi population, as shown in Figure 1B, and
also to the SRN population in the thalamus which the GPi
nuclei project to. The strength of the stimulus coupling to the
GPi is determined by adding together all intrinsic coupling
strengths mapping striatal, pallidal, and subthalamic inputs to
the GPi. The strength of coupling the stimulus to the SRN
is set equal to the intrinsic GPi-SRN coupling strength. The
parameters used for GPi-DBS coupling are explicitly defined
in Table 3.

3. RESULTS

Here, the CTBG system is first configured to a parkinsonian state
and related to experimental EEG and LFP spectral and coherence
measures of PD. DBS of the STN and GPi is then incorporated
to explore their respective impacts on this parkinsonian
activity.

3.1. Beta Oscillations
In previous work (Müller and Robinson, 2018) it was shown that
a physiological model of the corticothalamic-basal ganglia system
reproduces experimentally observed enhanced beta activity in
parkinsonian states (Levy et al., 2000, 2002b) via pathologically
strong gains within the STN-GPe and hyperdirect pathways,
consistent with experimental inferences (Tachibana et al., 2011;
Chiken and Nambu, 2013; Pavlides et al., 2015). Figures 3A,B
demonstrate this enhanced beta band activity in the STN for
parkinsonian parameters.

When the CTBG system is configured to a parkinsonian state
using the parameters in Table 1, high cortico-STN and cortico-
GPi coherence is observed about the beta resonance peak. Studies
have shown that cortico-STN coherence (Fogelson et al., 2005b;
Litvak et al., 2010; Hirschmann et al., 2011) and cortico-GPi
coherence (Wang et al., 2018) within the beta band may play
important roles in PD and could be relevant as biomarkers for
motor symptoms.

A comparison of CTBG model power spectrums shows beta
band power increases from the striatum to the thalamus, and
from the thalamus to the STN. This trend in beta power is
consistent with LFPmeasurements of the striatum, thalamus, and

TABLE 3 | Stimulus coupling parameters.

Name Parameter Value

STN-DBS: νζx = νζe + νζd2
1.086 mVs

νp1x 1 mVs

νp2x 2.4 mV s

GPi-DBS: νp1x = νp1d1 + νp1p2 + νp1ζ 0.78 mVs

νsx −0.2 mV s

STN, and thus has been suggested as a method of distinguishing
each structure during electrode placement (Kolb et al., 2017).

3.2. DBS of Parkinsonian States
3.2.1. Steady States
Previous work showed that DBS induced a periodic
perturbation of the membrane potential of the stimulus
target population (Müller and Robinson, 2018), locked to the
stimulus frequency. By averaging over a time window, the
perturbation can be approximately represented as a constant
value, 1V (Müller and Robinson, 2018), which can then be used
to determine the impact of stimulation on the steady-state circuit
gains within the network. Pathologically strong gains within the
STN-GPe and hyperdirect pathways define the parkinsonian
state of the CTBG system and result in enhanced beta activity
via a strengthen system resonance (Müller and Robinson, 2018).
In Figure 4A it can be seen that regular pulse STN-DBS reduces
both the GPe-STN-GPe and hyperdirect loop gains as the fpulse
increases.

Stimulation of a population in the present model has either an
excitatory or inhibitory effect depending on the ratio of synaptic
types and strengths adjacent to the stimulating electrode. STN
stimulation of parkinsonian states elicits a direct depolarizing
effect on the STN population, as defined in Table 3. However,
this change in STN activity causes network-wide changes in
the activity of all other populations, which in turn alter the
inputs to the STN. As such, the stimulation may result in
a net hyperpolarization of the STN. This effect can be seen
in Figure 4B where, despite an explicit excitatory coupling of
the external stimulus to the STN, the steady-state mean STN
firing rate is reduced at high fpulse. Furthermore, stimulation
frequencies below 200 Hz hyperpolarize the pallidal populations,
which have an explicit excitatory stimulus coupling, and higher
frequencies depolarize them.

Figure 4C shows the effect of fpulse on the system gains
for GPi-DBS is qualitatively similar to the STN-DBS results
in Figure 4A. Both the GPe-STN-GPe and hyperdirect loop
gains decrease as functions of GPi-DBS fpulse. The steady-state
firing rates for the pallidal populations decrease for fpulse <

200 Hz. This result agrees with a study of MPTP-treated
monkeys rendered parkinsonian, which showed that 130 Hz GPi
stimulation significantly reduced GPi firing rates (Boraud et al.,
1996). A key point of difference for GPi-DBS relative to STN-
DBS is that the steady-state GPe firing rate continues to decrease
for fpulse > 200 Hz.

3.2.2. Temporal Dynamics
The time series in Figure 5B shows STN activity as subthalamo-
cortical coupling is linearly decreased from 1, 300 to 1, 286 mV s,
as shown in Figure 5A. The system enters a regime of weakly
damped beta resonance where 26 Hz activity dominates. STN-
DBS is then applied and a strong damping of the 26 Hz oscillation
is observed. Figure 5D shows a spectrogram of this STN time
series using a complex wavelet transform with a Morlet wavelet.
The amplitude of the STN beta oscillation is reduced by ∼ 80%
over the first few seconds following stimulation. After ∼ 10 s,
STN activity settles to a mean firing rate close to the value at t =
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FIGURE 3 | Parkinsonian STN beta activity where νζe = 1.3 mV s and νsn = 0.525 mVs and using Table 1 parameters. (A) Time series of STN firing rate. The high

frequency oscillations appear as solid black in the time resolution plotted. (B) STN dynamic spectrum produced using a complex wavelet transform with a Morlet

wavelet as implemented in MATLAB’s (R2016b) cwtft() function (Torrence and Compo, 1998).

FIGURE 4 | Effects of pulse frequency during STN and GPi stimulation on steady-state firing rates and loop gains. The parameters used are given in Table 1. (A) Loop

gain dependence on STN-DBS pulse frequency. (B) Dependence of steady-state subthalamic and pallidal population firing rates on STN-DBS pulse frequency.

(C) Loop gain dependence on GPi-DBS pulse frequency. (D) Dependence of steady-state subthalamic and pallidal population firing rates on GPi-DBS pulse frequency.

20 s, before νζ e was decreased. Figure 5C shows a 3-dimensional
time-delayed phase portrait of STN activity with no stimulation
and during stimulation. The pre-stimulus activity forms a limit-
cycle, given by the red line, with an orbital frequency of 26 Hz.
The radius of the limit-cycle is proportional to the amplitude
of the oscillation in STN firing rate. During stimulation, STN
activity still remains on this manifold, however, the amplitude of

the orbit is greatly reduced. Although not shown here, when the
stimulus is removed the system returns to the limit-cycle attractor
with larger amplitude.

3.2.3. Frequency Dependence
Figures 6A,B show the effect of increasing STN-DBS pulse
frequency on the STN spectrum and cortico-STN coherence,
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FIGURE 5 | Effect of STN-DBS on parkinsonian beta activity. (A) νζe is linearly decreased from 1.300 to 1.286 mVs over the time window t = 22− 27 s. STN-DBS is

applied at t = 45 s using the 128 Hz pulse function. (B) STN firing rate as the system is driven to a regime of dominant beta activity and then suppressed by

STN-DBS. The 26 Hz oscillations appear as a solid region because the time scale used renders individual cycles indistinguishable. (C) Time-delayed phase portrait of

φζ before stimulation t = 43− 46 s (red) and during stimulation t = 46− 49 s (blue). (D) STN spectrum as the system is driven to a regime of dominant beta activity

which is then suppressed by STN-DBS. Spectrums are calculated using a complex Morlet wavelet transform.

respectively. Peak power near the beta resonance frequency
is seen to drop off sharply for fpulse > 80 Hz. This
threshold frequency could be compared to effective frequencies
in clinical DBS of PD patients and, in conjunction with
EEG and LFP spectrums, used to constrain model parameters
in a fitting algorithm such as in the Bayesian approach
developed by Abeysuriya and Robinson (2016) for fitting
a corticothalamic model to EEG data. Several studies have
observed a reduction in cortico-STN coherence during STN-
DBS treatments (Kühn et al., 2008; Oswal et al., 2016)
and Figure 6B shows this result is consistent with the
model.

Figure 6C shows that GPi-DBS has a similar impact on GPi
beta activity with a sharp drop in beta power for fpulse >

50 Hz. This threshold pulse frequency is notably smaller than
for the STN-DBS case. The difference is due to GPi-DBS having
a greater suppressive effect on Gesp1ζ e than STN-DBS for the
same pulse frequency, as shown in Figures 4A,C. Another key
difference between GPi-DBS and STN-DBS is that the former
has high cortico-GPi coherence for frequencies less than the beta
resonance when fpulse > 50 Hz, as shown in Figure 6D, whereas
Figure 6C shows a smaller increase in cortico-STN coherence
during STN-DBS for the same fpulse.

During both GPi-DBS and STN-DBS where fpulse > 100 Hz,
enhanced < 10 Hz activity is seen in the GPi and STN. This is
consistent with enhanced low frequency oscillations in STN LFP
recordings following STN-DBS (Priori et al., 2006).

A peak in STN/GPi power and cortico-STN/GPi coherence
is also seen in Figures 6A–D at the stimulus pulse frequency
and its harmonics. Here, stimulation is driving target population
activity, leading to enhanced synchronization at the stimulus
frequency. The result was explored in more detail for STN-
DBS in a previous study (Müller and Robinson, 2018) and
showed good agreement with human EEG studies of steady-
state evoked response potentials in the visual cortex during
stimulation (Herrmann, 2001).

3.2.4. Random Pulse Effects
Randomness is introduced into the pulse function by drawing
a new pulse interval from a normal distribution at the end of
each pulse. It can be seen in Figure 7A that this variability
reduces the suppressive effect of the stimulation on the beta
peak relative to the regular pulse function while broadening the
entrainment peak. The reduction in beta-band coherence shown
in Figure 7B is also less pronounced for the random function.
The greater effectiveness of the continuous STN-DBS pulse
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FIGURE 6 | Effects of pulse frequency on parkinsonian beta activity. (A) Dependence of STN spectrum on STN-DBS pulse frequency fpulse. (B) Dependence of

cortico-STN coherence on STN-DBS pulse frequency fpulse. (C) Dependence of GPi spectrum on GPi-DBS pulse frequency fpulse. (D) Dependence of cortico-GPi

coherence on GPi-DBS pulse frequency fpulse.

function relative to the random pulse function for suppressing
beta activity is consistent with results from LFP measurements
during STN-DBS in a clinical study of human PD (Little et al.,
2013).

3.3. Response Dependence on Prestimulus
State
The parkinsonian state of the CTBG system is defined by large
loop gains Gesp1ζ e and Gζp2ζ , which result in enhanced beta
band activity. In section 3.2.1 it is shown that DBS suppresses
this beta activity by reducing the pathologically loop gains when
using model parameters defined in Table 1. Here the dependence
of stimulus response on the prestimulus state of the model is
explored.

For the parameters given inTable 1, increasing νp2ζ from 0.6−
2.4 mV s increases both Gesp1ζ e and Gζp2ζ , and results in large
amplitude beta band oscillations. For each value of νp2ζ the loop
gains and steady state population firing rates are determined for
the prestimulus state as well as during 128 Hz pulse DBS, which
is done by time-averaging the stimulus induced perturbation
to the target membrane potential, as discussed in section 3.2.1
and Müller and Robinson (2018).

The percentage difference of the loop gains and steady state
firing rates between prestimulus states and the perturbed state
are shown in Figures 8A,B during STN-DBS and Figures 8C,D

during GPi-DBS. Since the stimulation parameters are not being

varied here, these figures demonstrate the model predicts neural
population response is dependent on prestimulus states of the
CTBG system. Figure 8B shows this clearly whereby 128 Hz
pulse STN-DBS increases both STN and GPe firing rates for
νp2ζ < 1.3 mV s and decreases them for νp2ζ > 2.2 mV s. It
can also be seen in Figure 8A that the STN-GPe-STN loop gain
is increased by 128 Hz pulse STN-DBS for νp2ζ < 1.9 mV s and
is decreased for values νp2ζ > 1.9 mV s. This result highlights the
importance of quantifying prestimulus states of the CTBG system
when developing effective DBS treatments, as the same protocols
may not have the same impact across patients.

3.4. Regional Comparison
The high and low frequency pulse and burst functions, defined
in Figure 2 and Table 2, are now used to stimulate the STN
and GPi. The impact of each of these stimulation protocols
on parkinsonian beta activity and coherence measures is then
compared.

3.4.1. STN Activity and Coherence
As shown in Figure 9A, both STN-DBS and GPi-DBS suppress
peak STN power within the beta frequency band. GPi-DBS is
slightly more effective for all stimulus protocols tested. Despite
GPi outputs not being directly connected to the STN, GPi-DBS
is able to induce significant changes in STN firing patterns,
specifically in the beta band, while Figure 4D shows only a
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FIGURE 7 | Comparison of effects on STN activity of a regular 128 Hz pulse function and a function of normally distributed pulses with mean frequency

fpulse = 128 Hz and a standard deviation σ = 4 Hz. (A) Effects of pulse and random pulse stimulation on the STN spectrum. The 3 lines plotted are for no DBS (dash),

pulse DBS (dash dot), and random pulse DBS (solid), as shown in the legend. (B) Effects of pulse and random pulse stimulation on cortico-STN coherence. The 3

lines plotted are defined as in (A).

FIGURE 8 | Dependence of stimulus response on prestimulus parameters. For a given value of νp2ζ the prestimulus state is compared to the perturbed state during

128 Hz pulse stimulation. (A) Percentage difference of prestimulus loop gains relative to perturbed values during STN-DBS. (B) Percentage difference of prestimulus

steady state firing rates relative to perturbed values during STN-DBS. (C) Percentage difference of prestimulus loop gains relative to perturbed values during GPi-DBS.

(D) Percentage difference of prestimulus steady state firing rates relative to perturbed values during GPi-DBS.

correspondingly small change is induced in the mean STN
population firing rate.

A higher pulse frequency, using either the pulse or burst
function, produced a stronger beta suppression. This is expected
since a higher number of pulses will drive a larger mean

perturbation to the membrane potential of the stimulated
populations.

A reduction of cortico-STN coherence within the beta band
is also observed for both STN-DBS and GPi-DBS. However, as
shown in Figure 9C, GPi-DBS is less effective than STN-DBS.

Frontiers in Computational Neuroscience | www.frontiersin.org 10 December 2018 | Volume 12 | Article 98

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Müller and Robinson Stimulation Suppression of Parkinsonian Beta

FIGURE 9 | Regional comparison of stimulus protocols on parkinsonian beta activity in the STN and GPi. The stimulus protocols are defined in Figure 2 and Table 2.

The bars depict the case for no stimulus (blue), and during STN-DBS (green) and GPi-DBS (yellow). (A) Effect of stimulus protocols on the power difference (maximum

- minimum) of STN activity in the beta band. (B) Effect of stimulus protocols on the power difference (maximum - minimum) of GPi activity in the beta band. (C) Effect

of stimulus protocols on cortico-STN magnitude coherence within the beta band. (D) Effect of stimulus protocols on cortico-GPi magnitude coherence within the beta

band.

STN-DBS using the high frequency burst function suppressed
peak STN activity and cortico-STN coherence in the beta band
most effectively out of the stimulus protocols compared.

Overall, GPi-DBS is more effective than STN-DBS for
suppressing beta activity in the STN, but less effective at reducing
cortico-STN beta-band coherence. However, it is not clear
which of these measures, power of STN activity or cortico-STN
coherence, is most strongly correlated with PDmotor symptoms.

3.4.2. GPi Activity and Coherence
Figure 9B shows that peak beta activity in the GPi is suppressed
during GPi-DBS and STN-DBS, and higher stimulation
frequencies yield stronger suppression. The suppression of GPi
beta activity during >50 Hz STN-DBS agrees with experimental
results of GPi LFP spectrum in human PD patients (Brown et al.,
2004; Kühn et al., 2008).

Cortico-GPi coherence is also reduced for all stimulus
protocols tested, as shown in Figure 9D. The pulse function for
GPi-DBS proved most effective for decreasing beta coherence at
low stimulation frequency. As for the STN, the high frequency
burst function is most effective for suppressing beta band activity
in the GPi and reducing cortico-GPi coherence. The model
result is consistent with a study of human PD which showed

elevated cortico-pallidal coherence in the beta band, and that this
coherence was reduced during therapeutic GPi-DBS (Wang et al.,
2018).

3.5. Combined STN and GPi DBS
Several experimental studies have suggested that simultaneous
stimulation of multiple nuclei may be more therapeutically
effective than stimulating a single nucleus (Mazzone et al.,
2005; Oertel et al., 2017). To test this in the present model,
the connection structures for the individual cases of STN-DBS
and GPi-DBS, described in section 2.10, are combined. For
comparison, the pulse amplitude of the dual STN/GPi-DBS is
defined to be half that of their respective individual forms; i.e.,
the two nuclei each receive half the amplitude.

Figure 10A shows that dual STN/GPi-DBS is less effective
than GPi-DBS for reducing mean STN beta activity. If the pulse
amplitude of dual STN/GPi-DBS is instead not reduced and has
the same amplitude as the individual forms, the dual STN/GPi-
DBS frequency dependence shown by a black line in Figure 10A

shifts to the left and becomes more effective than GPi-DBS at
low frequencies. However, dual STN/GPi-DBS still approaches
the STN-DBS case, shown by the blue line in Figure 10A, as fstim
increases.
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In application, dual STN/GPi-DBS would allow simultaneous
LFP to be recorded from the STN and GPi via the stimulating
electrodes. This could permit a better measure of the efficacy
of stimulation that incorporates some combination of induced
change in activity of the two populations not considered here.

Figure 10B shows that for fstim < 50 Hz the percentage
difference between the maximum and minimum STN beta band
power is higher than when no stimulation is applied. Clinical
studies have observed worsening motor symptoms during STN-
DBS stimulation at frequencies <30 Hz (Fogelson et al., 2005a;
Chen et al., 2007; Eusebio et al., 2008). Our results suggest this
clinical observation could be due to a sharpened beta peak caused
by the low frequency stimulation. Even though the power of STN
beta activity is slightly reduced during fstim < 50 Hz stimulation,
excluding the constructive wave interactions at the resonance
frequency and subharmonics described in Müller and Robinson
(2018), the power is more focused at particular beta frequencies.
A measure of this sort could be explored as an LFP marker for
adaptive stimulation treatments.

Although not shown here, dual STN/GPi-DBS with fstim >

100 Hz was more effective at reducing maximum cortico-STN
beta band coherence than the respective individual forms at
fstim > 100 Hz. Additionally, introducing a phase shift between
the STN-DBS and GPi-DBS components, which comprise dual
STN/GPi-DBS, produces no discernible difference in population
activity. This is likely due to the much shorter stimulation time
scales than those of each population response.

The overall suppressive effect of dual STN/GPi-DBS is a
combination of the individual STN-DBS and GPi-DBS results
shown in Figure 4. Stimulation induces a mean perturbation
to the membrane potentials of the target populations, the STN
and GPi, as well as the populations they project to. This results
in a reduction of the Gesp1ζ e and Gζp2ζ loop gains which are
responsible for the beta resonance.

3.6. Effects of Pulse Parameters
The model shows that the suppressive effect of DBS on beta
activity is due to a mean perturbation of population membrane

potentials. This perturbation is dependent on the stimulus pulse
frequency, as well as the pulse amplitude, and pulse width.
Figure 11 shows impact of stimulation pulse amplitude and
width on the mean STN beta band activity. This activity is
decreased by several orders of magnitude for twidthφ

max
x ≤ 5 ×

10−4.

3.7. Theta Oscillations
Parkinsonian beta oscillations in the present model result from
pathologically large loop gains in the STN-GPe and hyperdirect
pathways. Decreasing the STN-GPe and cortico-STN coupling
strengths from the parkinsonian estimates in Table 1 toward
nominal estimates from a previous study (van Albada and
Robinson, 2009) leads to a decrease in the GPe-STN loop gain,
but a smaller decrease in the hyperdirect loop gain. This results
in a dominant resonance which drives 6 Hz activity in the system.
Studies have found STN activity and cortico-STN coherence in
the beta band are both reduced during tremor (Qasim et al., 2016)

FIGURE 11 | Dependence of mean STN beta band power Pβ during 128 Hz

STN-DBS on the pulse width and pulse amplitude.

FIGURE 10 | Comparison of dual STN/GPi-DBS, STN-DBS, and GPi-DBS for suppressing STN beta activity Pβ . (A) Frequency dependence of mean STN beta band

activity during STN/GPi-DBS (black), STN-DBS (blue), and GPi-DBS (red) using pulse stimulation. (B) Frequency dependence of percentage difference between

maximum and minimum STN beta band activity during STN/GPi-DBS (black), STN-DBS (blue), and GPi-DBS (red) using pulse stimulation.
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and thus suggest that parkinsonian tremor may be a side effect of
a similar naturally occurring mechanism to reduce pathologically
large beta oscillations.

In Figure 12, STN-GPe and cortico-STN coupling strengths
are reduced and this drives enhanced 6 Hz theta band
oscillations in STN activity. STN-DBS and GPi-DBS, using
a 128 Hz pulse, is then applied and suppresses the 6 Hz
STN spectral peak. This is consistent with clinical trails of
STN-DBS in essential tremor patients who showed marked
tremor reduction during stimulation (Blomstedt et al., 2010,
2011).

4. DISCUSSION

Wehave developed a neural field theory of deep brain stimulation
of the subthalamic nucleus and the globus pallidus internus and
applied it to parkinsonian states of the corticothalamic-basal
ganglia system. The theory allows systematic determination of
effective stimulus protocols for suppressing pathological rhythms
and synchronization in Parkinson’s disease. The key results of the
work are as follows:

(i) The impact of stimulation is found to be dependent on
prestimulus states of the CTBG system. DBS is approximated as
an activation of afferent and efferent axons in close proximity
to the stimulating electrode which results in a net perturbation
to mean population membrane potentials. This perturbation
may be excitatory (depolarizing) or inhibitory (hyperpolarizing)
depending on the ratio of synaptic types adjacent to the
stimulating electrode. An explicit excitatory or inhibitory
coupling of an external stimulus to a target population induces
network-wide changes in activity, affecting inputs to the stimulus

FIGURE 12 | STN power spectrum during STN-DBS and GPi-DBS using

regular 128 Hz pulse stimulation. The system is configured to generate theta

activity by changing the coupling parameters νζe = 0.915 mVs and

νp2ζ = 2 mVs and using all other parameters from Table 1. The line types

distinguish STN power spectrums for no stimulation (solid), during

STN-DBS (dash dot), and during GPi-DBS (dash).

target, and may result in a net perturbation to target population
activity that is opposite to the explicit stimulus coupling. A
change in brain state, such as between rest and movement,
may mean the system has shifted from a region where DBS
protocols are therapeutically efficacious to one where they no
longer are. Adaptive DBS systems could use a model such as the
present one to track brain states and determine what stimulation
protocols are most effective for that state. LFP power in the beta
band is already being explored as a marker for when to apply
stimulation (Little et al., 2013). However, by fitting a model to
patient data, a region of state space could be defined on the basis
of multiple biomarkers, such as particular combinations of state
variables, but importantly the trajectory of these state variables
as well. This could allow for earlier detection of motor symptom
onset and adaptive DBS to provide therapeutic benefit with lower
stimulation power.

(ii) Pathological beta activity in the STN and GPi was
suppressed during both STN-DBS and GPi-DBS. A stimulation
evoked perturbation to the mean membrane potentials of the
target population and its projection sites reduced pathologically
large loop gains in the hyperdirect and STN-GPe pathways.
Beta activity in the GPi was reduced during STN-DBS, which is
consistent with experimental findings (Brown et al., 2004; Kühn
et al., 2008). The threshold stimulus pulse frequency required
for effective damping of the beta oscillations was about 80 Hz
for STN-DBS and 50 Hz for GPi-DBS. This threshold frequency
could be compared to effective frequencies in clinical DBS of
PD patients and, in conjunction with EEG and LFP spectrums,
used to constrain model parameters in a fitting algorithm such
as in Abeysuriya and Robinson (2016). Entrainment of target
population activity to the stimulus frequency and its harmonics
was also observed, which have been explored in more detail in a
previous study (Müller and Robinson, 2018).

(iii) A reduction of cortico-STN coherence resulted during
STN-DBSwhich agrees with findings of human PD studies (Kühn
et al., 2008; Oswal et al., 2016). Another study showed
cortico-GPi coherence was reduced during GPi-DBS in human
PD (Wang et al., 2018) and this is consistent with the model
results.

(iv) The burst function during STN-DBS and GPi-DBS was
consistently more effective than the regular pulse function with
the same number of pulses for suppressing beta activity in
the STN and GPi, as well as reducing cortico-STN coherence.
Randomness was introduced to the pulse function using a mean
pulse frequency equal to the pulse frequency of the regular
function. The random function proved less effective than the
regular one, in accord with human PD experiments (Little
et al., 2013). The random function also produced a broader
entrainment peak and reduced its amplitude.

(v) The GPi was the most effective DBS target for reducing
beta activity across the STN and GPi and cortico-GPi beta
band coherence. However, DBS targeting the STN was most
effective for reducing cortico-STN coherence in the beta band.
Clinical studies of STN-DBS and GPi-DBS have shown similar
long term outcomes on the motor symptoms in PD (Moro
et al., 2010); however, STN-DBS allows for greater medication
reduction (Liu et al., 2014) andGPi-DBS has shown fewer adverse
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effects (Moro et al., 2010). Coherence measures between the
motor cortex and basal gangliamay prove to be useful biomarkers
for PD, and for present and future adaptive DBS systems used in
symptom treatment. Exploring the impact of different stimulus
protocols on these coherence measures could lead to improved
treatment efficacy.

(vi) Low frequency STN-DBS (< 50 Hz) was found to
result in less distributed STN activity within the beta frequency
band. Clinical studies have observed worsening motor symptoms
during STN-DBS stimulation at frequencies < 30 Hz (Fogelson
et al., 2005a; Chen et al., 2007; Eusebio et al., 2008). Our results
suggest this clinical observation could be due to a sharped beta
peak, with STN activity more focused at particular beta band
frequencies during low frequency stimulation.

(vii) Dual stimulation of the STN and GPi proved less effective
than GPi-DBS at reducing STN beta activity when conserving
pulse amplitude, however, it was more effective at reducing
cortico-STN beta band coherence.

(viii) A reduction of the pathologically large GPe-STN and
cortico-STN coupling strengths, which define parkinsonian states
of the CTBG system, resulted in dominant 6 Hz activity. Studies
have shown that, during tremor, beta band STN activity and
cortico-STN coherence are reduced (Qasim et al., 2016), which
suggests that parkinsonian tremor may be a side effect of a
compensatory mechanism for reducing pathologically large beta
oscillations. Both STN-DBS and GPi-DBS using a 128 Hz pulse
frequency suppressed theta band STN activity in the model.
Stimulation of the ventral intermediate nucleus of the thalamus
and STN have proved effective for reducing parkinsonian
tremor in human PD (Krack et al., 1998; Hariz et al., 2008).

However, STN LFP recordings covering the 4 − 6 Hz tremor
frequency have yet to be demonstrated as useful for tremor
detection (Hirschmann et al., 2017).

Overall, the present study reproduces and unifies existing
experimental and clinical results on large scale measures of
brain activity such as EEG and LFP, and allows systematic
comparison of the effectiveness of deep brain stimulation
protocols and targets for suppressing parkinsonian rhythms in
the corticothalamic-basal ganglia system. Further work might
include fitting the model to EEG and LFP data in order
to estimate patient specific model parameters, which would
allow for an optimized stimulation protocol to be developed.
Abeysuriya and Robinson (2016) developed a Bayesian approach
using a Metropolis-Hastings algorithm for model parameter
fitting of a corticothalamic system to EEG data and a similar
approach could be used for the corticothalamic-basal ganglia
model.
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