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Exiguobacterium sp. is endowed 
with antibiotic properties against Gram positive 
and negative bacteria
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Abstract 

Objective:  In order to isolate and identify bacteria that produce potentially novel bactericidal/bacteriostatic com-
pounds, two ponds on the campus of the Rochester Institute of Technology (RIT) were targeted as part of a bio-
prospecting effort.

Results:  One of the unique isolates, RIT 452 was identified as Exiguobacterium sp. and subjected to whole-genome 
sequencing. The genome was assembled and in silico analysis was performed to predict the secondary metabolite 
gene clusters, which suggested the potential of Exiguobacterium RIT452 for producing antibiotic compounds. Extracts 
of spent growth media of RIT452 were active in disc diffusion assays performed against four reference strains, two 
Gram-negative (E. coli ATCC 25922 and P. aeruginosa ATCC 27853) and two Gram-positive (B. subtilis BGSC 168 and S. 
aureus ATCC 25923). Differential extraction and liquid chromatography was used to fractionate the extracts. Efforts to 
identify and elucidate the structure of the active compound(s) are still ongoing.
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Introduction
Antibiotic resistance was first discovered in the 1940s, 
when it was observed that bacteria were become increas-
ingly resistant to measures taken against them [1]. How-
ever, this development did not become a global issue 
until antibiotic abuse in medicine and animal husbandry 
became more widespread [2–4]. Antibiotic resistance 
dramatically increased in the 1980s and 1990s due to a 
discovery void. The progressive increase of antibiotic 
resistance and the decline in research and development 
of antibiotics combined to produce the current crisis 
[5]. Since there have been few developments in the crea-
tion of new antibiotic classes for many years, bacteria are 

becoming increasingly resistant to those that are cur-
rently in use [1, 6]. The targets of antibiotics are diverse; 
protein synthesis, DNA replication, RNA synthesis and 
the cell membrane are common targets [4]. Antibiotics 
with novel targets need to be developed for replacing the 
existing drugs.

The β-lactam core structure is part of a number of anti-
biotic classes, but β-lactam resistance is widespread and 
is conferred by over 300 types of β-lactamases, of which 
200 are able to hydrolyze extended spectrum cephalo-
sporin antibiotics [7]. Therefore, increasing the struc-
tural diversity of antimicrobial compounds becomes 
important. Estimates of all possible small molecules are 
pegged at 1063 distinct molecules, of which many may 
not be accessible by synthesis [8]. Only a small fraction 
of these molecules are biologically relevant [9]. How-
ever, natural compounds offer better chances of finding 
bioactive molecules with entirely new chemical scaffolds 

Open Access

BMC Research Notes

*Correspondence:  aohsbi@rit.edu
1 Thomas H. Gosnell School of Life Sciences, Rochester Institute 
of Technology, 85 Lomb Memorial Drive, Rochester, NY 14623, USA
Full list of author information is available at the end of the article

http://orcid.org/0000-0001-5690-4322
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13104-021-05644-2&domain=pdf


Page 2 of 7Cavanaugh et al. BMC Res Notes          (2021) 14:230 

than combinatorial chemistry libraries, since they have 
evolved to be bioactive, and can often enter cells via 
transmembrane transporters rather than by passive diffu-
sion [10]. Statistical analysis reveals the continuing trend 
of chemical novelty in natural products as de-replication 
tools are increasingly being implemented [11]. In this 
context, shifting to less known bacterial phyla, rather 
than over-represented phyla such as the Actinobacte-
ria might increase diversity of the antibiotics identified 
by prospecting [12]. The goal of our study is to identify 
novel bacteria that yield potentially novel compounds, 
which may become starting points to develop more spe-
cific and potent antibiotics.

RIT452 was identified during the screening of bacte-
rial isolates from a campus pond, with potential bac-
teriostatic/bactericidal properties, and its genome was 
sequenced. The genome was subjected to secondary 
metabolite analysis via the antibiotics and secondary 
metabolite analysis shell 5.0 (antiSMASH) [13] and the 
antibiotic resistance target seeker (ARTS) platforms [14]. 
Organic compounds extracted from the spent growth 
media of RIT452 were shown to inhibit the growth of 
Gram negative and Gram positive reference strains.

The data presented here shows that Exiguobacterium 
sp. RIT452 produces a broad spectrum antibiotic, which 
after fractionating by differential extraction and chroma-
tography, was not structurally characterized. The facul-
tative anaerobic Gram-positive genus Exiguobacterium 
consists of motile, non-spore forming species [15], widely 
distributed in the environment, including extremophiles 
growing in high altitude salt plains [16], hot springs [17, 
18], oceans, Antarctic dry valleys and permafrost [18], 
while others tolerate gamma radiation [19], organic sol-
vents [20], chromium and mercury [21–23], arsenic [16, 
24–26], pesticides [27], alkaline wastewater [28], and heat 
[29–32]. All of this is accomplished without the ability to 
form spores, suggesting other physiological changes help 
them cope with these stresses.

Main text
Methods
Bacterial growth and characterization
Tryptic soy broth (TSB) cultures were used for DNA 
extraction, while LB (Lysogeny broth) was used for the 
antibiotic production cultures. R2A (Reasoner’s 2A) min-
imal media were used for starvation experiments accord-
ing to Yang et al. [33]. Tryptic soy agar (TSA)-grown cells 
were analyzed after weeks 1 and 5 by electron micros-
copy to examine the morphological changes. RIT452 was 
identified as an Exiguobacterium sp. based on the 16S 
rRNA gene sequence. The V3/V4 region was sequenced 
by Sanger nucleotide sequencing (GeneWiz LLC, South 

Plainfield, NJ) and was analyzed by the basic local align-
ment search tool (BLAST) [18].

PCR amplification and nucleotide sequencing of the 16S V3/
V4 regions
Bacteria from ponds at the Rochester Institute of Tech-
nology (RIT) were isolated on TSA or R2A media. 
Each was subjected to PCR using primers, 5′-CCT​ACG​
GGNGGC​WCG​AG-3′ (forward) and 5′-GAC​TAC​
HVGGG​TAT​CTA​ATC​C-3′ (reverse) designed to amplify 
the V3/V4 rRNA regions. The following thermal cycler 
protocol was used: 1 cycle at 95  °C for 2 min, 30 cycles 
each at 95 °C for 30 s, 52 °C for 30 s and 72 °C for 3 min, 
1 cycle at 72 °C for 5 min, and finally infinite hold at 4 °C. 
The PCR products were separated by gel electrophoresis, 
followed by Sanger nucleotide sequencing of the ampli-
fied sequences (GeneWiz LLC, South Plainfield, NJ) pre-
pared with the V3/V4 forward primer.

Genomic DNA isolation, library preparation, genome 
sequencing and alignment
RIT452 grown in 3 mL of TSB for 24 h at 30 °C. The DNA 
isolation and subsequent steps were performed as in 
Steiner et al. [34].

Predicting secondary metabolite production
The aligned genome sequence of Exiguobacterium sp. 
RIT 452 was analyzed using the antibiotics and second-
ary metabolite analysis shell (antiSMASH4.0) webserver 
[13]. The aligned genome was also analyzed by the antibi-
otic resistance target seeker (ARTS version 2) webserver 
[14]. ARTS predicts resistance mechanisms and BGCs 
from genome sequences [14].

Extraction of organic compounds from culture media
RIT 452 was cultured in 100  mL LB medium at 30  °C 
shaken at 130  rpm for 24  h. This was inoculated in 
900 mL of LB medium and grown for an additional 48 h 
at 30  °C shaken at 130  rpm. The extraction of organ-
ics from the spent media and storage of concentrated 
extracts were performed as published earlier [34].

Compound fractionation and liquid chromatography (LC)
A five-step extraction and the subsequent separation of 
the most active extract by liquid chromatography were 
conducted using known methods [34].

Broth dilution assay vs. clinical pathogens
Three clinical pathogens were used: MRSA USA300-
FPR3757 (mecA) [35], E. coli MCR1_NJ [mcr-1, blaNDM-5, 
strA, strB, aac(6′)-Ib-cr, blaOXA-1, arr-3, sul1, sul2, tet(A)] 
[36], and P. aeruginosa AR-0230 (aac(3)-Id, aadA2, 
dfrB5, OXA-4, OXA-50, tet(G), VIM-2) [37]. Briefly, 
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experiments were conducted in cation adjusted Muel-
ler Hinton broth and a starting bacterial inoculum 
of  ~ 106  cfu/mL for each isolate. The minimum inhibi-
tory concentration (MIC) for the crude extract against 
all three clinical isolates, determined using broth micro-
dilution according to the Clinical and Laboratory Stand-
ards Institute (CLSI) Guidelines, was 6.25 ×  (equivalent 
to metabolites extracted from 6.25  mL of spent media) 
[38].

Disc diffusion assays
Disc diffusion tests of the organics extracted with differ-
ent solvents was performed according to Steiner et  al. 
[34].

Disc diffusion assays of LC fractions
The activity was tested against E. coli ATCC 25922, P. 
aeruginosa ATCC 27853, B. subtilis BGSC 168 and S. 
aureus ATCC 25923. The activity was better against the 
Gram positive strains (Additional file 1: Figure S1). Fur-
ther enrichment of the active compounds was performed 
with S. aureus ATCC 25923 as the test strain. S. aureus 
ATCC 25923 was grown overnight in 5 mL LB medium 
at 30  °C in a 130  rpm shaker incubator. The cells were 
pelleted and each culture was re-suspended in 2  mL of 
sterile PBS. 180 μL of the re-suspension was mixed into 
tubes containing 40 ml of warm LB agar and poured into 
square petri dishes. The petri plates were cooled for 1 h 
in a sterile hood. 6 mm sterile blank paper disks (BD Bio-
sciences, USA) were aseptically placed onto each agar 
plate. Methanol (20  μL), tetracycline stock (10  mg/mL, 
22.5 μM, 20 μL), and each fraction (60 μL of each fraction 
re-suspended in 100  μL methanol) were pipetted onto 
the disks. The plates were dried aseptically for 1  h and 
incubated for 16 h at 30 °C. The diameter of each zone of 
inhibition (ZOI) was measured in mm.

Flow injection analysis (FIA) and liquid 
chromatography‑mass spectrometry (LCMS)
Low resolution mass spectrometry data was obtained on 
an Agilent LC/MSD VL system by electrospray ionization 
(ESI) flow injection analysis in the (positive or negative) 
mode at the Boston University Chemical Instrumentation 
Center. A reverse-phase C18 Zorbax Eclipse 2.1 × 50 mm 
column (Agilent) was used, and the mobile phases were 
water and acetonitrile with 0.1% formic acid. Separation 
was achieved by a flow rate of 0.15 mL/min and a mobile 
phase gradient from 5 to 95% acetonitrile in 10 min. The 
MS settings were: voltage  =  3000  V, fragmentor  =  70 
and chamber temperature  =  350 °C.

Scanning electron microscopy (SEM)
The microbiological sample preparation followed an 
open source protocol [39]. Samples were covered with 
gold–palladium for 2 minutes with an SPI sputter coater 
to mitigate charging in the electron beam. The SEM 
was performed at 5 kV using a Mira3Tescan field emis-
sion SEM at the Rochester Institute of Technology (RIT) 
Nano-Imaging Lab.

Results
Strain characterization and phylogeny
The genome was sequenced using an Illumina MiSeq. 
After assembly, the genome sequence has been depos-
ited in GenBank under accession number QXJB00000000 
(BioProject number PRJNA489292; BioSample number 
SAMN09954399).

Electron microscopy analysis
RIT452 grown on solid media under different condi-
tions and Fig. 1 shows the scanning electron microscopy 
(SEM) images recorded for each. In minimal media [33], 
the cells grow longer, closer to 2  µm, and form larger 
aggregates (Fig.  1A). Healthy cells are around 1  µm in 
length and around 0.5 µm wide (Fig. 1B); However when 
healthy cells are grown for prolonged periods in rich 
broth media, the cell surface alters and appears rougher 
(Fig. 1C).

antiSMASH and ARTS results
The antiSMASH 5.0 web tool analyzes genome sequences 
and predicts the secondary metabolites produced by 
an organism [13]. antiSMASH predicted that RIT452 
contained four biosynthetic gene clusters (BGCs), two 
terpene clusters, a siderophore cluster, and a putative 
antibiotic cluster (Table 1). The “putative antibiotic” BGC 
identified at locus 897206–908755 shares sequence simi-
larity with a Lugdunin locus, an antibiotic first isolated 
from S. lugdunensis, a commensal of the human nasal 
cavity [40]. This novel thiazolidine-containing cyclic 
peptide antimicrobial was shown to be effective against 
S. aureus. Using the genome sequence of RIT 452, ARTS 
predicted three BGCs, out of which two show “proximity 
hits” (Table 1). The “proximity hits” readout in the ARTS 
program shows scaffold-specific self-resistance [14], 
which is considered a good way to mine for novel antibi-
otic BGCs [41].
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Broth dilution assays
The crude extract from 1  Liter of spent RIT 452 
media was able to inhibit the pathogens MRSA, E. 
coli ncr1_NJ, and P. aeruginosa AR-230 at moder-
ate concentrations and the apparent minimum inhibi-
tory concentrations (MIC) in each case is shown in the 
Additional file 1: Table S1.

Disc diffusion assays
Crude ethyl acetate extract from spent LB media was 
spotted on sterile discs and plated on LB agar seeded 
with different species of bacteria which are not clinical 
pathogens, whereby the extract inhibited the growth 
of all strains tested (Additional file  1: Figure S1). The 
zones of inhibition (ZOIs) show a graded increase with 
increased volume of extract. The dose response curve 
created using the ZOIs shows that the extract inhibited 
the growth of S. aureus, E. coli, and P. aeruginosa along 
roughly the same trend while B. subtilis had a steeper 
increase in dosage response (Additional file  1: Figure 
S1). Among the crude extracts obtained by process-
ing with hexanes, toluene, ether, dichloromethane and 

ethyl acetate, only one fraction (diethyl ether) showed 
a ZOI.

Enrichment of active metabolites using liquid 
chromatography
The diethyl ether extract when subjected to liquid chro-
matography using a C18 column (see methods) with S. 
aureus as the test strain. The extract when fractionated 
showed activity only in fraction 32 (ZOI  =  15  mm), 
corresponding to a single peak in the LC channel of the 
LCMS (Fig.  2A), but at least four ionizable species in 
the positive scan mode (Fig. 2B). The largest peak corre-
sponding to 0.652 min shows the masses 335.5, 401.7 and 
445.6 in the positive scan mode. The active compound(s) 
were not further characterized.

Discussion
Exiguobacterium strains have been previously reported 
to nearly triple their cell length after exposure to organic 
solvents [20], whereas RIT452 also undergoes cell elon-
gation upon starvation. This suggests that cell elongation 
might be a generic stress response in the Exigobacterium 

Fig. 1  SEM analysis. Exiguobacterium RIT452 under different conditions. A Cell elongation observed due to starvation on R2A (minimal medium); B 
cells grown on TSA for 1 week and C cells grown on TSA for 5 weeks. The magnifications are 9830 ×, 26,500 ×, and 44,900 ×, respectively

Table 1  Secondary metabolites predicted by antiSMASH 5.0 genome mining

The compounds shown in this table show four of the 24 compounds antiSMASH predicted, which could potentially exhibit antibiotic characteristics. If core and 
resistance genes have intersecting locations on the same scaffold as predicted by ARTS, they are marked as BGC proximity hits

Cluster no. Predicted biosynthetic 
metabolite

Coordinates within the 
genome

% Similarity to known cluster ARTS BGC 
proximity 
hits

1 Terpene 69,899–90,726 33 (with carotenoid biosynthetic gene cluster) –

4 Siderophore 5,05,835–5,19,165 – Yes

9 Putative antibiotic 8,97,206–9,08,755 26 (with lugdunin biosynthetic gene cluster)

20 Terpene 1,60,337–1,81,161 – Yes
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genus. However, it is not known if this response also 
occurs as a result of interaction with other bacteria.

An Indian rhizosphere Exiguobacterium strain pro-
duces a broad spectrum with an unusual dihydroer-
gotamine-type antibiotic [42], apart from which little 
is known about bioactive compounds produced by the 
genus Exiguobacterium. The diversity of microbial 
metabolites may be partly underestimated, since each 
BGC does not necessarily produce only one metabolite, 
and growth conditions may change the metabolite pro-
duced by altering the expression of the same BGC [43]. 
Sequence identity at the level of genes in BGC producing 

similar compounds were reported to range between 58 
and 80% [44]. By these criteria, the similarity to known 
BGC for our data is not very high, suggesting potential 
novelty.

The suggestion of metabolite novelty is encouraging 
since the RIT 452 extract contains compound(s) inhibit-
ing a Gram positive clinical strain (MRSA) at lower con-
centrations (apparent MIC) than Gram negative clinical 
strains (Additional file 1: Table S1). Fractionation of the 
extracts using a non-clinical S. aureus strain shows that 
the activity is concentrated in the range of 95% acetoni-
trile, which hints at a relatively non-polar compound. 

Fig. 2  Disc assay using LC fractions 31–36 from diethyl ether extraction and LCMS data. A The LC protocol was run to collect fractions of the 
RIT452 diethyl ether extract. Each was condensed, fully dried, and re-suspended in 100 µl of methanol. 60 µl of each fraction was added to a sterile 
diffusion disc and plated on LB agar seeded with S. aureus. The zone of inhibition (ZOI) of fraction 32 is 15 mm after 16 h of growth. B The LC 
channel in the LCMS shows only one chromatographic peak, while the MS channel shows at least four ionizable species in the positive scan mode. 
C The MS pattern corresponding to the beginning of the largest MS peak (0.652 min) in B shows the peaks 335.5, 401.7 and 445.6 in the positive 
scan mode between 100 and 1000 m/z
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Further “wet lab” experiments are needed to identify the 
bioactive compound(s) to verify the predictions made by 
bioinformatics analysis.

Limitations
The active fraction contains more than one ioniz-
able species and the chemical structure/s of the active 
compound/s are still unknown. MIC values and safety 
data of the isolated compound are also unknown.
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