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ABSTRACT: We present a new approach to the calculation
of solvent-accessible surface areas of molecules with potential
application to surface area based methods for determination of
solvation free energies. As in traditional analytical and
statistical approaches, this new algorithm, called TRIFORCE,
reports both component areas and derivatives as a function of
the atomic coordinates and radii. Unique to TRIFORCE are
the rapid and scalable approaches for the determination of
sphere intersection points and numerical estimation of the
surface areas, derivatives, and other properties that can be
associated with the surface area facets. The algorithm performs a special tessellation and semianalytical integration that uses a
precomputed look-up table. This provides a simple way to balance numerical accuracy and memory usage. TRIFORCE calculates
derivatives in the same manner, enabling application in force-dependent activities such as molecular geometry minimization.
TRIFORCE is available free of charge for academic purposes as both a C++ library, which can be directly interfaced to existing
molecular simulation packages, and a web-accessible application.

1. INTRODUCTION

Molecular simulations often involve balancing between
complexity and computational tractability. One common
approximation that makes macromolecular simulations, such
as protein folding and association, tractable is to use implicit
rather than explicit solvent. Implicit solvents trade the detailed
accounting of water, lipid, or other surrounding solvent
molecules for an averaged effective solvent representation. To
do this, the many explicit degrees of solvent freedom are
integrated out of the system and replaced with free energies of
solvation. Free energies of solvation have been observed to be
well-correlated with the interfacial or solvent-accessible surface
area (SASA) in the case of nonpolar solutes.1−4 Many methods
for implicit solvation have been developed which take
advantage of this observation to provide quantitative
predictions for solvation free energies using the SASA,5−14

though it should be noted that surface area based approaches
are not the only avenue for estimating such quantities.15−17 To
perform simulations with implicit solvents that depend upon
the SASA, we need both per-atom SASAs and their derivatives.
Several algorithms and methods have been developed which
can compute these quantities spanning from analytically exact
approaches18−23 to statistical or numerically approximate
approaches.24−27

We are interested in performing molecular simulations in
implicit solvents that report solvation free energies with a high
degree of accuracy. Much of our motivation for the work
presented within comes as a result of our experiences applying
numerical surface area methods to these problems and
encountering performance limitations with subsequent numer-
ical derivatives that make them, while accurate, undesirable in
general use. Analytical approaches available are also often
performance limiting, and potentially faster statistical ap-
proaches are often marked by substantial nonuniform errors.
Additionally, many methods are physically limited in some way,
such as the inability to treat hydrogen atom contributions to
the SASA. Thus, despite the large number of surface area
algorithms in the scientific literature, we found there to be a
surprising lack of readily accessible, working, and robust
approaches that provide both accurate surface areas and
accurate derivatives.
Here, we present an alternative semianalytical approach for

computing Lee−Richards SASAs and their derivatives from
coarse-grained or all-atom representations of molecular
systems.28 This method, which we refer to as TRIFORCE,
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employs a precomputed look-up table that enables accelerated
determination of component areas and derivatives as a function
of the principal angles defining boundary interfaces. We refer to
this as a semianalytical method because, while the process for
determining these principal angles is analytical, we perform a
numerical interpolation look-up on a discretized grid of surface
areas and their derivatives as a function of these angles. We
evaluate the correctness of this approach with comparisons to
analytical methods and show that the numerical accuracy is
determined by the density of this look-up table, with the
primary cost being one of memory size and memory access
rather than compute cycles. Our intent is for the TRIFORCE
method to fill the apparent gap between the theoretical
landscape of surface area algorithms and the realm of practical
usage.

2. AREA CALCULATION
In classical molecular simulations, molecules are modeled as a
set of intersecting spheres Sl with radii corresponding to their
extended van der Waals (vdW) surface. The radii for this
extended vdW surface often include a solvent probe radius term
(traditionally 1.4 Å) to best align this extended surface with the
average distance to the surrounding solvent. This extended
surface is also called the Lee−Richards solvent-accessible
surface.28 The solvent-accessible surface area A of a molecule
is then calculated by adding up all solvent exposed areas of the
set of spheres A(l) using

∑=A A
l

l( )

(1)

A(l) is a complex shape that we represent as a sum of simpler
component areas. These component areas are triangular
patches which are constructed by a special tessellation of the
exposed area of a sphere, as depicted in Figure 1. Here, the
exposed area of central sphere S0 is composed of six triangular
patches, each having two sides which are great circle segments
and a third side which is a spherical arc.
The boundary of the exposed area, which we will refer to as

the exposed boundary, is composed of these spherical arcs,
which are segments of circular interfaces I between spheres S
that intersect with Sl. For example, circular interface Ij is located
in the plane of intersection between Sl and Sj where the hulls
touch each other. An intersection point p exists between
circular interfaces whenever two interfaces intersect on the
exposed boundary. Two consecutive intersection points pij and
pjk on an exposed boundary, in conjunction with a tessellation
point χ ̇, form the three points of a triangular patch Aijk

(l). χ ̇ is the
point on Sl where the tessellation axis χ intersects. χ is an
arbitrary vector for each atom fixed for the duration of the
calculations.
Areas Aijk

(l) are calculated on a unit sphere and therefore have
to be multiplied with the squared radius rl of sphere Sl:

∑̂ =
∈

A A rl

ijk
ijk

l
l

( )

( ) Seg

( ) 2

l (2)

which results in area Â(l). Here, Segl denotes the set of all
interface segments of the exposed boundaries on Sl.
Patches Aijk

(l) can be either fully or fractionally part of the
SASA, or the solvent excluded surface area (SESA), which is
complement to the SASA, i.e., the area that is buried by
neighbor spheres. Figure 2 shows that, over the course of the
algorithm, triangular patches contribute positively if they are

fully or fractionally part of the SASA (blue) or contribute
negatively if they are fully part of the SESA (red).
In addition, the interface segments of a patch Aijk

(l) can be
either part of a convex or a concave interface. Figure 3
illustrates the distinction between these two types of interfaces.
When a sphere with a smaller radius moves toward and begins
to intersect a sphere with a larger radius, the sphere−sphere
intersection which results is a convex interface. Once half the
small sphere is occluded, this interface transitions to a concave
interface. Concave interfaces can be seen as inverted convex
interfaces, and an area computed using a concave interface will
have opposite sign. Once patches Aijk

(l) are summed up to form
Â(l), this area will either be positive or negative, depending on
whether SASA or SESA has been counted, respectively. If the
area is a SESA, we compute the complement to convert it into a
SASA. This is done by adding the surface area of a sphere with
radius rl to this negative Â(l):

Figure 1. Tessellation of the exposed area of sphere S0 by component
triangles. The corners of the triangles are two consecutive intersection
points, denoted by p, and the tessellation point, χ ̇. p are intersections
of circular interfaces I on the surface of S0.
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Figure 4 shows the principal angles Φ, ψ, and λ used in
determining the areas of a triangular patch. Each triangular
patch Aijk

(l) is assembled from two subpatches split by the so-
called tessellation plane, i.e., the plane orthogonal to the cross
product of χ and the intersphere vector. Here, Φ is the angle
between the tessellation plane and a vector from the center of Ij
to a p. The angle ψj is between the tessellation axis and the
center of Ij. Finally, λj is the opening angle of the cone
constructed from Ij and the center of sphere Sl.
The area of each subpatch is looked-up and interpolated

from a precomputed integration table T(Φ,ψ,λ). Φ can either
be positive or negative depending on whether its corresponding
intersection point is on the “right” or “left” side of the
tessellation plane, which results in either a positive or negative
area, respectively. The two subpatches are subtracted from each
other to result in the full area of patch Aijk

(l).

From now on, whenever unambiguous, we omit the index (l)
for simplicity. Throughout the work we will use the symbol · to
denote the dot product, symbol ⊗ to denote the outer vector
product, and symbol × to denote the cross-product. Whenever
the cross-product is used between a matrix and a vector, a
columnwise cross-product is assumed.
Figure 5 highlights the key angles and vectors that factor into

the calculation of the surface area by illustrating both concave

and convex sphere intersection interfaces. An interface Ii is
determined by two quantities: (1) the amount of penetration
gi* of Si into Sl normalized to a unit sphere:

υ = −x xi i l (4)

υ= | |di i (5)

* =
+ −

g
d r r

d r2i
i l i

i l

2 2 2

(6)

where υi is a vector of length di between Cartesian coordinates
xl and xi of spheres Sl and Si. (2) Interface type f i, which is

Figure 2. Illustration of the tessellation of an exposed boundary when
the tessellation-point is (left) inside or (right) outside the exposed
boundary. When the tessellation point is outside the boundary, we
compute both positive (blue) and negative (red) areas, the sum of
which is equal to the result when the intersection point is inside the
boundary.

Figure 3. Illustration showing how an interface between two spheres
transitions from convex to concave with increasing sphere overlap.

Figure 4. Triangular patch formed by points pij, pjk, and χ ̇, formed
from two subpatches, defined by principal angles Φ, ψ, and λ. The area
of the subpatch is acquired from a simple look-up table T(Φ,ψ,λ)
dependent on these principal angles.

Figure 5. Sphere Sl intersects with two neighboring spheres Si and Sj.
The intersections result in one concave (red) and one convex (blue)
circular interface, respectively, to which normalized vectors μi and μj
point, with ρ as the angle between these normalized vectors. Vectors υi
and υj connect Sl to the respective sphere centers xi and xj, and these
vectors have magnitude di and dj. gi and gj are simply the distances
from the Sl center to interfaces Ii and Ij.
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either positive for convex or negative for concave interfaces, is
given by

= *f gsign( )i i (7)

Previously we stated that concave interfaces are treated as
inverted convex interfaces. Concave interfaces will have a
negative gi* which needs to be made positive:

= | *|g gi i (8)

Angular calculations are performed on unit vectors:

μ
υ

= f
di i

i

i (9)

which include the radial distances between two interfaces Ii and
Ij,

μ μρ = ·arccos( )ij i j (10)

as well as the opening angle to the interface,

λ = garccos( )i i (11)

and the angle to the tessellation axis,

χ μψ = ·arccos( )i i (12)

Multiple circular interfaces will intersect if the sum of their
conical opening angles λi and λj fall below their radial distance
ρij, and if one does not entirely contain the other. The
intersection between these circular interfaces will then result in
two intersection points pij and pji. The cases in which opening
angles exactly match their radial distance, or two interfaces are
identical, are treated as if there were no intersection at all.
The three look-up parameters are derived from these circular

interfaces. Φ angles are calculated with respect to a specific
interface, which is illustrated in Figure 6. Here, Φ angles for pij

differ with respect to interface Ii or Ij. The curved arrows over
the Φ indices represent the direction of the intersection. Seen
from Ij, pij is viewed as an incoming point (connecting Ii with Ij)
and pjk as an outgoing point (connecting Ij with Ik). The
respective angles for interface Ij are an incoming angle Φji

↶ and
an outgoing angle Φjk

↷.
Figure 7 illustrates how these incoming and outgoing angles

are calculated utilizing the previously introduced quantities for
circular interfaces. First, ηij is derived from the two opening

angles λi and λj, and the angle between the two interface vectors
ρij:

η λ ρ λ λ ρ= −arccos(cot( ) cot( ) cos( ) csc( ) csc( ))ij i ij j i ij

(13)

ηij is the opening angle of the intersection between the
interfaces. Next, a normal vector ni to the tessellation plane is
established:

ν χ μ= ×i i (14)

ν
ν

=
| |

ni
i

i (15)

in which νi is the unnormalized vector. This calculation is
followed by the computation of a vector normal to μi and μj,
which we will denote as the normal to the interfacial plane of Ii
and Ij:

ν μ μ= ×ij i j (16)

ν
ν

=
| |

nij
ij

ij (17)

in which again νij describes the unnormalized vector. The angle
between these two normal vectors determines the rotation of Ij
around Ii:

ϖ = ·n narccos( )ij i ij (18)

Whether this rotation is to the left or to the right depends on
the orientation of χ with respect to the interfacial plane of Ii and
Ij:

χ= − ·q nsign( )ij ij (19)

resulting in the signed rotation:
ω ϖ= qij ij ij (20)

ηij and ωij need to be combined into both outgoing Φij
↷ and

incoming Φij
↶ angles:

γ ω ηΦ = + +↷ ↷ f fij ij ij i j ij (21)

Figure 6. Intersections between circular interfaces Ii, Ij, and Ik on
sphere Sl resulting in intersection points pij, pjk, pkj, and pji. Φ angles
are calculated with respect to each interface’s tessellation plane. Here,
we show all of the Φ angles for interface Ij. Following the path
indicated by the arrows, the SASA will be on the right-hand side. This
path direction makes pij an incoming intersection point of Ij and pjk an
outgoing intersection point.

Figure 7. Intersections between circular interfaces Ii and Ij resulting in
pij and pji. A tessellation plane is formed between μi and χ. The
calculation of Φ can be split into the calculation of angles ω and η. ωij
denotes the rotation of μj around μi with the tessellation plane as
reference. ηij is the opening angle of the intersection of interfaces Ii and
Ij.

Journal of Chemical Theory and Computation Article

dx.doi.org/10.1021/ct5002818 | J. Chem. Theory Comput. 2014, 10, 4121−41324124



γ ω ηΦ = + −↶ ↶ f fij ij ij i j ij (22)

with γij
↷ being either zero or π and γij

↶ being either zero or −π,
indicating whether the complement of ω needs to be calculated.
Both quantities depend on the rotation of Ij around Ii and the
magnitude of ηij:

γ π π ω η= − − −↷ (sign( ) 1)ij ij ij (23)

γ π π ω η= − − − + −↶ (sign( ) 1)ij ij ij (24)

Utilizing the preceding equations, we can look-up the areas of
two subpatches of a triangular patch Aijk

(l) from precomputed
tables T(Φjk

↷,ψj,λj) and T(Φjk
↶,ψj,λj). As previously stated, the

two subareas need to be subtracted from each other.
Furthermore, if the outgoing angle is smaller than the incoming
angle (indicated by qijk), the complementary area needs to be
calculated:

= Φ − Φ↷ ↶q sign( )ijk jk ji (25)

π ψ λ=M T( , , )j j j (26)

ψ λ ψ λ= − − − Φ + Φ↷ ↶A f M q T f T f( ( 1) ( , , ) ( , , ))ijk
l

j j ijk j jk j j j ji j j
( )

(27)

where Mj is the maximal area of a triangular patch for a given
interface Ij specified by ψj and λj.

3. EXPOSED BOUNDARY SEGMENTS
Each sphere can possibly have multiple contributions to A(l) in
the form of multiple discontinuous segments of its circular
interface. Each segment, described by a tuple (i,j,k), can be
uniquely identified by its corresponding intersection points pij
and pjk. Segments containing pij belong to the exposed
boundary if, generally speaking, they are not covered by any
other interface.
To calculate the three principal angles Φ, ψ, and λ for each

intersection point of the boundary of the exposed area, it is
necessary to find all segments (i,j,k) that contain these points.
Each interface can possibly contain multiple segments for which
the calculation is performed separately.
For each interface a cyclic sorted list is established. In the

course of the algorithm, Φ angles for intersection points of all
intersecting interfaces are added to the list. After each addition,
the list is pruned by removing occluded intersection points
(and their Φ angles). Figure 8 illustrates this pruning process.
Here, every node between two corresponding intersection
points is removed. Corresponding intersection points are either
the two points of the newly added interface (blue double-
dashed area) or two points already present in the cyclic list (red
single-dashed). At the conclusion of the algorithm, the list
contains only intersection points that are on the boundary of
the exposed surface.

4. DISCONTINUITIES AND SINGULARITIES
Some constellations of spheres express extreme properties, or
singular behaviors, which can cause instabilities during force
calculations. These result in artificially large forces due to
numerical limits and force discontinuities due to the discrete
nature of soft-sphere and soft-circle intersections.
4.1. Contact Point between Two Spheres. Imagine the

following scenario for which key quantities are shown in Figure
9: two nonintersecting atoms Sl and Si with radii of 2.0 Å

approach one another. In the moment when the hulls just
touch, i.e., when their distance is at precisely 4.0 Å, the
derivative in the direction of the axis of separation abruptly

Figure 8. Addition of interface Ik to the cyclic list of interface Ii, which
already contains data from an intersection with Ij. Intersections Φij

↷

and Φij
↶ cause newly added intersection Φik

↶ to be deleted (red single-
dashed area). Intersections Φik

↷ and Φik
↶ cause old intersection Φij

↶ to
be deleted (blue double-dashed area). Only intersections Φik

↷ and Φij
↶

remain.

Figure 9. Illustration of the derivative (top) and area (bottom)
calculated as a function of separation distance for two 2.0 Å radius
spheres, with and without a distance-dependent logistic smoother.
Without the smoother, derivatives rapidly jump from zero to some
nonzero value upon contact. With the smoother, this discontinuity is
mitigated in force space at the cost of adding a small hill in area space.
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jumps from zero to some nonzero value (illustrated by the
continuous lines). Discontinuities of this type will act as large
force barriers during a minimization or lead to numerical
instabilities in the time-dependent evolution of the surface.29

To compensate, we smooth the force and area around the
contact point with a logistic function Λ(tj). Figure 9 illustrates
the effect of Λ(tj). The dashed line shows a smooth transition
in force space around the contact point. However, it also
introduces a small hill in the corresponding region in area
space. The change in area in this region is quite small, leading
to only a minor perturbation of the computed surface area
values. We calculate Λ(tj) using a term tj which depends on the
distance between the spheres:

̃ = ΛA t A( )ijk
l

j ijk
l

( )
( )

( )
( )

(28)

= −
+

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟t p

d

r r
1j

j

j l
0

(29)

Λ =
+ − −

x
xp p

( )
1

1 exp( 2 )1 1 (30)

Here, parameters p0 and p1 adjust the shape of the smoothing
function. We set p0 = 0.15 and p1 = 8.0 in this implementation.
4.2. Interfacial Angular Singularities. The derivatives of

the principal angles ψ, λ, and Φ (which involves η and ω) lead
to the calculation of fractional terms in which the denominator
vanishes once the angles approach either 0 or π. This gives rise
to numerically anomalous very large (or infinite) forces. λ and η
are two angles that can describe extreme geometrical
constellations: a very small λ refers to two spheres that just
barely touch, a very small η refers to two interfaces that just
barely touch, and a very large η refers to interfaces of identical
size with nearly perfect overlap. In all cases, we can use a
threshold to circumvent calculation in these extreme angular
regions. Doing so creates a small discontinuity which could be
removed using a smoothing strategy similar to that used for
sphere−sphere contact-point discontinuities.
ψ angle singularities are entirely artificial due to the arbitrary

nature of the tessellation axis χ. Singularities can be prevented
by bringing χ into general position, i.e., choosing a χ which is
not degenerate with respect to any ψ angle.
ω angle singularities can be handled in the same way as ψ

angle singularities, i.e., by choosing a general position with
respect to ψ and ω. However, we have found this approach to
be computationally intensive. Instead, we remove the
singularity via a tessellation-axis transformation. If a degenerate
ω angle is detected for a given derivative, a new χ* is chosen
arbitrarily such that it is in a general position. We then calculate
a normal vector ni* to the new tessellation plane using this new
axis. We calculate a transformed ωij* with respect to the new
axis using eqs 14−20. ωij and ωij* are related by the angle
between the new and old tessellation plane τi:

τ = *·n narccos( )i i i (31)

The original ωij can be reconstructed:

ω π τ ω= − + − + + *q q q q q q q q q q
1
2

( )ij i ij1 0 1 2 0 2 0 1 0 2

(32)

where the relationship between the new and old tessellation
planes depend on the geometrical constellation of χ* and nij. q0
indicates if the tessellation plane and the interfacial plane of Ii

and Ij are similarly orientated with respect to the tessellation
axis:

χ χ= · ·q n nsign( ) sign( )ij i0 (33)

q1 and q2 determine the angular relationship between τi and ωij*,
and whether the complement of ωij* needs to be computed:

τ ω τ ω
=

− > ∧ ≥ *
⎪

⎪⎧⎨
⎩

q
q q q1 ( ) ( )

1 else

i ij i ij
1

0 0 0

(34)

τ ω τ ω
=

− > ∧ < *
⎪

⎪⎧⎨
⎩

q
q q q1 ( ) ( )

1 else

i ij i ij
2

0 0 0

(35)

The advantage of eq 32 is that it does not depend on the
possibly singular angle between ni and nij. Instead, it depends
on the guaranteed nonsingular angles ωij* and τi for which
partial derivatives can be robustly calculated.
A different kind of singularity arises if an interface contains

the mirror point of the tessellation point on the opposite side of
the sphere. This would be the case if the sum of λ and ψ is
equal to π or if it exceeds π. During the calculation of the
integration tables, we map Φ angles to ϕ angles, which
represent longitudinal lines that pass through the same
intersection point (see the Appendix for a more detailed
explanation of ϕ angles). The former case would map one Φ
angle to an infinite number of ϕ angles. The latter would map
Φ angles to ϕ angles in such a way that close to the singularity
the look-up tables would be too sparse. This gives rise to
imprecise areas and derivatives. To handle this, we split each
sphere into two independently tessellated hemispheres. As a
result, no Φ angles close to the singularity need be used.

5. RESULTS
5.1. Correctness of Areas and Derivatives. We show the

correctness of the area and derivatives by comparing to both
exact and approximate values for a set of proteins and
integration tables of different grid sizes. Here, we compare
against the exact output of http://curie.utmb.edu/getarea.html
and the approximate LCPO algorithm.26 The set of proteins we
chose includes ubiquitin, five structures of increasing size that
were mentioned in ref 21, 14 structures from Decoys ‘Rʼ Us30

that we have observed to be challenging for statistically derived
area calculation algorithms, and 22 structures from ref 31 that
represent a set of different folds. We list PDB codes for these
structures in Table 1 and Table 2. We note that all of these
protein structures lack hydrogen atoms due to limitations of
both the exact GETAREA and approximate LCPO methods.
TRIFORCE suffers from no such limitation.
Table 1 and Table 2 show the relative unsigned error (RUE)

of per-atom areas and derivatives, respectively, for this set of 42
proteins. At the bottom of these tables we also report the
average RUE and average root-mean-square deviation (RMSD)
over this set. In general, TRIFORCE shows significantly
improved agreement with the exact per-atom areas and
derivatives over the approximate LCPO technique in these
comparisons. Note that while the listed proteins are sorted by
the number of heavy atoms, TRIFORCE is not affected by
protein size. LCPO is also not greatly affected by the number of
heavy atoms, though there appears to be a greater degree of
variability of the predicted per-atom areas when using this
approach. When we use an interpolation grid detail of 64 rather
than 16 with TRIFORCE, we observe a roughly 15 times
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reduction in area RUE and a 7 times reduction in derivative
RUE. These calculated per-atom areas and derivatives are
numerically invariant upon rotation of the molecules and choice
of the tesselation axis, as the measured fluctuations when
rotating the molecule and/or the tesselation axis are smaller
than the errors reported in Table 1.
We note that the real differences in the derivatives are better

than those shown in Table 2. The reason is not imprecise
calculations by TRIFORCE but differences between the

algorithms of GETAREA and TRIFORCE due to limited
numerical precision: both algorithms utilize different methods
to determine whether a sphere contributes to the exposed
boundary or not. As an example, observe the large difference in
the derivatives of molecule “1MBS”. Here, a single atomistic
constellation expresses extreme properties. In this constellation
there are two interfaces in which one is buried almost
completely in the other. This leads to an ambiguous situation
in which GETAREA sees no intersection between the interfaces

Table 1. Relative Unsigned Error (RUE) of the Per-Atom
Surface Areas Calculated Using TRIFORCE, with Grid
Dimensions of 16 and 64, and LCPO Relative to Exact
(GETAREA) Surface Areas for 42 Proteins

RUE of area (Å2)

LCPO TRIFORCE

PDB code heavy atoms grid 16 grid 64

1PLX 40 0.9602 0.0070 0.0001
1CBH 260 1.8208 0.0148 0.0021
1SP2 269 1.6250 0.0183 0.0018
5RXN 422 3.8093 0.0372 0.0020
1I6F 436 3.8105 0.0486 0.0003
4PTI 454 4.2465 0.0344 0.0012
1FAS 468 3.7621 0.0333 0.0058
1SN3 492 3.4444 0.0390 0.0008
1CSP 505 1.8924 0.0241 0.0012
2CRO 520 5.6744 0.0239 0.0006
1FVQ 545 5.7127 0.0465 0.0022
1SDF 550 5.5041 0.0374 0.0034
1UBQ 602 2.6297 0.0178 0.0008
1HIP 617 3.9922 0.0266 0.0011
1PHT 666 4.1957 0.0460 0.0017
1J5D 721 4.9532 0.0614 0.0031
2CDV 801 5.4789 0.0316 0.0020
1OPC 805 5.0891 0.0361 0.0039
1KTE 818 5.4651 0.0401 0.0021
1NSO 858 4.2843 0.0279 0.0019
2PAZ 932 2.6954 0.0303 0.0018
1CHN 966 3.7557 0.0273 0.0017
1K40 976 3.4175 0.0206 0.0004
1OOI 986 5.0779 0.0348 0.0019
1PDO 988 5.8762 0.0361 0.0025
6LYZ 1001 4.8848 0.0342 0.0026
1LIT 1045 3.3452 0.0219 0.0012
1BJ7 1208 3.1121 0.0254 0.0015
2I1B 1219 8.8207 0.0349 0.0023
1MBS 1223 7.6788 0.0372 0.0025
1EMR 1232 6.8879 0.0289 0.0037
1CZT 1311 5.4416 0.0344 0.0012
2PTN 1629 4.6474 0.0286 0.0013
5PAD 1655 4.8401 0.0304 0.0007
1SUR 1739 3.1552 0.0304 0.0020
2HVM 2087 3.2928 0.0287 0.0022
2CYP 2299 5.3554 0.0478 0.0021
1RHD 2319 7.9767 0.0455 0.0034
2TMN 2432 7.6176 0.0414 0.0031
2TS1 2457 3.8035 0.0333 0.0026
1FRG 3361 3.7585 0.0313 0.0015
1MCP 3401 4.0348 0.0284 0.0020

av RUE 4.5577 0.0331 0.0020
av RMSD 9.352 0.045 0.004

Table 2. Relative Unsigned Error (RUE) of the Per-Atom
Derivatives Calculated Using TRIFORCE, with Grid
Dimensions of 16 and 64, and LCPO Relative to Exact
(GETAREA) Derivatives for 42 Proteins

RUE for grad (Å)

LCPO TRIFORCE

PDB code heavy atoms grid 16 grid 64

1PLX 40 9.030 0.164 0.005
1CBH 260 4.558 0.113 0.013
1SP2 269 6.743 0.181 0.026
5RXN 422 5.543 0.108 0.011
1I6F 436 6.408 0.138 0.043
4PTI 454 7.469 0.154 0.009
1FAS 468 6.032 0.114 0.013
1SN3 492 7.871 0.125 0.031
1CSP 505 5.817 0.114 0.015
2CRO 520 5.209 0.067 0.009
1FVQ 545 4.990 0.068 0.006
1SDF 550 6.004 0.122 0.007
1UBQ 602 6.049 0.107 0.008
1HIP 617 7.415 0.101 0.009
1PHT 666 6.425 0.172 0.014
1J5D 721 6.140 0.101 0.010
2CDV 801 6.614 0.108 0.014
1OPC 805 6.407 0.104 0.019
1KTE 818 5.425 0.080 0.010
1NSO 858 5.330 0.117 0.027
2PAZ 932 5.677 0.097 0.010
1CHN 966 5.060 0.071 0.008
1K40 976 4.625 0.071 0.012
1OOI 986 5.930 0.088 0.009
1PDO 988 6.853 0.124 0.013
6LYZ 1001 5.903 0.096 0.010
1LIT 1045 5.047 0.081 0.012
1BJ7 1208 5.741 0.104 0.014
2I1B 1219 5.988 0.109 0.018
1MBS 1223 6.590 0.174 0.059
1EMR 1232 6.636 0.232 0.059
1CZT 1311 4.568 0.079 0.009
2PTN 1629 5.307 0.120 0.031
5PAD 1655 5.750 0.103 0.009
1SUR 1739 6.108 0.179 0.020
2HVM 2087 5.081 0.088 0.008
2CYP 2299 5.640 0.108 0.016
1RHD 2319 5.015 0.092 0.011
2TMN 2432 5.050 0.087 0.014
2TS1 2457 5.207 0.114 0.009
1FRG 3361 4.780 0.083 0.013
1MCP 3401 5.409 0.086 0.008

av RUE 5.815 0.112 0.016
av RMSD 4.367 0.166 0.071
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while TRIFORCE sees the intersection. Consequently,
TRIFORCE will calculate forces for the extra interface while
it is invisible for GETAREA. Due to the ambiguous nature of
these cases, there is no right or wrong result. Both are correct
within the choices made in algorithm implementation.
Figure 10 shows the average per-atom RUE of both

TRIFORCE and LCPO areas and derivatives relative to exact

(GETAREA) values. We show the TRIFORCE results as a
function of interpolation grid detail. With an extremely coarse
grid of 3 (3 × 3 × 3), the TRIFORCE areas and derivatives are
already closer to the exact values than those reported by the
statistically derived LCPO method. With finer grids, the
TRIFORCE results converge on the exact values. Aside from
the time required to load a grid in the initialization of
TRIFORCE, there is, in principle, no computational perform-
ance penalty in choosing a finer grid. The primary cost as a
function of grid detail is the memory required for storing the
grid values. To test this, we performed a series of TRIFORCE
surface area calculations on egg white lysozyme (6LYZ: 1001
heavy atoms, 129 residues) on a 2.6 GHz Intel Core i7
processor with 6.25 MB of accessible cache. For grid details up
to 32, the averaged real world performance of the TRIFORCE
integration time was 60 ms. Grid details of 64 and 80 have
average integration times of 70 ms, a greater than 15%
performance penalty. This penalty is due to cache overflow,
which forces an increasing number of system memory calls. All
grids with details smaller than 32 will fit entirely on this
processorʼs cache while larger grids do not. For example, a
quadratic interpolation scheme with a grid detail of 16 uses 328
KB of memory while a grid detail of 64 uses 21 MB. We can
modulate these memory requirements to varying degrees by
implementing different interpolation schemes; however, we
expect increasingly large grids that overflow the cache to suffer
from an increasing number of system memory calls. This will
lead to an increasing performance penalty up to a hardware
specific maximum, where nearly all of the grid access steps of

integration are done with system memory calls rather than
cache look-ups.
We note that performance analyses such as those stated

above are very much hardware- and implementation-depend-
ent. This makes it difficult to perform rigorous performance
comparisons between TRIFORCE, analytical, and even
numerical approaches. Instead of head-to-head timings, we
attempt to provide performance guidance relative to the
GETAREA analytical method through operation counts from
the published equations. Based on the relative numbers of
floating point addition, multiplication, division, and square root
operations, TRIFORCE integration will exhibit an approx-
imately 15% reduced latency over GETAREA analytical
integration on current Intel Core i7 processors. It should be
noted that integration does not consider the construction of the
Gauss−Bonnet path, which has an identical cost for all
analytical surface area methods that require it and which is
approximately an order of magnitude more costly than
TRIFORCE integration. We are currently preparing a manu-
script detailing how to accelerate Gauss−Bonnet path
constructions with little loss in numerical accuracy, bringing
performance in-line with TRIFORCE integration.
Finally, while not overly apparent in Figure 10, there is a

slight bump in the per-atom derivative RUE for a grid detail of
25. This bump comes not from the TRIFORCE algorithm but
from a numerical artifact in the construction of this specific
grid. The integration routine used in its construction reached
numerically unstable regions, preventing calculation of this grid
to the same precision as the others. As the performance
differences are minimal when using neighboring grid details, we
recommend not using this specific interpolation grid.

5.2. Minimization Test of Particle Surface Areas. We
performed both steepest descent and Broyden−Fletcher−
Goldfarb−Shanno (BFGS) minimizations on a fluorene
molecule (C13H10) to test correctness of the derivatives. No
atomic bonding, repulsive, torsional, or angular forces were
included; as such the minimization was expected to reduce the
molecule into a single sphere. While this is somewhat
unphysical, it provides a stringent test of the algorithm as it
has a known target surface area, that of an inflated sphere (vdW
+ water distance) of one single carbon with radius of 3.09 Å.
Figure 11 shows the averaged course of the steepest descent
minimization as a function of TRIFORCE grid detail, each over
1000 randomized runs. After 80 steepest descent steps, the
averaged total area is mostly level and the system is nearly
completely collapsed. The BFGS minimizations (not shown)
tended to converge somewhat sooner at around 50 steps.
Complete collapse is not observed with either minimizer due to
how the minimization algorithms treat buried spheres. In the
late stages of minimization, all spheres with radii smaller than
3.09 Å are entirely buried inside the larger spheres, and all
spheres with radii of 3.09 Å are mostly covered by each other.
Because of their lack of SASA, the completely buried spheres do
not experience forces and are therefore invisible to the
minimizer. As such, these spheres are prone to resurface
constantly when their enveloping spheres shift positions.
Similarly, the principal angles become numerically less well
defined when spheres nearly overlap, exaggerating this
resurfacing behavior.
Coarser grid details have less accurate derivatives, leading to

greater numerical variability in this minimization process,
denoted by the shaded standard deviation envelop regions in
Figure 11. We attempted even lower resolution grid details, but

Figure 10. Relative unsigned error of per-atom areas and derivatives
over a set of 42 proteins calculated using TRIFORCE and LCPO
relative to the analytical GETAREA method. We see that TRIFORCE
error decreases with increasing interpolation grid density.
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the derivatives become so poor at a grid detail of 3 (RUE of
derivatives, 5.9) that the minimizations would fail to converge.
Here, the atoms would move in mostly random directions,
separating the molecule into individual atomic spheres. It
appears that we need a grid detail of 4, which has an RUE of the
per-atom derivatives of 3.8, to ensure convergence. It is unclear
from this test if the derivatives from approximate surface area
methods such as LCPO (RUE of derivatives, 5.8) are
themselves sufficiently accurate to ensure convergence to the
expected minimum structure.

6. DISCUSSION
TRIFORCE has several features which distinguish it from
algorithms that perform equivalent tasks. It has the ability to
segment the exposed surface efficiently into triangular patches.
This ability allows TRIFORCE to accumulate not just surface
areas but any precomputed quantity. For such a purpose, the
algorithm seamlessly allows for two adjustments: (1) the
selection of an arbitrary tessellation axis χ, to adjust for
geometrical requirements and (2) the option to add additional
dimensions to the integration tables, to allow the modeling of a
functional surface with higher complexity.
In contrast to some algorithms that rely on united atom

molecular representations, TRIFORCE is capable of handling
all topologies, including concave circular interfaces. This is
crucial because such interfaces frequently occur in molecules
where hydrogen atoms are buried in large van der Waals radii of
bonded atoms.
Its tabular integration procedure can be efficiently

implemented onto GPUs (development is in progress) in
which this task becomes a simple texture look-up. The whole
algorithm has been designed to allow for parallel processing on
the level of circular interfaces, in contrast to an atomic level.

The nature of the algorithm structure gives TRIFORCE the
potential to utilize the GPUs or other massively parallel
architectures to full capacity. Integration tables are stored in an
architecture-independent way, enabling usage of the library on
different platforms right away.
All calculations can be made arbitrarily precise by increasing

the grid detail, as Figure 10 shows. Doing this will require
additional memory but will not slow down the algorithm, aside
from the initial loading procedure, if the grid is still small
enough to remain in the processing unit’s cache. TRIFORCE
can be accessed and run on the web from http://dillgroup.io. A
downloadable version of the source code is also available on
this Web site, free of charge for academic purposes.

7. CONCLUSION
We have presented a novel algorithm for the calculation of the
SASA and its derivatives for arbitrary molecules. Although the
method is partly numerical, errors in both of these quantities
are marginal, and we see performance and flexibility gains over
fully analytical approaches. We tested its correctness through an
extensive set of calculations on a database of 42 proteins of
various sizes and folds. We evaluated its robustness by
successfully applying TRIFORCE in minimization calculations
of the SASA. To compensate for discontinuities in the
derivatives upon sphere contact, we have introduced a logistical
smoothing function which is able to bridge the gap in force
space between two distant spheres and their intersecting
counterparts. Future direction for the development of
TRIFORCE involves complete parallelization of the algorithm
through implementation on GPUs and other massively parallel
architectures.

8. APPENDIX

8.1. Integration Tables
Integration tables are computed for a predefined grid of Φ, ψ,
and λ values. ψ and λ are parametrizations which correspond to
a virtual circular interface that has the two properties. The
integration over these simplistic triangular surface areas is
formally done by considering a vanishingly small patch Ω and
integrating over θ and φ:

∫ ∫ ψ θ θ
θ ψ

= ∂Ω
∂

× ∂Ω
∂φ

φ φ ψ λΘ
A d d sin( )

0

( , , )

i

j

(36)

θ is the radial length of an arc drawn between the tessellation
point and the boundary of a virtual interface. φ describes the
rotation of this radial line around the tessellation axis, whereas a
value of 0 corresponds to a radial line that intersects with the
center of the interface. Consequently, integration limits for θ
depend on the parametrization of the interface, as well as the
rotation φ, and is given by

φ ψ λ λ ψ ι
κ

Θ = ±⎛
⎝⎜

⎞
⎠⎟( , , ) arccos

cos( ) cos( )
(37)

with ι = [κ − cos(ψ)2 (− cos(λ)2 + κ)]1/2 and κ = cos(ψ)2 +
cos(φ)2 sin(ψ)2.

8.2. Derivatives
Forces are calculated with respect to the change in atomic
coordinates and its effect on surface area. We have to take into
account each atom xl and the change of coordinates of
intersecting atoms xδ

(l). For the sake of readability, we omit

Figure 11. Solvent-accessible surface area of a fluorene molecule
(C13H10) over the course of a steepest descent minimization without
bonding or repulsive forces between atoms when using TRIFORCE
with different grid details. The molecule minimizes down to a single
sphere of approximately radius 3.09 Å, corresponding to the radius of
the largest component atom and illustrated here with the gray line.
The shaded regions are the standard deviation envelopes over 1000
randomized runs. While all shown grid details minimize at much the
same rate, coarser grids exhibit more numerical noise as spheres begin
to overlap and the principal angles become less well defined.
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index (l) where possible. We denote the set of interface indices
of Sl by Intl.
8.2.1. Area. The derivative of the area of a molecule is

composed of the derivatives of the areas of its atoms:

∑∂
∂

= ∂
∂δ δ

A A
x xl

l( )

(38)

If δ ∉ Intl or δ ≠ l, the derivative will be zero. The derivatives of
each atom are comprised by derivatives from triangular patches:

∑∂
∂

=
∂

∂δ δ∈

A
r

A

x x

l

l
ijk

ijk
l( )

2

( ) Seg

( )
( )

l (39)

If δ ∉ {i,j,k} or δ ≠ l, the derivative will be zero. Each derivative
from a triangular patch is divided into two subpatches:
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With Pjk = (Φjk
↷, ψj,λj) and Pji = (Φji

↶,ψj,λj).
8.2.2. Integration Tables. The integration tables are

functions of ψ, λ, and Φ; their derivatives are split accordingly:

ψ
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The derivatives of the integration table with respect to the look-
up parameters are themselves drawn and interpolated from
three different look-up tables G(∂Φ), G(∂ψ), and G(∂λ):
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λ
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j
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(44)

Derivatives of the look-up parameters with respect to atomic
coordinates are calculated analytically as follows.
8.2.3. Angle ψ. Derivatives for angle ψ, illustrated in Figure 4

and eq 12, are
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8.2.4. Angle λ. Derivatives for angle λ, as illustrated in Figure
4 and eq 11, are
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8.2.5. Angle Φ. Derivatives for angle Φ, as illustrated in
Figure 4 and eqs 21−22, are

η ω∂Φ
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8.2.6. Angle η. Derivatives for angle η, as illustrated in Figure
7 and eq 13, are
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Let ρab = cot(λa) cot(ρab), σab = cos(λb) csc(λa) csc(ρab), and
ζab = ρab − σab:
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8.2.7. Angle ρ. Derivatives for angle ρ, as illustrated in Figure
5 and eq 10, are

μ
μρ ρ∂

∂
=

∂
∂

∂
∂xx

ab

a

ab

a

a

a (61)

μ
μ

μ μ

ρ∂
∂

= −
− ·1 ( )

ab

a

b

a b
2

(62)

The following identity applies: ρba = ρab.
8.2.8. Angle ω. Derivatives for angle ω, as illustrated in

Figure 7 and eq 20, are
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8.2.9. Logistic Smoothing. The logistic smoother is applied
to the area term by multiplication which creates the following
additional partial derivatives in force space. Generally, the
smoothing has impact on all derivatives that depend on
interface Ij:
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8.2.10. Tessellation-Axis Transformation. Applying a
tessellation-axis transformation as discussed in the section
describing singularities involves the calculation of additional
partial derivatives:
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The second addend can be calculated using the same series of
eqs 63−74.
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Both addends can be calculated using eqs 68−74.
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(22) Hayryan, S.; Hu, C.-K.; Skrĭvańek, J.; Hayryan, E.; Pokorny,́ I. J.
Comput. Chem. 2005, 26, 334−343.
(23) Klenin, K. V.; Tristram, F.; Strunk, T.; Wenzel, W. J. Comput.
Chem. 2011, 32, 2647−2653.
(24) Wodak, S. J.; Janin, J. Proc. Natl. Acad. Sci. U. S. A. 1980, 77,
1736−1740.
(25) Sridharan, S.; Nicholls, A.; Sharp, K. A. J. Comput. Chem. 1995,
16, 1038−1044.
(26) Weiser, J.; Shenkin, P. S.; Still, W. C. J. Comput. Chem. 1999, 20,
217−230.
(27) Rychkov, G.; Petukhov, M. J. Comput. Chem. 2007, 28, 1974−
1989.
(28) Lee, B.; Richards, R. M. J. Mol. Biol. 1971, 55, 379−400.
(29) Steinbach, P. J.; Brooks, B. R. J. Comput. Chem. 1994, 15, 667−
683.
(30) Samudrala, R.; Levitt, M. Proteins 2000, 9, 1399−1401.
(31) Rueda, M.; Ferrer-Costa, C.; Meyer, T.; Perez, A.; Camps, J.;
Hospital, A.; Gelpi, J. L.; Orozco, M. Proc. Natl. Acad. Sci. U. S. A.
2007, 104, 796−801.

Journal of Chemical Theory and Computation Article

dx.doi.org/10.1021/ct5002818 | J. Chem. Theory Comput. 2014, 10, 4121−41324132


