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Bond order redefinition needed 
to reduce inherent noise 
in molecular dynamics simulations
Ibnu Syuhada*, Nikodemus Umbu Janga Hauwali, Ahmad Rosikhin, Euis Sustini, 
Fatimah Arofiati Noor* & Toto Winata*

In this work, we present the bond order redefinition needed to reduce the inherent noise in order to 
enhance the accuracy of molecular dynamics simulations. We propose defining the bond order as a 
fraction of energy distribution. It happens due to the character of the material in nature, which tries 
to maintain its environment. To show the necessity, we developed a factory empirical interatomic 
potential (FEIP) for carbon that implements the redefinition with a short-range interaction approach. 
FEIP has been shown to enhance the accuracy of the calculation of lattice constants, cohesive energy, 
elastic properties, and phonons compared to experimental data, and can even be compared to other 
potentials with the long-range interaction approach. The enhancements due to FEIP can reduce the 
inherent noise, then provide a better prediction of the energy based on the behaviour of the atomic 
environment. FEIP can also transform simple two-body interactions into many-body interactions, 
which is useful for enhancing accuracy. Due to implementing the bond order redefinition, FEIP offers 
faster calculations than other complex interatomic potentials.

In atomic simulations, there are several methods often used to describe the interaction of atoms such as density 
functional theory (DFT)1,2, density-functional tight-binding (DFTB)3,4, and molecular dynamics (MD)5–8. Of 
those methods, DFT has higher accuracy compared to experiments than the others. Due to the complexity of 
its calculations, however, DFT is only efficient to use for hundreds of atoms and to model several femtoseconds, 
making DFT is an expensive method due to the dependency on the use of a supercomputer. The DFT approxima-
tion, i.e. DFTB, which works based on the second-order expansion of Kohn–Sham energy, where the Hamiltonian 
elements and the overlap matrix are determined via a parameterising procedure, can simulate up to hundreds 
of picoseconds 1000 times faster than DFT. In practice, however, this method still not efficient for large masses 
of atoms. Thus, MD is often used as a solution for studying atomic mechanisms.

In the MD simulation, the interatomic potential plays a role in describing the interactions between the atoms. 
The quality of the interatomic potential determines the accuracy of the simulation compared to the experiments. 
Attempts to improve the quality by including bond order functions have resulted in the short-range empirical 
interatomic potential (EIP)9–11; the EIP is a specific case for atoms interaction with the first nearest neighbours. 
Furthermore, there is the analytical interatomic potential, i.e. the analytic bond order potential (ABOP)12–15. The 
principle in ABOP is that the bond order is the difference between the bonding and antibonding electron states. 
Based on this approach, the bond order definition adopted by this potential offers better replication of atomic 
phenomenon. Iron screw dislocation is one interesting study undertaken using this potential16,17. However, for 
the body-centred cubic (BCC) structure of iron, the kink-pair nucleation process is still not reproduced well by 
simulations. In addition, even though it has successfully modelled many things, the MD simulation with ABOP 
potential remains an expensive calculation to simulate the complex plasticity phenomenon.

Associated with the complexity calculation of ABOP, an approach which still takes into account the influ-
ence of long-range interactions is the “long-range” carbon bond order potential (LCBOP)18. It has the accuracy 
to describe phenomena which relate to the carbon, particularly with regard to the atomic dynamics process of 
diamond graphitisation. However, this potential applies only to carbon–carbon interactions. The latest promis-
ing potential development for improving MD is machine learning (ML)-based potentials19–21. The purpose of 
ML-based potentials is to produce computations with quantum mechanical (QM) accuracy but with a lower 
computational cost than DFT. The strategy is to maps a set of atomic environments directly into numerical values 
(as a fingerprint) for energies and forces. Thus, the success of this method lies in the accuracy of the fingerprint 
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selection. In addition, the atomic environment structure database references are accumulated via separate ab-
initio computations and nudged elastic bands (NEB)22–24. A database training process is then adopted to establish 
the mapping between fingerprints and atomic energies, and the output is the interatomic potential. Therefore, 
the ML method still has a computationally high cost to simulate large numbers of atoms.

Furthermore, Pauling showed experimentally that the bond order has a close relation to the bond length25. 
The latest technique is density derived electrostatic and chemical (DDEC6), which has been reported as the best 
method for calculating the bond order26. This method applies to non-magnetic, collinear magnetic and non-
collinear magnetic materials with localised or delocalised bonding electrons. Even so, DDEC6 is not designed 
for electrodes, highly time-dependent states, some extremely high-energy excited states, and nuclear reactions. 
However, no absolute definition for the bond order, but we can indicate its quantity via bond length, coordina-
tion number, bond angle, dihedral, and charge populations. Regarding MD simulation, though the ML method 
offers QM accuracy, in general, the simulation calculation depends on the underlying potential, especially the 
definition of bond order. In particular, there is inherent noise in the MD simulation, which affects the results.

In this study, we show the need for bond order redefinition to reduce inherent noise in MD simulations. 
Through this redefinition, the beginning of a factory-based empirical interatomic potential (FEIP) is developed 
in this study. Thus, for a simple potential such as Lennard–Jones, the accuracy can increase when it is transformed 
into a many-body potential. We use the carbon–carbon interaction for graphene phonons dispersion, mechanical 
properties and the cohesive energy of graphite and diamond, to show how this redefinition affects the accuracy 
and the speed of the simulation, which is useful for future studies of atomic mechanisms.

Results
Bond order redefinition.  We begin with the principles of the redefinition: if there only one atom existed, 
there would be no bonds. However, when a second atom comes close to the first atom, the repulsive-attractive 
interactions happen to maintain its environmental state and the bond order at the highest value. Next, the energy 
of this system is distributed when the third atom comes to join. Now, the bond order decreases, causing the 
bonds between the first and second atoms to become weak. The same condition applies to the next new atoms. 
The distributed energy eventually forms a new atomic environment. From this principle, the bond order in this 
study is considered as a fraction of the energy distribution. It is a result of the character of the material maintain-
ing its environment. This distribution depends on the amount of attractive energy that eventually becomes the 
bond.

FEIP development.  FEIP potential implements the protocol of bond order redefinition. With that protocol, 
this potential will translate the bond-order appropriate based on the definition of repulsive and attractive energy. 
Thus, there is no strict formula for FEIP as the meaning of “factory” suggests. In this study, we restricted our 
works to short-range interactions. Thus, we started with the short-range binding energy, the regular structure, 
and the strongly localised approximation of Abell’s work27,

where Z is the coordination number, q is the net distribution of the electron, h is the bond order, G is the topol-
ogy that represents the state of the atomic environment, r is the interatomic separation, and VA and VR are the 
attractive and repulsive energy, respectively. As noted by Abell27, q is nearly exactly equal to one in short-range 
approximations and bond order can thus be defined via the variational principle with respect to r in the follow-
ing form

where VA’ and VR’ denote the first derivative with respect to r of the attractive and repulsive energy, respectively. 
Meanwhile, re is the interatomic separation at equilibrium. Previously, the bond order was a direct function of 
topology G, as formulated by Tersoff or Brenner,

where k is a constant. In our redefinition, however, bond order should be a function of the fraction of the energy. 
Meanwhile, Eqs. (2) and (3) should be equal numerically. To solve this problem, we use the Taylor expansion of 
the natural logarithm, so that the relation between G in the right-hand side (RHS) of Eq. (3) and the energy in 
RHS of Eq. (2) is as follows:

By substituting Eq. (4) into Eq. (3), the bond order for short-range interactions based on the redefinition 
can be written as:

In this equation it is important is that each binding energy parameter, e.g. cohesive energy and interatomic 
separation equilibrium, should be a function of G. In practice, FEIP will use Eq. (5) to determine the bond order 
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based on the “factory” function of repulsive and attractive energies. This means FEIP will not use the learning 
algorithm process, but those energy functions will instead be related to the appropriate environmental conditions.

FEIP feature for the extended Lennard–Jones potential.  Here we show the advantages of bond 
order redefinition for enhancing the simple empirical interatomic Lennard–Jones potential. FEIP can be used to 
extend the Lennard–Jones potential from two-body to many-body interactions. Here, we write the extension as

where є is the depth of the potential well and h is the bond order defined according to Eq. (5), so then

The differences between the original Lennard–Jones potential and Eq. (6) are the screening functions, f, and 
h. Furthermore, A, B, and re are not constant parameters but are the trendline functions of G. Thus, the variation 
of the G topology will cause the differences in potential-well depths. These trendlines functions also will make 
the repulsive and attractive energy varied for every change of G, even є is constant. Currently, FEIP needs the f 
function to limit the short-range interactions. This function must be equal to one for the first nearest neighbour 
zone and decreases rapidly to zero for further zones.

FEIP for carbon.  In this study, we use the Morse potential to describe the universal repulsive and attractive 
interactions for carbon–carbon. The FEIP for carbon has the following form:

with

where A, B, re, α and λ are a function of the topology G. In this work, we chose the topology as follows:

This formula is used in the Tersoff potential. There is no standard formula for G. Equation (10) was chosen as 
the topology in order to reduce the dependency of the database, though it can reduce the accuracy of the bond 
order calculation due to ignoring the π-bonding contribution15. However, the most important reason to use this 
expression is to make comparisons with the Tersoff potential and the LCBOP as representative of short-range and 
long-range interactions, respectively. Thus, we can provide a clear explanation of the importance of redefining 
the bond order in atomic simulations.

The number of constant parameters required depends on the type of trendline functions of A(G), B(G), 
re(G), α(G), and λ(G). Meanwhile, the number of databases used greatly influences these types of functions. It is 
not difficult to assemble the desired database from experimental or theoretical data for A(G), B(G), and re(G). 
However, data for α(G) and λ(G) dominantly comes from theory. These functions represent the width of the well 
potential. We can determine this information with DFT or another interatomic potential which has a similar 
physical meaning. Several studies reveal the relationship of the exponential trend of potential energy and bond 
order to the coordination number27,28. Therefore, this study uses an exponential form for the trendline functions:

Uncertainty and the lack of data is another limitation in this concept. Thus, the choice of the trendline func-
tion requires physical intuition. In completing our work, this study focuses on graphite, graphene and diamond 
materials as the carbon allotropes for which there is abundant data. The parameters in G topology of Eq. (10) 
have a close relationship to the mechanical properties, while the others are related to the cohesive energy and 
lattice constant of each allotropic material type. Except for R1 and R2, we determine these parameters based on 
the farthest and shortest distance of the first and second nearest neighbours of the interest allotropic material, 
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respectively. Here, we chose R1 equal to 1.8 Å (slightly over 1.55 Å, the farthest distance of the diamond first 
nearest neighbour), and R2 we set at 2.1 Å (below 2.46 Å, the shortest distance of the graphite second nearest 
neighbour), based on the experiment29,30. Then the standard fitting process is repeatedly carried out until the 
calculation results are closer to the experiment. After passing the standard fitting procedure following Tersoff ’s 
work11, Table 1 shows the constant parameters suggestion for Eqs. (9)–(11).

Test of FEIP for carbon.  In this section, we present the test results of FEIP for carbon, including the lattice 
constant, cohesive energy, and elastic constants. Our results are compared with experimental data and other 
simulations for diamond and graphene, as shown in Table 2.

When compared with other simulations, FEIP gives close results to the experimental data for the lattice 
constant and the cohesive energy. For the elastic constants, however, FEIP gives a prediction of C12, which is far 
from the experimental data. Nevertheless, the results of FEIP for diamond and graphite case might be still better 
than other methods, even compared with the complex calculations of the best reactive force field (ReaxFF). The 
prediction errors resulting from FEIP for diamond and graphite are 159% and 92%, respectively. Meanwhile, 
ReaxFF has errors of 356% and 263%, respectively, almost twice the error of FEIP. For the elastic constants, 
ReaxFF has 56% error, but FEIP is 66%, except for C44, shear displacement over the basal plane of graphite.

The next test is the phonon dispersion of graphene. This test is needed to verify the representation of some 
physical properties such as thermal and electrical conductivity39–42. Phonon vibration modes control the distance 

Table 1.   Constant parameters suggestion of FEIP for carbon.

A1 = 9.7388 eV k = 0.6873

A2 =  − 7.4816 γ = 0.3125

B1 = 19.5470 eV c = 1.0000

B2 =  − 6.8629 d = 0.9600

re1 = 1.1647 Å m = 3.0000

re2 = 2.1665 λ3 = 0.0000

α1 = 3.6815 Å-1 cos θ0 =  − 0.6819

α2 = 1.2167 β = 0.0575

λ1 = 1.8342 Å-1 R1 = 1.8000 Å

λ2 = 1.2852 R2 = 2.1000 Å

Table 2.   Comparison of the lattice constants, cohesive energies, elastic constants of diamond and graphite.

Diamond Graphite Method Ref

alattice (Å)

3.570 2.457 FEIP

3.567 2.459 Experimental 29,30

3.645 2.492 Tersoff optimisation 31

3.567 2.460 Brenner optimisation 31

3.088 2.459 LCBOP 18

Ec (eV)

 − 7.349  − 7.374 FEIP

 − 7.349  − 7.374 Experimental 30

 − 6.537  − 7.978 Tersoff optimisation 31

 − 7.361  − 7.401 Brenner optimisation 31

 − 7.349  − 7.375 LCBOP 18

C11 (GPa)

902.09 1141.23 FEIP

1079 1109, 1440 Experimental 32–34

1027 1005 ReaxFF 35–38

C12 (GPa)

322.21 11.51 FEIP

124 139 Experimental 32,34

566 505 ReaxFF 35–38

C44 (GPa)

963.07 FEIP

578 Experimental 32

252 ReaxFF 35,36,38

C66 (GPa)

564.87 FEIP

485, 460 Experimental 33,34

186 ReaxFF 35,38
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between atoms that affects the bond order. Therefore, the accuracy of the phonon calculation is a test of the 
redefinition of the bond order implemented by FEIP. For that reason, this study compares phonon calculations 
with LCBOP as representative of long-range interactions and the Tersoff optimisation for short-range interac-
tions. Figure 1 shows the result.

At the Γ-point, the experimental data shows two optic mode branches, in-plane transverse (TO) and longi-
tudinal (LO) modes at the frequency 298 THz. Meanwhile, the out-of-plane optical (ZO) mode is at 163 THz. 
The simulation result using the LCBOP predicts the ZO at 155 THz, while the simulation using the Tersoff 
potential gives a result 70 THz higher than the experimental value. Meanwhile, for the TO mode prediction, the 
LCBOP and Tersoff potential give results of 265 THz and 289 THz, respectively. The FEIP predicts 168 THz and 
299 THz for ZO and TO mode, respectively (see Fig. 1), which is the best compared with the other potentials. 
Phonon path from Γ to K-point, the results using the FEIP are closer to the experimental values than the oth-
ers. One notes here, at the Γ-point as the starting path, the Tersoff potential gives a non-degenerate result for 
the TO and LO branches, which is a contradiction with the experimental data. Next for out-of-plane accoustic 
(ZA) mode prediction, the results of the calculation using the FEIP for the crosses frequency of ZA/ZO due 
to the consequences of the point-group symmetry of graphene are 90 THz at the K-point, 12 THz lower than 
the experimental value. Meanwhile, the prediction based on the LCBOP is 16 THz lower. However, the Tersoff 
potential-based prediction is about 20 THz lower than the others.

In general, the transverse acoustic (TA) mode of the FEIP calculation is similar to that of the Tersoff potential 
calculations, but the LCBOP gives the closet result to the experimental data. Nevertheless, the predictions for ZO 
and ZA mode of the FEIP are the best. FEIP also makes a better prediction for the LO and TO modes. Especially 
from Γ- to K-point, the FEIP calculation results are closer to the experimental data than the others. However, 
the over bending mode character is not visible for all potentials.

The next test is the stability and accuracy of the defects system with FEIP potential. Here, we show the 
relaxation defect structure spot of Stone–Wales (SW), bare single vacancy (V1), pentagon dislocation reconstruc-
tion due to dangling bonds (5-db) V1, bare divacancy (V2), a divacancy fully sp2 reconstruction made of two 
pentagons and a central octagon (5-8-5) V2 and a divacancy with two V1 of graphene in Fig. 2. Meanwhile, the 
formation energy (Ef) of vacancies and dislocation is calculated with the following formula

Figure 1.   Graphene phonon dispersion calculations using (a) the Tersoff potential, (b) LCBOP, and (c) FEIP at 
300 K. Experimental data is from Ref.43, except for LO and TO which were taken from Ref.44. Purple circle and 
gold solid-lines are experimental data and simulation results, respectively.
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where Ed, μ and E0 are defect energy, the chemical potential of carbon and initial energy before defect, respec-
tively, and n gives the number of carbon atoms that were added (n positive) or removed (n negative). We then 
compare their formation energy with the results of other studies presented in Table 3. As noted in the table, 
based on the tight-binding and DFT calculation, FEIP predicts the lowest formation energy compared to Tersoff 
and LCBOP for the bare vacancy.

In general, Tersoff optimized and FEIP must underestimate the result for the V1 and SW based on Airebo and 
DFT calculation. Meanwhile, LCBOP, which represents long-range interaction, shows the lowest prediction for 

(12)Ef = Ed − E0 − nµ,

Figure 2.   Relaxation defect structure spot of Stone–Wales (SW), bare single vacancy (V1), 5-db V1, bare 
(divacancy) V2, 5-8-5 V2, two V1. The top image is the graphene structure spot before defect. The blue circle and 
black solid line represent atoms and bond length, respectively. The red circle represents the atom that forms a 
defect.

Table 3.   The formation energy of Stone–Wales (SW) and different types of vacancy(s) in graphene.

Defect

Formation energy (eV)

FEIP Tersoff optimized ref.31 LCBOP ref.18 Airebo ref.45 DFT ref.46 Tight-binding ref.47 DFTB ref.48

Bare V1 3.06 0.52 7.59 7.55 7.6

5-db V1 3.88 4.05 5.41 7.02 7.4

Bare V2 4.09 0.75 10.00 10.08

5–8-5 V2 14.4 15.7 12.9 7.35 8.7

Two V1 6.13 1.04 15.2 14.74

SW  − 0.25  − 3.80 − 3.94 5.13 5.9



7

Vol.:(0123456789)

Scientific Reports |         (2021) 11:3674  | https://doi.org/10.1038/s41598-020-80217-0

www.nature.com/scientificreports/

SW, but FEIP has a better result. However, LCBOP is closer to the DFT calculation for bare V1 than FEIP. For the 
number types of divacancy and pure dislocation SW, FEIP shows better results compared to the Tersoff optimized 
and LCBOP, respectively. This means that FEIP of this version gives a better prediction for the case in which the 
number of vacancies increases and dislocation is lower. The inaccuracy result of FEIP for V1 and dislocation of 
graphene is due to our approaches that ignore π-bonding and short-range approximation.

The last test for FEIP in this study is the stability and accuracy of the interstitial case in graphite. Thus, we 
insert one atom between the top two layers of graphite for the bridge and spiro interstitial. In that same position 
of the two layers, two atoms are also inserted to produce the di-interstitial of two spiro isolated. Figure 3 shows 
the meaning of these interstitials.

Table 4 shows the interstitial types of formation energy. From the simulation, it is known that Tersoff opti-
mized and LCBOP failed to produce all stable interstitial structures (not shown on the figure), except for the two 
spiro isolated of LCBOP. Meanwhile, calculations using FEIP show the opposite result.

FEIP results in a close prediction to DFT calculation for spiro. Meanwhile, for bridge and two spiro isolated 
interstitials show a difference of almost 3.0 eV. These happen because FEIP in this version ignores the π-bonding; 
as a result, the carbon interstitial gets even radial distribution energy from the top and bottom layers. This 

Figure 3.   The relaxation structure spot of graphite without and with interstitial. The circle and solid line 
represent atom and bond length. The blue, emerald and yellow colours are the first, second and third layer from 
the top of graphite. The red circle(s) represent carbon interstitial between the first and second layer.

Table 4.   The formation energy of interstitial types in graphite.

Interstitial Method Formation energy (eV) Refs.

Bridge

FEIP 5.96

DFT 8 49

DFT 7.68 50

Spiro

FEIP 6.65

DFT 6.5 49

DFT 6.2 50

Two spiro isolated

FEIP 13.4

LCBOP 13.4 18

DFT 10.23 51
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explains why the carbon for the bridge interstitial in Fig. 3 binds to the two closest atoms of the two layers that 
flank it, which contradicts the DFT result50.

Discussions
Extended Lennard–Jones potential.  The Lennard–Jones potential is generally used for rare gas interac-
tions and simple fluids52–55 In general, particles interacting following this potential are stable in the hexagonal 
close-packed (hcp) structure at zero temperature and pressure55–57, but some rare gases such as Ne and Ar form 
face-centred cubic (fcc) structures58,59. To anticipate this rare gas solid (RGS) problem, many researchers modify 
this potential to predict the onset of crystallisation in supercooling, surface tension, critical nucleus size and 
nucleation ratse60,61. Schwerdtfeger et al.62 extended the Lennard–Jones potential by using two-body potentials 
to improve structure calculations of rare gas clusters and the solid state. They argue that the use of the many-
body expansion does not change the preference for hcp over fcc due to zero-point vibrational effects. However, 
that statement disagrees with the Lennard–Jones Embedded-Atom (LJEA) potential from the work of Baskes63. 
This potential embeds the energy of each atom into the background electron density to allow investigation of 
many-body effects. The LJEA potential is used to calculate properties of an fcc material such as elastic constants, 
Bain transformation and defect properties as a function of many-body parameters. The result of the calcula-
tions sthat hows the ground state structure includes all phases; meanwhile, the melting point of fcc structures 
decreases while the many-body interactions increase.

We argue that the hcp preference of the Lennard–Jones-based calculations is due to the inability of this 
potential to adjust the energy requirements to the state of the atomic environment. In the LJEA potential, each 
atom is embedded in the background electron density provided by neighbouring atoms. Thus, the LJEA poten-
tial takes the energy as a summation of the pair interactions and the embedding energy as a function of the 
local background electron density. However, the LJEA potential assumes that the electron cloud around each 
atom is spherical, which makes this potential good for the fcc structure. The FEIP differs in that there is no pair 
interaction summation since every attractive and repulsive energy is a function of topology. FEIP will predict 
the Lennard–Jones energy requirement associated with the current environment topology. In this way, the FEIP 
offers a calculation which adapts to every possible crystal structure. However, here we focus on presenting the 
Lennard–Jones extension as a FEIP feature. To show the bond order requirements via FEIP, we chose the car-
bon–carbon interaction to test the accuracy because it is more complex than the rare gas case.

FEIP for carbon: bond order redefinition reason.  Although FEIP is more accurate in predicting lat-
tice constants and cohesive energy, the need for bond order redefinition begins with the accuracy of the elastic 
constants. Changing the position of each atom due to strain and tension will cause changes to the bond order. 
Thus, the accuracy of these properties is evidence in favour of redefining the bond order. The previous study 
corroborates this statement that the elastic properties come from many-body interactions that are counted by 
the bond order43.

ReaxFF uses its own definition for a complex bond order calculation summed from σ, π, and π–π bonding, 
however, the results in Table 2 show that calculations of C12 and C44 fall too far from the experiment. Although 
this current FEIP uses short-range and σ-bonding, with redefinition, this work shows better results. Especially 
for C66, ReaxFF has underestimated the value compared with FEIP. In addition to our ignoring the π-bonding 
approach in the derivative FEIP formula, another cause of overprediction for these elastic constants is the lack 
of carbon allotroph data so that the absolute values of the A2 and B2 parameters are relatively large; this means a 
small change (0.33%) in G topology will result in A(G) and B(G) shifting up to 7 percent. Thus, the FEIP result 
confirms the accuracy of the elastic constant due to the concept of bond order. Thus, comparing the elastic 
constants is our chance to prove the needs redefinition.

We analysed the calculation of phonon dispersion to better understand the need for a redefinition of the bond 
order. The accuracy of phonon modes presented by FEIP, especially at low frequency, is due to the different char-
acter of this potential compared with LCBOP and the Tersoff potential. For the longitudinal accoustic (LA) mode, 
however, FEIP gives a result similar to a calculation using a force constant and valence force field (VFF) methods 
in which the fourth nearest-neighbour interactions are considered64,65, except there is no tangent frequency with 
LO mode at the K-point. Thus, the weakness of FEIP in predicting phonon modes at high frequencies compared 
to experimental data is due to the short-range interaction approximation, not the bond order redefinition. This 
means that the LO and TO modes are the causes of the long-range interactions.

To see how the bond order redefinition affects the accuracy of the simulation, we studied the carbon atoms 
during the phonon calculations. For that reason, a plot of root mean square deviation (RMSD) with respect to 
the total energy is shown in Fig. 4a. This study takes one particular atom of graphene juxtaposed with its nine 
nearest neighbour atoms to calculate the RMSD. From Fig. 4a, it is clear that the Tersoff potential gives a lower 
energy prediction than the others because the carbon atoms cannot move freely and are localised. However, 
LCBOP and FEIP show different conditions. Both potentials give an energy higher than the Tersoff potential 
because the carbon atoms move freely and provide more available phonon modes. FEIP provides energy pre-
dictions which almost coincide with the LCBOP calculations, where the LCBOP prediction is slightly higher. 
This highest-energy state of the LCBOP causes the atoms to move too freely, making the predictions for high 
frequency phonon modes inaccurate. The FEIP applies a short-range interaction approach while the LCBOP uses 
a long-range interaction approach. However, with the concept of bond order redefinition, the FEIP can adjust 
the energy requirements to the state of its atomic environment.

Figure 4b shows the power spectral density (PSD) of energy, which reveals the cause of the inability of the 
Tersoff potential to adjust its energy requirements to the environment. We can see that the magnitude and 
amplitude of the white noise from the Tersoff are higher than in the FEIP and the LCBOP. Outside of the range 
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of frequency from − 20 to 20 GHz, the level of noise fluctuation becomes more significant in the Tersoff potential, 
meaning that up to 500 ps (1/20 GHz) is not sufficient to reduce the noise. This situation ultimately results in a 
bond that is too strong compared to other potentials. The FEIP shows a different result during the phonon cal-
culation process, in that the magnitude and amplitude of white noise are similar to the results from the LCBOP. 
Thus, the bond order redefinition described in this study can reduce simulation noise so that convergence is easy 
to achieve even though it does not apply the long-range interaction approach. Another advance of implement-
ing this redefinition is the improvement in calculation speed. Although the Tersoff potential is faster than FEIP, 
Table 5 reveals that to give accuracy similar to the long-range interactions of LCBOP, FEIP needs 63.28 min, 
which is nearly three times faster than LCBOP.

Methods
In this study, all simulations were run using the open-source code Large-scale Atomic/Molecular Massively 
Parallel Simulator (LAMMPS)66. Meanwhile, the open-source code Octave (GNU) was used to analyse the 
spectrum67. To redefine the bond order, we focused on carbon–carbon interactions in which graphene and 
diamond were selected as materials. The standard fitting procedure was used to determine the parameters of the 
FEIP. Meanwhile, for testing the mechanical properties, this study applies the solid-continuum methodology68.

This study also used a graphene single-layer and graphite four-layer system with 2508 and 4032 carbon atoms, 
respectively, for defects testing. We then deleted one or more carbons to represent the vacancy and dislocation. 
Meanwhile, one and two carbons were added between layers of the graphite system to test the carbon interstitial. 
After that, we compared the FEIP result testing to the Tersoff and LCBOP potential for accuracy and stability of 
the defects system with relaxation method.

For phonon testing, we use Kong’s methodology, which is included in LAMMPS69,70. A hexagonal graphene 
system with 200 atoms was selected for this study. The system was allowed to remain in equilibrium at 300 K 
for six million iterations with an NVT ensemble. During the equilibrium process, the simulation ran with a 
two-femtosecond timestep. The phonon distribution was calculated directly after one million iterations. The 
FEIP was compared to the Tersoff potential and the LCBOP as a representation of short-range and long-range 
interactions, respectively.

Figure 4.   (a) The plot of RMSD with respect to the energy of all potentials used during phonon computation. 
(b) Power spectral density (PSD) of the energy extracted during the phonon calculation process.

Table 5.   Phonon dispersion simulation speed using the Tersoff potential, LCBOP, and FEIP.

Methods Duration (min) TO (THz) LO (THz) LA (THz) ZO (THz) ZA (THz)

Experiment Г-point: 298 Г-point: 298
K-point: 231 K-point: 231 Г-point: 163

K-point: 102 K-point: 102

LCBOP 166.95 Г-point: 265 Г-point: 265 Г-point: 155
K-point: 86 K-point: 86

Tersoff 12.38 Г-point: 289 Г-point: 233
Г-point: 233
K-point:
122

K-point: 122

FEIP 63.28 Г-point: 301 Г-point: 301 Г-point: 168
K-point: 90 K-point: 90
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Conclusions
We have constructed the bond order redefinition, treating it as a fraction of the energy distribution. This distri-
bution depends on the amount of attractive energy present, which eventually becomes the bond. We developed 
the factory empirical interatomic potential (FEIP) that implements the bond order redefinition and uses a short-
range interaction approach. From the calculation for the elastic constants, the lattice constant and the cohesive 
energy of graphite and diamond, the FEIP gives a close result to the experimental data, better than the complex 
reactive ReaxFF potential for these carbon allotropes. This study also conducts the stability and accuracy tests 
on defects for graphene and graphite. As a result, FEIP can provide good predictions for large vacancies and 
dislocations. In the case of carbon interstitial in graphite, FEIP can produce stable defects but not with Tersoff 
and LCBOP. Except for the two spiro isolated, LCBOP and FEIP provide the same energy predictions and are 
close to the DFT calculations. However, because the FEIP for this version ignores π-bonding, the defect structure 
for the bridge is different from the DFT view, where the FEIP results show that the interstitial carbon binds to 
the two nearest neighbour atoms from the graphite layer flanking it. We compared the calculations for graphene 
phonon dispersion using FEIP, the Tersoff potential to represent short-range interactions, and the LCBOP to 
represent long-range interactions. The results show that even the FEIP uses short-range interactions for carbon, 
but the accuracy is similar to LCBOP due to the inherent ability of FEIP to reduce the noise. Moreover, FEIP 
performs the calculation almost twice as fast as the LCBOP. However, the need for abundant data for differ-
ent types of allotropes will influence the accuracy of the calculation, especially for elastic constants. Another 
advantage of implementing the redefinition is that FEIP can transform the simple two-body potential into a 
many-body interaction that is useful to enhance the accuracy of potentials such as the Lennard–Jones. Thus, we 
need the bond order redefinition for better accuracy and faster simulations, which is useful in the future study 
of atomic mechanisms.

Data availability
No datasets were generated or analysed during the current study.

Received: 27 October 2020; Accepted: 17 December 2020

References
	 1.	 Gottardi, S. et al. Comparing graphene growth on Cu (111) vs. oxidized Cu (111). Nano Lett. 15, 917 (2015).
	 2.	 Patera, L. L. et al. Real-time imaging of adatom-promoted graphene growth on nickel. Science 359, 1243 (2018).
	 3.	 Wang, Y., Song, W., Jiao, M., Wu, Z. & Irle, S. Importance of oxygen in single-walled carbon nanotube growth: Insights from QM/

MD simulations. Carbon N. Y. 121, 292 (2017).
	 4.	 Zaminpayma, E. & Nayebi, P. Mechanical and electrical properties of functionalized graphene nanoribbon: A study of reactive 

molecular dynamic simulation and density functional tight-binding theory. Phys. B Condens. Matter 459, 29 (2015).
	 5.	 Cruz-Silva, R. et al. Fullerene and nanotube growth: New insights using first principles and molecular dynamics. Philos. Trans. R. 

Soc. A Math. Phys. Eng. Sci. 374, 20150327 (2016).
	 6.	 Khalilov, U., Vets, C. & Neyts, E. C. Molecular evidence for feedstock-dependent nucleation mechanisms of CNTs. Nanoscale 

Horizons 4, 674 (2019).
	 7.	 Lu, Y. & Yang, X. Molecular simulation of graphene growth by chemical deposition on nickel using polycyclic aromatic hydrocar-

bons. Carbon N. Y. 81, 564 (2015).
	 8.	 Page, A. J., Ding, F., Irle, S. & Morokuma, K. Insights into carbon nanotube and graphene formation mechanisms from molecular 

simulations: A review. Rep. Prog. Phys. 78, 36501 (2015).
	 9.	 Brenner, D. W. et al. A second-generation reactive empirical bond order potential energy expression for. J. Phys. Condens. Matter 

14, 783 (2002).
	10.	 Daw, M. S. & Baskes, M. I. Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in met-

als. Phys. Rev. B 29, 6443 (1984).
	11.	 Tersoff, J. New empirical approach for the structure and energy of covalent systems. Phys. Rev. B 37, 6991 (1988).
	12.	 Drautz, R. & Pettifor, D. G. Valence-dependent analytic bond-order potential for magnetic transition metals. Phys. Rev. B Condens. 

Matter Mater. Phys. 84, 214114 (2011).
	13.	 Drautz, R., Hammerschmidt, T., Čák, M. & Pettifor, D. G. Bond-order potentials: Derivation and parameterization for refractory 

elements. Model. Simul. Mater. Sci. Eng. 23, 074004 (2015).
	14.	 Pettifor, D. G. New many-body potential for the bond order. Phys. Rev. Lett. 63, 2480 (1989).
	15.	 Pettifor, D. G. & Oleinik, I. I. Analytic bond-order potentials beyond tersoff-brenner. I. Theory. Phys. Rev. B 59, 8487 (1999).
	16.	 Gröger, R. & Vitek, V. Multiscale modeling of plastic deformation of molybdenum and tungsten. III. Effects of temperature and 

plastic strain rate. Acta Mater. 56, 5426 (2008).
	17.	 Mrovec, M., Nguyen-Manh, D., Elsässer, C. & Gumbsch, P. Magnetic bond-order potential for iron. Phys. Rev. Lett. 106, 246402 

(2011).
	18.	 Los, H. J. & Fasolino, A. Intrinsic long-range bond-order potential for carbon: Performance in Monte Carlo simulations of gra-

phitization. Phys. Rev.B Condens. Matter Mater. Phys. 68, 024107 (2003).
	19.	 Botu, V., Batra, R., Chapman, J. & Ramprasad, R. Machine learning force fields: Construction, validation, and outlook. J. Phys. 

Chem. C 121, 511 (2017).
	20.	 Chan, H. et al. Machine learning coarse grained models for water. Nat. Commun. 10, 379 (2019).
	21.	 Zong, H., Pilania, G., Ding, X., Ackland, G. J. & Lookman, T. Developing an interatomic potential for martensitic phase transfor-

mations in zirconium by machine learning. NPJ Comput. Mater. 4, 48 (2018).
	22.	 Henkelman, G. & Jónsson, H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths 

and saddle points. J. Chem. Phys. 113, 9978 (2000).
	23.	 Maras, E., Trushin, O., Stukowski, A., Ala-Nissila, T. & Jónsson, H. Global transition path search for dislocation formation in Ge 

on Si(001). Comput. Phys. Commun. 205, 13 (2016).
	24.	 Nakano, A. A space-time-ensemble parallel nudged elastic band algorithm for molecular kinetics simulation. Comput. Phys. Com-

mun. 178, 280 (2008).
	25.	 Pauling, L. Atomic radii and interatomic distances in metals. J. Am. Chem. Soc. 69, 542 (1947).
	26.	 Manz, T. A. Introducing DDEC6 atomic population analysis: Part 3. Comprehensive method to compute bond orders. RSC Adv. 

7, 45552 (2017).



11

Vol.:(0123456789)

Scientific Reports |         (2021) 11:3674  | https://doi.org/10.1038/s41598-020-80217-0

www.nature.com/scientificreports/

	27.	 Abell, G. C. Empirical chemical pseudopotential theory of molecular and metallic bonding. Phys. Rev. B 31, 6184 (1985).
	28.	 Bazant, M. Z. & Kaxiras, E. Modeling of covalent bonding in solids by inversion of cohesive energy curves. Phys. Rev. Lett. 77, 

4370–4373 (1996).
	29.	 Brewer, L. Lawrence Berkeley National Laboratory Report. No. LBL-3720 (1977).
	30.	 Baskin, Y. & Meyer, L. Lattice constants of graphite at low temperatures. Phys. Rev. 100, 544 (1955).
	31.	 Lindsay, L. & Broido, D. A. Optimized Tersoff and Brenner empirical potential parameters for lattice dynamics and phonon thermal 

transport in carbon nanotubes and graphene. Phys. Rev. B Condens. Matter Mater. Phys. 81, 205441 (2010).
	32.	 McSkimin, H. J. & Andreatch, P. Elastic moduli of diamond as a function of pressure and temperature. J. Appl. Phys. 43, 2944 

(1972).
	33.	 Nicklow, R., Wakabayashi, N. & Smith, H. G. Lattice dynamics of pyrolytic graphite. Phys. Rev. B 5, 4951 (1972).
	34.	 Bosak, A., Krisch, M., Mohr, M., Maultzsch, J. & Thomsen, C. Elasticity of single-crystalline graphite: Inelastic X-ray scattering 

study. Phys. Rev. B Condens. Matter Mater. Phys. 75, 153408 (2007).
	35.	 Jensen, B. D., Wise, K. E. & Odegard, G. M. Simulation of the elastic and ultimate tensile properties of diamond, graphene, carbon 

nanotubes, and amorphous carbon using a revised ReaxFF parametrization. J. Phys. Chem. A 119, 9710 (2015).
	36.	 Aktulga, H. M., Fogarty, J. C., Pandit, S. A. & Grama, A. Y. Parallel reactive molecular dynamics: Numerical methods and algo-

rithmic techniques. Parallel Comput. 38, 245 (2012).
	37.	 Jensen, B. D., Wise, K. E. & Odegrad, G. M. The effect of time Step, ehermostat, and strain rate on ReaxFF simulations of mechani-

cal failure in diamond, graphene, and carbon nanotube. J. Comput. Chem. 36, 1587 (2015).
	38.	 Chenoweth, K., van Duin, A. C. T. & Goddard, W. A. ReaxFF reactive force field for molecular dynamics simulations of hydro-

carbon oxidation. J. Phys. Chem. A 112, 1040 (2008).
	39.	 Balandin, A. A. et al. Superior thermal conductivity of graphene. Nano Lett. 8, 902 (2008).
	40.	 Hone, J., Whitney, M., Piskoti, C. & Zettl, A. Thermal conductivity of single-walled carbon nanotubes. Phys. Rev. B Condens. Matter 

Mater. Phys. 59, R2514 (1999).
	41.	 Jishi, R. A., Dresselhaus, M. S. & Dresselhaus, G. Electron-phonon coupling and the electrical conductivity of fullerene nanotubules. 

Phys. Rev. B 48, 385 (1993).
	42.	 Seol, J. H. et al. Two-dimensional phonon transport in supported graphene two-dimensional phonon transport in supported 

graphene. Science 328, 213 (2010).
	43.	 Lu, Q., Arroyo, M. & Huang, R. Elastic bending modulus of moolayer graphene. J. Phys. D Appl. Phys. 42, 102002 (2009).
	44.	 Tewary, V. K. & Yang, B. Parametric interatomic potential for graphene. Phys. Rev. B 79, 075442 (2009).
	45.	 Leyssale, J.-M. & Vignoles, G. L. A large-scale molecular dynamics study of the divacancy defect in graphene. J. Phys. Chem. C 

118, 8200 (2014).
	46.	 El-Barbary, A. A., Telling, R. H., Ewels, C. P., Heggie, M. I. & Briddon, P. R. Structure and energetics of the vacancy in graphite. 

Phys. Rev. B 68, 144107 (2003).
	47.	 Zhang, W., Lu, W.-C., Zhang, H.-X., Ho, K. M. & Wang, C. Z. Tight-binding calculation studies of vacancy and adatom defects in 

graphene. J. Phys. Condens. Matter 28, 115001 (2016).
	48.	 Zobelli, A. et al. A comparative study of density functional and density functional tight binding calculations of defects in graphene. 

Phys. Status Solidi B 249, 276 (2012).
	49.	 Li, L., Reich, S. & Robertson, J. Defect energies of graphite: Density-functional calculations. Phys. Rev. B 72, 184109 (2005).
	50.	 Zhang, H. et al. Diffusion and coalescence of vacancies and interstitials in graphite: A first-principles study. Diam. Relat. Mater. 

19, 1240 (2010).
	51.	 Latham, C. D. et al. The di-interstitial in graphite. J. Phys. Condens. Matter 20, 395220 (2008).
	52.	 Doye, J. P. K., Wales, D. J. & Miller, M. A. Thermodynamics and the global optimization of Lennard-Jones clusters. J. Chem. Phys. 

109, 8143–8153 (1998).
	53.	 Hartke, B. Structural transitions in clusters the abbreviations used in this article are listed in table 1. Angew. Chem. Int. Ed. 41, 

1468 (2002).
	54.	 Verlet, L. Computer ‘experiments’ on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Phys. Rev. 159, 

98–103 (1967).
	55.	 Born, M. On the stability of crystal lattices. I. Math. Proc. Camb. Philos. Soc. 36, 160–172 (1940).
	56.	 Misra, R. D. On the stability of crystal lattices. II. Math. Proc. Camb. Philos. Soc. 36, 173–182 (1940).
	57.	 Prins, J. A., Dumoré, J. M. & Tjoan, L. T. Factors affecting the choice between cubical and hexagonal close packing. Physica 18, 

307–314 (1952).
	58.	 Barrett, C. S. & Meyer, L. The Crystal Structures of Argon and Its Alloys. Low Temperature Physics LT9 (Springer, Boston, 1965).
	59.	 Finger, L. W., Hazen, R. M., Zou, G., Mao, H. K. & Bell, P. M. Structure and compression of crystalline argon and neon at high 

pressure and room temperature. Appl. Phys. Lett. 39, 892–894 (1981).
	60.	 Swope, W. C. & Andersen, H. C. 10^6-particle molecular-dynamics study of homogeneous nucleation of crystals in a supercooled 

atomic liquid. Phys. Rev. B 41, 7042–7054 (1990).
	61.	 Horsch, M., Vrabec, J. & Hasse, H. Modification of the classical nucleation theory based on molecular simulation data for surface 

tension, critical nucleus size, and nucleation rate. Phys. Rev. E 78, 1–9 (2008).
	62.	 Schwerdtfeger, P., Gaston, N., Krawczyk, R. P., Tonner, R. & Moyano, G. E. Extension of the Lennard-Jones potential: Theoretical 

investigations into rare-gas clusters and crystal lattices of He, Ne, Ar, and Kr using many-body interaction expansions. Phys. Rev. 
B 73, 1–19 (2006).

	63.	 Baskes, M. I. Many-body effects in fcc metals: A lennard-jones embedded-atom potential. Phys. Rev. Lett. 83, 2591–2595 (1999).
	64.	 Grüneis, A. et al. Determination of two-dimensional phonon dispersion relation of graphite by Raman spectroscopy. Phys. Rev. B 

Condens. Matter Mater. Phys. 65, 1554051 (2002).
	65.	 Wirtz, L. & Rubio, A. The phonon dispersion of graphite revisited. Solid State Commun. 131, 141 (2004).
	66.	 Plimton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1 (1995).
	67.	 Eaton, J. W., Bateman, D., Hauberg, S. & Wehbring, R. GNU Octave Version 4.0.0 Manual: A High-Level Interactive Language for 

Numerical Computations (2015). https​://www.gnu.org/softw​are/octav​e/doc/inter​prete​r/. Accessed 28 Nov 2019
	68.	 Tsai, J. L. & Tu, J. F. Characterizing mechanical properties of graphite using molecular dynamics simulation. Mater. Des. 31, 194 

(2010).
	69.	 Kong, L. T., Denniston, C. & Müser, M. H. An improved version of the Green’s function molecular dynamics method. Comput. 

Phys. Commun. 182, 540 (2011).
	70.	 Kong, L. T. Phonon dispersion measured directly from molecular dynamics simulations. Comput. Phys. Commun. 182, 2201 (2011).

Acknowledgements
This work is financially supported by Research, Community Services, and Innovation Program (P3MI) ITB 
research grant in the fiscal year 2020.

https://www.gnu.org/software/octave/doc/interpreter/


12

Vol:.(1234567890)

Scientific Reports |         (2021) 11:3674  | https://doi.org/10.1038/s41598-020-80217-0

www.nature.com/scientificreports/

Author contributions
I.S., E.S., F.A.N. and T.W. designed and conceived the study. I.S., N.U.J.H. and A.R. conducted the simulation. 
I.S. analyzed the data and wrote the initial paper. E.S., F.A.N. and T.W. revised the paper. F.A.N and T.W. wrote 
proposal and acquired project funding. All authors confirmed the final manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to I.S., F.A.N. or T.W.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://creat​iveco​mmons​.org/licen​ses/by/4.0/.

© The Author(s) 2021

www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Bond order redefinition needed to reduce inherent noise in molecular dynamics simulations
	Results
	Bond order redefinition. 
	FEIP development. 
	FEIP feature for the extended Lennard–Jones potential. 
	FEIP for carbon. 
	Test of FEIP for carbon. 

	Discussions
	Extended Lennard–Jones potential. 
	FEIP for carbon: bond order redefinition reason. 

	Methods
	Conclusions
	References
	Acknowledgements


