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Abstract: Bone marrow gene therapy remains an attractive option for treating chronic
immunological diseases, including acquired immunodeficiency syndrome (AIDS) caused
by human immunodeficiency virus (HIV). This technology combines the differentiation
and expansion capacity of hematopoietic stem cells (HSCs) with long-term expression of
therapeutic transgenes using integrating vectors. In this review we summarize the potential
of bone marrow gene therapy for the treatment of HIV/AIDS. A broad range of antiviral
strategies are discussed, with a particular focus on RNA-based therapies. The idea is
to develop a durable gene therapy that lasts the life span of the infected individual, thus
contrasting with daily drug regimens to suppress the virus. Different approaches have been
proposed to target either the virus or cellular genes encoding co-factors that support virus
replication. Some of these therapies have been tested in clinical trials, providing proof of
principle that gene therapy is a safe option for treating HIV/AIDS. In this review several
topics are discussed, ranging from the selection of the antiviral molecule and the viral
target to the optimal vector system for gene delivery and the setup of appropriate preclinical
test systems. The molecular mechanisms used to formulate a cure for HIV infection are
described, including the latest antiviral strategies and their therapeutic applications. Finally,
a potent combination of anti-HIV genes based on our own research program is described.
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1. Introduction

The HIV epidemic, first recognized in 1981, remains one of the major threats to human health.
Globally, approximately 35 million people are living with HIV and more than 25 million people have
died of HIV-related causes [1]. Finding a safe, effective, and durable HIV vaccine remains a top priority,
but despite more than 30 years of research there is still no vaccine that provides effective protection
against HIV infection [2,3]. Combination antiretroviral therapy (cART) can significantly prolong the
life of HIV-infected individuals. Some studies found no evidence for HIV-1 evolution in patients on
suppressive cART [4], but other reports suggested that cART does not fully suppress viral replication
and does not eliminate the viral reservoirs [5,6]. Moreover, the toxicity associated with the life-long
adherence to cART, together with the appearance of drug-resistant HIV variants in some patients,
supports the continuous search for novel drug and original approaches to fight HIV [7]. Gene therapy
has emerged as a promising approach for the treatment of HIV/AIDS as it may facilitate the sustained
inhibition of HIV replication after a single therapeutic intervention. A single proof of concept was
provided by the so-called “Berlin patient,” who remained free of detectable HIV after receiving a bone
marrow transplant from a CCR5-∆32 homozygous donor [8,9]. This genetic defect could be mimicked
in a gene therapy setting.

HIV mainly targets CD4` T cells by binding to the CD4 molecule as well as a chemokine co-receptor,
usually CCR5 or CXCR4, on the cell surface. In addition macrophages, monocytes, and dendritic cells
can be infected by HIV. In theory, both peripheral blood T cells and HSCs from the bone marrow can
be selected as the target cells for an anti-HIV gene therapy (Figure 1). However, because T cells have a
limited life span and because HIV also infects other cell types of the hematopoietic lineage, it is thought
to be a significant advantage to transduce the HSC precursors. The most important characteristics of HSC
are their capacity for self-renewal and their ability to restore all blood cell lineages after bone marrow
ablation. HSC will differentiate into diverse hematopoietic lineages, supplying the immune system with
HIV-resistant cell types that subsequently colonize the blood and tissues. The classic source of HSCs is
bone marrow. For more than 45 years, physicians punctured the marrow and drew out the bone marrow
cells with a syringe. In the early 1990s, the human umbilical cord and placenta were recognized as a rich
source of HSCs. On the other hand, it was known for decades that a small number of HSCs circulate in
blood (1 log less than their counterpart in the marrow). In the past 10 years, researchers have developed
a safe way to efficiently mobilize HSCs from the marrow to the blood by pre-treating the donor with
granulocyte-colony stimulating factor (G-CSF). There are no indications of qualitative differences in the
differentiated cells derived from peripheral blood, cord blood, and bone marrow. Therefore, the most
common method for HSC isolation nowadays is apheresis of peripheral blood because the harvest of
cells is easier, with minimal discomfort for the donor, e.g., no requirement for anesthesia and a hospital
stay. In this review we discuss the biological perspective for transducing HSCs with an anti-HIV gene
and the many options available for choosing the therapeutic gene. We also discuss the gene transfer
vector of choice and its design. Finally, we propose a combination of anti-HIV genes to increase the
genetic threshold for viral escape based on our own research line.
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Figure 1. Target cells for an anti-HIV gene therapy. Shown is the scheme of hematopoiesis.
Either hematopoietic stem cells (HSCs) from bone marrow or the mature CD4` T cells can
be targeted. These two cell populations are boxed.

2. Selection of Therapeutic Targets

Two gene-based approaches for immune reconstitution of HIV-infected individuals have been
developed to date. One approach is based on “artificial T cell receptors.” Although patients naturally
develop CD8` T cell responses (cytotoxic T lymphocyte) during the acute phase of HIV-1 infection,
this does not suffice for blocking virus replication and does not result in clearance of the virus. The
establishment of a latent HIV-1 reservoir forms a major obstacle to viral clearance in the chronic phase
of infection. A strategy to clear virus from the body may be to enhance the recognition of HIV-1
infected cells by engineering T cells. The second approach is based on “intracellular immunization”
that aims to protect cells from infection based on the intracellular expression of antiviral genes [10]. The
gene products used to combat HIV infection can be classified into two groups: protein and RNA-based
inhibitors. We will first discuss T cell engineering.
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2.1. Artificial T Cell Receptors

Initial studies performed in the early 1990s described the potential for enhancing the recognition of
HIV-1 infected cells by expressing a molecularly cloned T cell receptor (TCR) specific to HIV proteins,
termed artificial TCR. Preclinical in vivo studies demonstrated suppression of HIV in humanized mice
that were injected with T cells expressing the artificial Gag-SL9 TCR [11]. However, effective
HIV-specific cytotoxic T lymphocytes are restricted by HLA class I alleles and therefore cannot be
applied universally. To avoid HLA restriction of artificial TCRs, T cells can be engineered to express a
chimeric antigen receptor (CAR), which combines the specificity of an antibody and the intracellular
signaling capacity of a T cell receptor. Preclinical studies of CD8` T cells engineered to express
CAR have demonstrated antigen-specific proliferation, inhibition of HIV replication, and cytolytic
activity against HIV-infected T cells [12,13]. A recent study based on the results of three clinical
trials (clinical trial NCT01013415 and [12,14]) indicated that CAR gene therapy is safe [15]. However,
the level of CAR-modified cells was found to decrease over time, thus limiting the durability of the
anti-HIV effect [12], but other studies reported a remarkable persistence of CAR-modified cells [14–16].
Engineering of HSCs to express CAR molecules may allow for the prolonged production of long-lived
non-susceptible cells and eliminate the risk of generating self-reactive hybrid TCR pairs because
modified cells would be naturally selected in the thymus [17].

2.2. Intracellular Immunization

Over the last two decades several anti-HIV gene therapy approaches have been developed. The
anti-HIV gene products will interfere with crucial steps of the viral replication cycle or target a cellular
factor that is required for virus replication. Figure 2 illustrates the steps of HIV-1 replication cycle that
can be targeted. The viral replication cycle is arbitrarily divided into two stages: the early stage refers
to the steps of infection from cell binding to the integration of the viral DNA into the cell genome,
whereas the late stage begins with viral gene expression from the integrated provirus and leads to the
release of the immature virions that subsequently mature into infectious particles (for further details, see
the Figure legend). Initially, anti-HIV genes were designed to inhibit HIV transcription or translation,
which occur during the late stage of the replication cycle. More recently, laboratories have developed
anti-HIV therapies based on the inhibition of early replication stage, which may be beneficial for a robust
antiviral effect. According to the gene products used to combat HIV infection, the gene therapy strategies
are classified into two groups: protein and RNA-based therapies.
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Figure 2. Steps of the HIV-1 replication cycle that can be targeted by gene therapy.  

The HIV-1 replication steps that can be targeted by gene therapy are shown: (1) HIV-1 

binding to cell membrane; (2) HIV-1 entry into the cell; (3) reverse transcription;  

(4) transport of the HIV-1 proviral genome into the nucleus; (5) integration of the viral 

genome into the cellular DNA; (6) transcription of the HIV-1 proviral genome;  

(7) translation of the viral messenger RNA (mRNA) into new viral proteins; (8) virion 

assembly inside the cell; and (9) maturation of the immature virion into a completely  

infectious particle. 
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Figure 2. Steps of the HIV-1 replication cycle that can be targeted by gene therapy. The
HIV-1 replication steps that can be targeted by gene therapy are shown: (1) HIV-1 binding
to cell membrane; (2) HIV-1 entry into the cell; (3) reverse transcription; (4) transport of the
HIV-1 proviral genome into the nucleus; (5) integration of the viral genome into the cellular
DNA; (6) transcription of the HIV-1 proviral genome; (7) translation of the viral messenger
RNA (mRNA) into new viral proteins; (8) virion assembly inside the cell; and (9) maturation
of the immature virion into a completely infectious particle.

2.2.1. Protein-Based Therapies

Proteins can be engineered to inhibit either viral or cellular targets. Protein-based strategies include
trans-dominant negative proteins (an altered form of a viral or cellular protein that can inhibit the normal
function of its wild-type counterpart), fusion inhibitors (a protein or peptide that affects the fusion
process during viral entry into the cell), intrabodies (recombinant antibodies expressed intracellularly),
intrakines (modified intracellular chemokines), host restriction factors, and nucleases. The first protein
tested in a HIV gene therapy trial was an altered form of the HIV Rev protein termed RevM10. RevM10
is a trans-dominant Rev mutant that interferes with the normal Rev function and thereby prevents the
export of unspliced genomic HIV RNA from the nucleus to the cytoplasm [18–20]. Cells expressing
RevM10 were shown to have a survival advantage in HIV-infected individuals, but no substantial impact
on the viral load was observed [21,22]. Other trans-dominant negative HIV-1 proteins have been
developed, including Tat mutants that prevent transactivation of the viral LTR promoter [23] and Vif- and
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Gag-based trans-dominant inhibitors [24–27]. Mutants of cellular proteins that act as co-factors of virus
replication have also been evaluated as trans-dominant negative molecules (e.g., S6 [28], Sam68 [29,30],
or HDAC1 [31]).

A different protein-based approach is based on secreted antiviral proteins. Several laboratories
have genetically engineered truncated and soluble forms of CD4 (sCD4) that exhibit antiviral
properties [32–34]. However, the secretion level of sCD4 was too low to efficiently inhibit HIV. Recently,
promising results were obtained with a fusion inhibitor based on a 46 amino acid domain of the HIV-1
Envelope gp41 protein (C46) that prevents membrane fusion [35]. The C46 peptide has also been stably
expressed as a membrane-anchored peptide (maC46) that was able to inhibit replication of a broad range
of HIV-1 isolates [36,37]. The safety of maC46 has been confirmed in a phase I clinical trial in which
autologous T cells, transduced with a retroviral vector expressing maC46, were infused into patients [38].
However, the in vivo antiviral effect remains currently unknown. Secreted neutralizing antibodies or
intrabodies have been developed against the viral Tat, Vif, Reverse Transcriptase, and Integrase proteins
and have been shown to inhibit virus replication in gene-modified cells in vitro [39–44]. However, the
neutralization breadth of these intrabodies was limited. For instance, although the anti-Tat intrabody
was expected to increase the relative survival of transduced cells in vivo by blocking the Tat-TAR axis
that controls viral gene expression, the number of transduced cell level progressively decreased and was
too low to cause a therapeutic effect [44]. In another attempt to inhibit HIV entry, several modified
intracellular chemokines or intrakines were designed to block the surface expression of HIV-1 CCR5
co-receptor, but modified cells retained a residual co-receptor level on the cell membrane that suffices
for HIV-1 entry [45–47].

An alternative strategy to block the expression of HIV-1 co-receptors is to engineer nucleases that
are specific for sequence motifs in the co-receptor genes. Various approaches have been explored
to enable selective gene editing: zinc finger nucleases (ZFNs), transcription activator-like effector
nucleases (TALENs), and, most recently, CRISP/Cas9 nucleases. Most studies have focused on the genes
encoding the HIV-1 co-receptor CCR5 and CXCR4, but the integrated HIV-1 DNA genome can also be
targeted [48–56]. The major hurdle with genome-editing systems concerns the possible off-target effects
that may lead to non-specific genome modifications. This issue must be solved before genome editing
can be considered for anti-HIV-1 gene therapy. Recently, several groups demonstrated that antiviral
restriction factors can also be exploited for anti-HIV gene therapy applications [57]. For instance, the
human TRIMcyp protein was shown to potently inhibit HIV in human T cells and macrophages in vitro
and in vivo [58]. Nevertheless, the introduction or overexpression of exogenous restriction factors may
induce an unwanted immune response that eventually results in the removal of the modified cells. Thus,
the feasibility of this approach needs to be addressed in larger clinical trials.

We also would like to mention some exciting recent studies on gene therapy vectors that should
provide protection against HIV-1 transmission. This novel strategy is called Vectored Immuno
Prophylaxis or VIP and is based on the production of an anti-HIV transgene-encoded antibody. VIP
yields immunological protection (like a vaccine), but without actively invoking the immune system
(antigen design, production and vaccination) [59–61]. In particular, VIP yielded sustained expression of
multiple antibodies at a high level upon a single intramuscular injection in mice [62]. These antibodies
confer anti-HIV activity and protected humanized mice against an HIV-1 challenge [62,63].
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2.2.2. RNA-Based Therapies

Similar to anti-HIV proteins, RNAs can be designed to target either viral or cellular products. RNA
molecules have an advantage over proteins because nucleic acids are not immunogenic and RNA-based
therapies may therefore be more suitable for long-term applications. In addition, RNA-based therapies
mostly work in a sequence-specific manner, thus avoiding adverse effects in the cell. Although cellular
targets are less prone to mutations that may trigger viral escape, there may be serious side effects of
downregulating cellular products. Therefore, HIV-1 products have been the preferred target for antiviral
RNAs. RNA-based strategies include antisense, ribozymes, aptamers, small interfering RNAs (siRNAs),
short hairpin RNAs (shRNAs), and the related AgoshRNA design that was recently discovered. The
agents that act through the RNA interference (RNAi) mechanism: siRNA, shRNA, and AgoshRNA will
be explained in more detail because they form a more recent addition to the antiviral arsenal.

To date numerous antisense RNA molecules have been designed to target HIV-1 mRNAs in
a sequence-specific manner, resulting in the formation of non-functional RNA duplexes that are
subsequently destroyed. Antisense RNA molecules against the HIV-1 trans-activation response element
(TAR) and Envelope-encoding sequences of HIV-1 RNA have been designed and shown to inhibit HIV
in vitro [64–66]. Ribozymes are similar to antisense RNA molecules but have an added catalytic activity.
Ribozymes have been directed against tat/vpr [67–69], rev/tat [70], and U5 leader sequences [71]
of the HIV-1 RNA genome and have shown promising antiviral activity in vitro [72,73]. However,
the ribozyme-only treatments have not demonstrated a therapeutic effect in clinical trials [69]. RNA
aptamers do not attack the HIV RNA genome. Instead, these oligonucleotides competitively bind and
sequester specific molecular targets, thus inhibiting their biological function. Anti-HIV-1 aptamers are
mainly based on TAR and Rev-responsive elements (RRE), thus neutralizing the action of the HIV-1
proteins Tat and Rev, respectively. The inhibitory effect of TAR and RRE aptamers was reported
in vitro [74–77] and in vivo [78,79], but no antiviral effect was observed in the only clinical trial to
date that exclusively used aptamers [80].

More recently, RNAi has evolved as a powerful tool to regulate gene expression post-transcriptionally
in a sequence-specific manner. The RNAi mechanism uses double-stranded RNA molecules (dsRNA)
to trigger mRNA degradation (Figure 3). First, a primary miRNA transcript (pri-miRNA) is made, of
which a hairpin-like RNA structure is processed by the “Microprocessor” complex, which consists of
the Drosha nuclease and its dsRNA-binding partner DGCR8. The resulting pre-miRNA is cleaved near
the terminal loop by the Dicer nuclease in collaboration with the trans-activation response RNA-binding
protein (TRBP) and protein activator of PKR (PACT) cofactors [81]. This miRNA pathway yields the
mature RNA duplex, of which one strand of approximately 22 nucleotides is preferentially loaded into
the Argonaute (Ago) enzyme as part of the RNA-induced silencing complex (RISC). The miRNA-loaded
RISC complex targets a partially complementary mRNA transcript for degradation and/or translational
repression. This mechanism is conserved in all eukaryotes and can be exploited for therapeutic gene
silencing. The canonical RNAi pathway can be triggered by artificial substrates as synthetic siRNAs
that can be transfected into the cells (Figure 3, right, canonical pathway) [82]. Antiviral activity of
siRNA molecules targeting the HIV RNA genome (Nef, Tat, Gag, Vif, Env) or the mRNA for important
cellular co-factors has been reported in short-term virus replication experiments [83–88]. However,
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HIV-1 causes a chronic infection and infected patients require long-term treatment, which cannot easily
be accomplished for synthetic siRNAs, in part due to inefficient delivery of nucleic acids into cells.
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Figure 3. The endogenous miRNA and exogenous shRNA processing pathways. The
intracellular processing pathways are depicted starting from the miRNA gene of the
cell (endogenous) or the transduced shRNA gene cassette (exogenous). The canonical
Dicer-dependent and noncanonical Dicer-independent pathways are depicted for both
molecules. Ago2 plays an essential role in Dicer-independent pathways. See the text
for further details. PACT: Protein activator of protein kinase R; Pri-miRNA: Primary
miRNA; Ago2: Argonaute 2 nuclease; RISC: RNA-induced silencing complex; TRBP:
Transactivation response RNA-binding protein.
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An alternative to the regular injection of exogenous siRNA is the expression of shRNAs from a
transgene construct in the target cells [89,90]. The shRNA is synthesized in the nucleus, transported
to the cytoplasm by the Exportin-5 protein, and processed by the Dicer endonuclease into siRNAs of
„21 bp with 2-nt 31 overhangs (Figure 3, right, canonical pathway) [91]. The “passenger” strand of
the siRNA is degraded and the “guide” strand programs RISC to cleave the perfectly complementary
target mRNA. Recent evidence indicates that one can also design Dicer-independent shRNAs [92]. We
recently identified a specific shRNA design with a short stem and small loop that triggers this alternative
processing route [93,94]. This special shRNA design was named AgoshRNA to reflect the dual role
of Ago2 in processing and subsequently target RNA cleavage. The AgoshRNA design possess several
potential advantages over regular shRNAs, but more studies are required to demonstrate their knockdown
efficacy [93].

AgoshRNAs may become the silencing method of choice in diverse situations, e.g., in cells such as
monocytes that lack a significant amount of Dicer [95]. In addition, saturation of Dicer as a critical
component of the cellular RNAi pathway may not occur with AgoshRNAs. Moreover, only a single
RNAi-active guide strand is produced, which is an important feature to restrict RNAi-induced off-target
effects due to the passenger strand. Ago2-mediated processing of shRNAs also yields more precise
ends compared to Dicer processing, which is notoriously inaccurate [96,97]. Finally, AgoshRNAs
may mimic the Dicer-independent cellular miR-451 that is loaded exclusively into Ago2, thus avoiding
off-target effects via Ago1, 3, and 4 [98]. However, it remains to be seen whether the regular shRNA or
novel AgoshRNA design yields more effective molecules and we think that the latter design can still be
improved [99,100].

3. Combinatorial Approaches

HIV mutates rapidly due to the high viral turn-over in patients and the significant mutation frequency
of the HIV-1 Reverse Transcriptase enzyme, which lacks a proofreading mechanism. Thus targeting of a
host cell co-factor may represent a less escape-prone antiviral option. However, host targeting may cause
cytotoxicity and viral escape would be possible through adaptation to an alternative cellular co-factor.
Like the use of a single antiviral drug, gene therapy with a single anti-HIV gene is prone to virus escape.
Therefore, effective gene therapy applications against HIV will likely require a combination of anti-HIV
genes targeting different HIV-1 components or important co-factors [90,101,102]. Besides additive
inhibition, this combinatorial approach will raise the genetic threshold for the evolution of drug-resistant
virus variants as multiple mutational hits will be required in multiple target sites. Accordingly, several
groups have incorporated multiple anti-HIV genes into a single vector.

Our group has investigated different combinatorial RNAi approaches (Figure 4). For instance,
multiple shRNA cassettes can be combined in the same vector [103]. Different promoters were used
to express three shRNAs against HIV-1 to avoid recombination-mediated deletion of shRNA cassettes
on repeated promoter sequences. Multiple inhibitors can also be generated from a polycistronic miRNA
transcript [104,105]. A recent study showed that multiple shRNAs can be effectively expressed from
a single vector via tandem repeats of different miRNA-based backbones [106]. This strategy is
called multiplexed miRNA-based shRNAs (shRNA-miRs). When peripheral blood mononuclear cells
from HIV-1 seropositive individuals were transduced with a shRNA-miRs vector and transplanted into
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mice, efficient suppression of virus replication and restoration of the CD4 T cell count was observed.
Alternatively, extended shRNAs (e-shRNA) expressing two or three siRNAs or long hairpin RNAs
(lhRNA) encoding many siRNAs can be designed [107–110]. However, most silencing activity is lost for
the extended RNA duplex designs. Figure 4 lists the major advantages and disadvantages of the different
combinatorial RNAi strategies [111].
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Figure 4. Combinatorial RNAi strategies. Four inhibitory scenarios are plotted with
the respective advantages and disadvantages. This figure was adapted from [111]. LV:
lentiviral vector.

The RNAi inhibitors can be combined with other protein and RNA-based inhibitors [102] or
conventional antiretroviral drugs [112,113]. For instance, one study employed a combination of
CCR5 shRNA, chimeric human/rhesus TRIM5a, and a TAR aptamer and a different study employed
a TAR aptamer, CCR5 ribozyme, and a tat-rev shRNA [114,115]. These studies demonstrated no
apparent toxicity for the combination of antiviral genes. In a separate study, a combination of
the membrane-anchored peptide (maC46) and multiple tat/rev shRNAs were combined in a single
vector [116]. Our group demonstrated that “second-generation” shRNAs can also be combined
with protease inhibitors to avoid the evolution of clinically relevant drug-resistance mutations in
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the protease-encoding gene [113]. One could even create hybrid molecules that combine siRNA
and other antiviral activities, e.g., an RNA aptamer that binds to and neutralizes the viral Envelope
protein [117,118]. Although these results are promising, the key question is whether these compounds
can effectively block viral escape.

4. Vector Choice

To fight chronic diseases like HIV infection, stable transduction of target cells with the transgene
is desirable to avoid repeated administration of anti-HIV molecules. To achieve a durable therapeutic
effect, viral vectors that integrate into the host genomes seem the preferred route. Mostly vectors derived
from gamma-retroviruses (murine leukemia virus) and lentiviruses (HIV-1) have been used in clinical
trials to treat HIV-1 infection [38,102]. The viral genome has been truncated and modified in a number
of ways to generate vectors that are safe for clinical use. Both gamma-retroviral and lentiviral vectors
(LV) integrate randomly into the host cell genome [119]. As a consequence, integration of the vector
may cause insertional oncogenesis. Gamma-retroviruses usually integrate near transcriptional start
sites, and severe side effects and the induction of leukemia have been reported in clinical trials [120].
LVs tend to integrate within introns of transcribed regions, thereby limiting their potential to cause
insertional oncogenesis [121]. Nevertheless, one should remain careful because some clonal expansion
of HIV-infected cells has been observed in infected patients [122,123]. Nevertheless, the development of
leukemia due to an HIV-1 integrating event has never been observed in HIV-1 infected individuals. An
additional advantage of the LV design is that this vector can infect dividing cells as well as non-dividing
cells and terminally differentiated cells, while the gamma-retroviral vector can only infect dividing cells.
Given the lower risk of insertional oncogenesis and the ability to effectively transduce many cell types,
including HSC, we have chosen the LV system for delivery of the antiviral payload.

The first demonstration of HSC transduction with a LV was presented in 1996 and since then this
vector has been extensively modified to increase the efficiency and safety [124]. The HIV genome
encodes nine genes, of which four are dispensable for in vitro virus propagation [125]. Therefore, these
four accessory genes were deleted, together with the wild-type envelope gene (Figure 5A). An envelope
protein of a different virus is included instead, most often the glycoprotein of vesicular stomatitis virus
(VSV) due to its broad target cell tropism [124]. In addition, Gag-Pol (SYNGP), Rev (RSV-rev),
and VSV-g genes are separated on plasmids and expressed from a heterologous promoter, while the
region in the viral vector between the Long Terminal Repeats (LTRs) is replaced with the therapeutic
gene on a fourth plasmid to minimize the risk of generating a replication-competent virus through
recombination. Further improvement of the biosafety was achieved by construction of self-inactivating
(SIN) vectors. SIN vectors contain a deletion in the U3 region of the 31 LTR that is transferred to
the 51 LTR promoter during reverse transcription, leading to transcriptional inactivation of the vector
in transduced cells [126,127]. This self-inactivating vector design diminishes the risk of oncogene
activation by promoter insertion and reduces the risk of vector mobilization and recombination with
the wild-type virus [128].
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Figure 5. Self-inactivating lentiviral vectors for stable shRNA expression. (A) The lentiviral
vector JS1 is shown with three plasmids needed for lentiviral vector production. The vector
genome is expressed from the Rous Sarcoma Virus (RSV) promoter. Transcripts start with
the HIV-1 R and U5 regions and the packaging signal (ψ). The enhanced green fluorescent
protein (GFP) reporter is expressed from the phosphoglycerate kinase promoter (PGK).
Transcription of the vector genome and the GFP reporter terminates at the HIV-1 polyA
signal within the 31 LTR; (B) Scheme of a hematopoietic stem cell (HSC) clinical trial.
An HIV-infected patient who fails on regular drug therapy will undergo apheresis for the
collection of CD34` HSC after pretreatment with granulocyte-colony stimulatory factor
(G-CSF). The mixed cell population containing CD34` HSC will be purified and transduced
ex vivo with the therapeutic construct. Transduced cells will be infused back into the patient
and the antiviral gene should protect these cells against HIV-1.

Another biosafety-related issue is the administration of a minimal amount of viral particles to prevent
side effects. To allow the use of a minimal dose of viral particles for cellular transduction, the third
generation LV has an optimized transduction efficiency using a central polypurine tract (cPPT) sequence
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and a post-transcriptional regulatory element (PRE) from the woodchuck hepatitis virus. For the
development of a clinical gene therapy application, it is essential that the vector can be produced to
high titers and that the vector is genetically stable. LV is efficient in transducing CD4` T cells and
HSCs. However, the LV system is based on HIV-1, which may complicate its use as a vehicle to deliver
anti-HIV-1 genes, e.g., RNAi inducers. We previously discussed these potential problems and presented
protocols to effectively use LV for an RNAi-based attack on HIV-1 [129–131]. Briefly, it is important
to avoid targeting of HIV-1 sequences that are also present in the LV system. This requirement can
frequently be met by using codon-optimized versions of the gag/pol and rev vectors that were generated
to improve safety (marked in black in Figure 5A). Another potential issue is that the anti-HIV gene may
target sequences in the LV, thus reducing the production or titer by “self-targeting.” This problem can be
avoided by careful selection of shRNAs that do not target parts of the LV backbone.

To date, the LV system has been shown to be effective for in vitro delivery, integration, and stable
expression of transgenes in the hematopoietic system. For a durable HIV-1 treatment, one can transduce
HSC ex vivo with a LV encoding different HIV specific inhibitors (Figure 5B). The transduced cells
should constitutively express the inhibitors and thus be resistant to HIV-1 infection. The protected
HSC are engrafted back into the patient, where they will give rise to an HIV-1 resistant myeloid and
lymphoid cell population. This approach would ideally only need a single infusion. Engraftment of
autologous transduced HSC will not only result in a steady production of HIV-1 resistant T cells, but also
other HIV-1 susceptible cells, e.g., macrophages and monocytes. Gene-modified cells will theoretically
have a survival advantage over non-modified cells in HIV-infected individuals as the infected cells will
be recognized and destroyed by the patients’ immune system. Thus, the autologous transplant should
eventually be able to (partially) reconstitute the immune system.

5. Preclinical Safety and Efficacy Tests

For a discussion of the required preclinical safety and efficacy tests, we would like to focus on
the research line that we have developed since 2004. We proposed an RNAi-based gene therapy
for the durable control of HIV-1 infection. We started by screening many shRNA candidates that
target important HIV-1 sequences and selected the most potent inhibitors. These shRNAs target
highly conserved viral sequences, with 100% sequence identity among at least 70% of HIV-1 genomes
of all subtypes. We could make a human T cell line fully resistant to HIV-1 by expression of a
single shRNA, but we also described viral escape by the selection of a point mutation in the target
sequence [87,90,132,133]. We therefore designed LV that express a combination of four shRNAs
(R4A) that target highly conserved sequences in the HIV-1 RNA genome. The safety and efficacy of
the combinatorial RNAi-based gene therapy can first be probed in vitro. We tested the four candidate
shRNAs in a competitive cell growth (CCG) assay based on the difference in proliferation rate of
shRNA-transduced (GFP-positive) and untransduced cells in the same culture. We observed a negative
impact of one of the four shRNAs on in vitro cell growth [134]. The safety of this combinatorial RNAi
approach should also be tested in appropriate in vivo models to prepare for a clinical trial in humans.
In particular, we used the BRG-HIS mouse model in which immunodeficient newborn mice are injected
with human hematopoietic progenitor cells. These mice build a fairly complete human immune system
consisting of different cell lineages, including mature T cells. This complex process of hematopoiesis can
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be monitored to screen for a negative impact of the HSC gene therapy on cell development. For instance,
we tested the impact of LV-transduced anti-HIV shRNAs cells and observed normal development of
the human immune system and no adverse effects for three of the four shRNAs tested. The shRNA that
showed some adverse effects in vivo also demonstrated a negative effect in the CCG assay, which allowed
us to reformulate the shRNA cocktail [135]. The three nontoxic and potent antiviral shRNAs were used
to design the combinatorial RNAi vector R3A. Each shRNAs targets a highly conserved sequence of
the HIV-1 RNA genome encoding the Integrase, Protease and Tat-Rev proteins [90]. Other therapeutics
approaches (e.g., zinc-finger nucleases or ZFN) were also tested in this pre-clinical mouse model [136].

The efficacy of the R3A vector was shown in vitro in experimental settings with pure cultures of
modified T cells and subsequently with mixed cultures of modified and unmodified cells [135,137]. It
was confirmed that no viral escape occurs with the combinatorial R3A regimen in prolonged mixed
cultures, which renders this combination therapy durably effective. It is also important to test the
impact of HIV genetic diversity on the combinatorial RNAi regimen proposed. Therefore, the efficacy
of R3A was tested against a broad panel of HIV isolates and subtypes. The results demonstrate the
broad effectiveness of the triple shRNA regimen [138]. Based on these promising in vitro results, the
therapeutic potential of this combinatorial RNAi approach should be tested in appropriate in vivo models.
These studies are currently being addressed in the BRG-HIS mouse model.

6. Clinical Studies

We consider a lentiviral gene therapy for HIV-infected patients who fail on regular ART, where
autologous HSCs will be transduced ex vivo with the LV encoding the triple shRNAs. In theory, the
transduced HSCs will durably supply all derived immune cells with the combination of antivirals.
Because preferential survival of the shRNA-expressing cells over unprotected cells in the presence of
HIV-1 is expected, perhaps a single gene therapy treatment will suffice. Theoretically, unprotected cells
will be infected and removed by the immune system. This survival benefit of protected cells should result
in a gradual increase in the percentage of cells that are not susceptible to HIV-1 infection, restoration of
the damaged immune system, and hopefully a blockage of disease progression towards AIDS. Although
the feasibility of such a cell-based gene therapy has recently been demonstrated in a pilot clinical
study [139], successful application of modified HSCs for HIV treatment requires further optimization to
improve the transduction efficiency and enhance the engraftment of the modified cell population. In this
regard, the use of mild myeloablation methods may facilitate more efficient engraftment, an approach
that can be used in a safe manner in a gene therapy setting [140,141].

To date, only a few anti-HIV gene therapy protocols have progressed towards clinical trials, mostly
addressing the feasibility and safety of gene-transduced autologous HSC transplantation in patients.
Table 1 summarizes some of the clinical trials performed with gene-modified HSC to date. We did not
list the trials that target mature T cells.
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Table 1. Clinical trial of HIV gene therapy based on modified HSC transplantation.

Gene Therapy Mechanism Phase Reference(s)

Rev-responsive element decoy (Rev protein) Pilot [80]
Trans-dominant Rev (Rev protein) I–II [142]

Ribozyme (Tat/Rev mRNA) II [69,143]
NCT00074997
NCT00002221

II NCT01177059
Combinatorial trans-dominant Rev (Rev protein) and antisense (Pol mRNA) I–II NCT00003942

Combinatorial strategy: fusion inhibitor C46 (Env protein) and shRNA (CCR5) I–II NCT01734850
Combinatorial strategy: shRNA (Tat/Rev mRNA),

TAR decoy (Tat protein) and ribozyme (CCR5)
Pilot

[102]
NCT00569985
NCT01153646

7. Conclusions

Although current cART can potently reduce the plasma HIV viral load to undetectable levels in most
patients, it is not curative. cART remains expensive because of the need for life-long drug adherence.
Other cART problems are the side effects observed in some patients after long-term drug intake and the
possibility that drug-resistant virus variants evolve. Although HSC gene therapy will also be expensive,
it presents an attractive alternative that has the potential to control HIV infection with a single treatment.
Genetically modified HSCs and all derived cell types will continuously produce the anti-HIV genes.
Anti-HIV genes can be designed to interfere with crucial steps of the viral replication cycle either by
targeting a viral factor or a cellular factor required for virus replication. For the success of a HSC
gene therapy, it is pivotal that therapeutic genes potently and permanently inhibit viral replication. The
anti-HIV genes should exhibit long-term efficacy without exerting adverse effects on lineage specific
differentiation and cellular functions, and appropriate gene delivery vehicles with minimal toxicity are
thus essential. There is growing evidence that the third generation lentiviral vector, which allows stable
integration of the therapeutic gene, can be used safely [144–146]. Although the feasibility of HSC gene
therapy has been demonstrated recently in a pilot clinical study [139], successful application of modified
HSCs for HIV treatment requires further optimization, e.g., by improving the transduction efficiency and
enhancing the engraftment of the modified cell population. Given the recent technological advances in
the field, we believe that HSC modification forms an attractive means to develop a durable therapy for
HIV infection. HSC gene therapy may also be combined with approaches that specifically target the
HIV-1 reservoirs to achieve at least a “functional cure” (the virus is still present, but suppressed in the
absence of antiretroviral drugs), since a “complete cure” (virus eradication from an infected individual)
seems like an impossible mission at the moment.
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