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Abstract.—An unprecedented amount of evidence now illuminates the phylogeny of living mammals and birds on the Tree
of Life. We use this tree to measure the phylogenetic value of data typically used in paleontology (bones and teeth) from six
data sets derived from five published studies. We ask three interrelated questions: 1) Can these data adequately reconstruct
known parts of the Tree of Life? 2) Is accuracy generally similar for studies using morphology, or do some morphological data
sets perform better than others? 3) Does the loss of non-fossilizable data cause taxa to occur in misleadingly basal positions?
Adding morphology to DNA data sets usually increases congruence of resulting topologies to the well-corroborated tree,
but this varies among morphological data sets. Extant taxa with a high proportion of missing morphological characters can
greatly reduce phylogenetic resolution when analyzed together with fossils. Attempts to ameliorate this by deleting extant
taxa missing morphology are prone to decreased accuracy due to long-branch artifacts. We find no evidence that fossilization
causes extinct taxa to incorrectly appear at or near topologically basal branches. Morphology comprises the evidence held
in common by living taxa and fossils, and phylogenetic analysis of fossils greatly benefits from inclusion of molecular
and morphological data sampled for living taxa, whatever methods are used for phylogeny estimation. [Concatenation;
fossilization; morphology; parsimony; systematics; taphonomy; total-evidence.]

Paleontology is by definition a field in which some data
are missing. Anything that becomes a fossil has to go
through a paleontological filter. Fossils generally lack
genetic and soft tissue data, and their hard parts are often
fragmentary and incomplete (Briggs 1995; Smith 1998;
Donoghue and Purnell 2009). There is no doubt that the
paleontological filter can make it difficult to infer the
phylogenetic affinities of fossils. In some cases, it may
render definitive statements about affinities impossible.
While it is trivial to say that, at some point, loss of data
will have a negative effect on phylogenetic accuracy, it is
more difficult to accurately generalize about where that
point is, or what the overall impact of the paleontological
filter on systematics has been. Sansom and Wills (2013,
1) stated that the non-random process of taphonomy
(i.e., that some body tissues are more likely to decay
than others) “systematically distorts phylogeny” by
artifactually placing extinct species closer to the root of
a given evolutionary tree than they actually are. This
interpretation has been accepted by at least some authors
(Foley et al. 2016; Springer et al. 2019) despite several
examples to the contrary (e.g., Murdock et al. 2014;
Nanglu et al. 2015; Pattinson et al. 2015; Sansom 2016;
Klompmaker et al. 2017; Flannery-Sutherland et al. 2019).

The paleontological literature abounds with phylo-
genetic interpretation, and indeed the field depends
on it to understand past life on Earth. Paleontologists
therefore continue to use fossilizable, morphological
data out of necessity, and in some cases do so along
with samples of living taxa with molecular data (e.g.,
Eernisse and Kluge 1993; Brochu 1997; Gatesy and
O’Leary 2001; Lee 2001; Asher et al. 2003, 2005; Wiens

et al. 2010; Ronquist et al. 2012a; O’Leary et al. 2013;
Beck and Lee 2014; Klopfstein et al. 2015; Koch and
Parry 2020). However, these studies are exceptions. Most
phylogenetic reconstructions focusing on fossil groups
sample few or no living taxa; when living taxa are
present, they usually lack non-fossilizable (typically
molecular) data. This applies just as much to high-profile
papers in Nature and Science (e.g., Baron et al. 2017;
Huttenlocker et al. 2018; Zhou et al. 2019; Krause et al.
2020) as it does to recent articles in (for example) the
Journal of Vertebrate Paleontology and Journal of Systematic
Paleontology. Most paleontologically informed biologists
nonetheless agree that anatomical data recoverable from
fossils, and molecular data from living taxa, are mutually
informative in establishing the timing and branching
patterns of the Tree of Life (Smith 1998; Brochu 2003;
Jenner 2004; Reisz and Müller 2004; Asher et al. 2005,
2008, 2009; Wiens 2009; Benton et al. 2009, 2015; Lee and
Palci 2015; Pyron 2015).

Here, we explore the extent to which fossilizable data
may be systematically misleading and quantify phylo-
genetic congruence with well-corroborated branches of
the phylogenetic Tree of Life. We test for bias using
six data sets derived from five phylogenetic studies:
four of mammals (Asher 2007; Pattinson et al. 2015;
Huttenlocker et al. 2018; Halliday et al. 2019) and one
of birds (Livezey and Zusi 2006), all of which we
combine with alignments of DNA from corresponding
taxa (Table 1). We simulate the process of fossilization
for each data set, and compare resulting topologies with
those derived from independent, genomic studies. This
allows us to assess the contributions of morphology
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and DNA to phylogenetic accuracy, and measure the
detrimental influence of fossilization.

MATERIALS AND METHODS

Character Matrix Assembly
Each of our data sets required varying degrees of

editing in order to combine with available molecu-
lar data and yield results pertinent to our research
questions. We combined the morphological data from
Asher (2007), Huttenlocker et al. (2018), and Halli-
day et al. (2019) with corresponding genera from the
alignment of Upham et al. (2019), which consisted of
39,099 DNA sites (Supplementary Table S1 available on
Dryad at http://dx.doi.org/10.5061/dryad.w3r2280q3).
Morphological matrices for birds (Livezey and Zusi
2006; Supplementary Table S1 available on Dryad) and
primates (Pattinson et al. 2015) lacked sufficient overlap
with Upham et al. (2019); we therefore combined them
with DNA sequence alignments from (respectively)
Prum et al. (2015) and Springer et al. (2012; also used
in Pattinson et al. 2015). We did not alter any of the
alignments. Given the varying taxon samples in our data
sets and our reliance on equally weighted parsimony
(justified below), presence of gapped sites for all taxa
would not affect choice of an optimal topology, although
there are differences in the number of parsimony-
informative DNA sites and morphological characters in
each data set, as indicated in Table 1.

We noted character coding mistakes in three of these
matrices: Pattinson et al. (2015), Huttenlocker et al. (2018),
and Halliday et al. (2019). In addition, Mayr (2008)
critiqued many of the coding decisions of Livezey and
Zusi (2006). In order to treat all of these studies equitably,
we did not make any corrections to their published
matrices. However, the phylogenetic matrices provided
by Halliday et al. (2019) had a particularly large number
of anomalies, including large blocks of missing data for
extant taxa (as detailed in Supplementary Appendix S1
available on Dryad). We therefore used a further matrix
(“Halliday-50”) retaining only the 32 extant genera that
were sampled for at least 50% of the characters in the
“S1 Morphological Matrix” of Halliday et al. (2019), and
that are also at least 50% complete in the alignment
of Upham et al. (2019). Supplementary Appendix S1
available on Dryad provides further details on each
morphological matrix with its respective DNA align-
ment; Supplementary Appendix S2 available on Dryad
provides our taxon-character matrices in TNT format.
Supplementary Table S1 available on Dryad provides
information on taxon overlap of our morphological
matrices with the alignments of Prum et al. (2015) and
Upham et al. (2019).

The Well-Corroborated Tree and Data Independence

There is now a huge body of data supporting the
basic phylogenetic topology for mammals and birds

(Fig. 1), including genomic alignments of primarily
exons (Pattinson et al. 2015), introns and other non-
coding regions (Reddy et al. 2017), microRNAs (Tarver
et al. 2016), and ultraconserved elements (Esselstyn et al.
2017). Even given uncertainty at certain branches, for
example the placement of tree shrews and bats among
placental mammals or relationships among neoavian
birds, an evolutionary tree can still be well-corroborated
yet acknowledge uncertainty via polytomies. For our
study, the basic topology for mammals derives from
the UCE data set of Esselstyn et al. (2017) and the
genomic and microRNA data set of Tarver et al. (2016).
Their topology for primates is supported (with a better
taxon sample) by the alignment of 69 nuclear and
10 mitochondrial genes by Springer et al. (2012). The
topology for birds is based on a consensus of the Bayesian
analysis of a 395 kb alignment of primarily coding exons
by Prum et al. (2015: Fig. 1) with the optimal likelihood
tree of 54 largely intronic loci for 235 bird species by
Reddy et al. (2017: Fig. 3, their “early bird II” data
set), which is in turn consistent with the topology for
paleognaths figured by Yonezawa et al. (2017). There is
no overlap between any of the morphological data sets
and the data behind the well-corroborated trees shown
in Figure 1.

Artificial Extinction (“ArtEx”)

To investigate the effect of taphonomic processes on
phylogenetic inference, we applied artificial fossilization
(Asher and Hofreiter 2006; Asher et al. 2008; Pattinson
et al. 2015), or “ArtEx”. Each fossil taxon, or “template”,
is missing all DNA and at least some hard-tissue
characters. An extant subject taxon can be artificially
“fossilized” by replacing each of its coded characters
with “?” so as to correspond with missing characters
in a given fossil template. Our methods to identify all
“?” characters in a given fossil template, and change
the corresponding characters to “?” in an extant subject,
are similar to those of Pattinson et al. (2015), except for
our use of R (R Core Team 2020) and TNT (Goloboff
and Catalano 2016). Supplementary Table S2 available
on Dryad provides further details on transforming
extant taxa into artificial fossils, including R scripts.
We acknowledge use of R packages ape (Paradis 2012),
phangorn (Schliep 2011), Quartet (Sand et al. 2014; Smith
2019b), tidyverse (Wickham et al. 2019), TreeDist (Smith
2020), and TreeTools (Smith 2019a).

Each ArtEx TNT analysis included only extant taxa,
one of which was artificially fossilized per run. For
display purposes, we left the root taxon unchanged
and did not include it among the subject (S)-template
(T) combinations. Hence, for each of our data sets, we
undertook (S-1)T phylogenetic analyses with TNT using
parsimony as the optimality criterion, with all character
changes equal.
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FIGURE 1. Well-corroborated trees. Morphological data sets are given at the top of each tree; taxa are pruned to match each morphological
data set. Mammalian clades are shown in progressively lighter shades from Marsupialia and Monotremata (black) to Xenarthra, Afrotheria,
Laurasiatheria, then Euarchontoglires; avian clades are rooted on Crocodylia (black) and progressively lighter shades from Paleognathae,
Galloanserae, to Neoaves.

Character Randomizations
In order to assess the information content of real

character states in each of our study matrices, we
employed two strategies to remove phylogenetic inform-
ation. One replaced real character states with binary 0/1
states chosen with equal probability (Supplementary
Table S3A available on Dryad); the other replaced each
real character state with a state drawn from a randomly
selected taxon, using “TreeTools” (Smith 2019a). This
procedure was repeated for every subject-template
combination (excluding root taxa).

Subsampling DNA
By varying the amount of DNA included with mor-

phological data in a given analysis, we sought to infer
the dependence of a given data set on its DNA alignment
(as opposed to morphology) to exhibit congruence
with the well-corroborated tree. Toward this end, we

undertook two subsampling regimes, one of DNA sites
(from 10% to 90% sites in 10% increments with 25
replicates each) and another of extant taxa known for
DNA (from 20% to 80% taxa in 20% increments with 15
replicates each), using R scripts to write TNT batchfiles
(Supplementary Table S3B, C available on Dryad). The
number of replicates in sampling taxa was limited by the
Huttenlocker data set, which had the smallest number
of extant taxa (18 including the root taxon).

Calculating Congruence
The well-corroborated trees shown in Figure 1 com-

prised our reference topologies and accounted for the
unique taxon sample of each data set. Analysis of many
subject-template combinations yielded multiple most
parsimonious trees. We calculated congruence values
of most parsimonious topologies (MPTs) from each
subject-template combination with the corresponding

https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab072#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab072#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab072#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab072#supplementary-data
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well-corroborated tree in two ways: 1) using a strict
consensus and 2) averaging across all bifurcating MPTs
(Supplementary Table S4 available on Dryad). ArtEx
topology congruence metrics excluded the root node
which does not partition taxa into splits.

Compared to shared splits and Robinson–Foulds
(RF) distance, quartet-based distance metrics are less
sensitive to changes in the positions of a single taxon.
Existing quartet measures (Estabrook et al. 1985; Day
1986; Smith 2019c) treat polytomies in a reference tree as
a multifurcation event, and will penalize reconstructed
trees that resolve such polytomies despite the fact that
such resolution may be correct. In contrast, our new
quartet similarity measure treats polytomies as expres-
sions of uncertainty and corresponds to the average
probability of guessing the true resolution of a quartet,
based on its condition in a reconstructed tree. If a quartet
is resolved in the well-corroborated tree, then its state
in that tree is taken to be true with probability one;
otherwise, any of the three possible resolutions of the
quartet are considered equally likely to be true. The
average score across all quartets is then given by

raw score= s+1/3(rr +rwc +u)
NQ

where s is the number of quartets resolved identically
in the reconstructed and well-corroborated tree; rr and
rwc are the number of quartets resolved only in the
reconstructed or well-corroborated tree respectively; u is
the number of quartets resolved in neither tree; and NQ
is the total number of quartet statements. We normalize
this score such that the score of a tree that contains all
of the quartet states of the well-corroborated tree is one,
and the expected similarity of a randomly reconstructed
tree, and the similarity of a completely unresolved tree,
are both zero:

maximum score= s+d+rwc +1/3(rr +u)
NQ

normalized score= raw score−1/3

maximum score−1/3

We implemented this measure in the function “Sim-
ilarityToReference” in the R package “Quartet”. This
measure rewards quartets that are correctly resolved in
a reconstructed tree, without penalizing quartets that
are resolved in the reconstructed tree but unresolved in
the reference tree (i.e., excess resolution), and without
treating the non-resolution of quartets in both trees as
similarity. However, as with other quartet measures, it
does not account for the non-independence of quartet
statements.

Shared splits and quartet similarity are directly pro-
portional with congruence; RF distance is inversely
proportional. Given the varying sizes of our reference
trees (Fig. 1), which range from 15 (Huttenlocker et al.
2018) to 70 (Livezey and Zusi 2006) total internal
splits, we present shared splits as the proportion of

observed/potential shared with the respective reference
tree, from 0 (none) to 1 (all).

Phylogenetic Search Strategies
Artificial extinction analyses alone required well over

40,000 distinct phylogenetic analyses. We also under-
took phylogenetic analyses varying the proportion of
DNA included per taxon (225 with and 225 without
morphology for each of the six data sets), the number of
taxa with DNA (60 for each data set), and analyzed full
data sets and partitions therein. Each author (R.J.A. and
M.R.S.) independently ran these phylogenetic analyses
in TNT for each of our study matrices and interpretation
and conclusions are based on results held in common.
Newick trees provided in Supplementary Appendices S4
and S5 available on Dryad derive from the analyses run
by R.J.A.

Despite its limitations (Felsenstein 1978; Smith 2019c),
equal-weights parsimony serves as a proxy for more
sophisticated tree reconstruction techniques, such as
implied weighting or Bayesian methods, the use of
which is impractical for the many thousands of phylo-
genetic analyses undertaken here. To be tractable in
a limited time frame, each individual analysis has to
finish within seconds or minutes, not hours or days.
We found that a single phylogenetic analysis of even
our smaller data sets (e.g., extant taxa in Halliday-
50) still required many hours to approach convergence
using a parallel version of MrBayes (v. 3.2.7, Ronquist
et al. 2012b) on a computing cluster with appropri-
ate models applied to codon positions, genes, and
morphological partitions. Hence, we relied on equal-
weights parsimony and searched treespace with a mix
of strategies in TNT (Goloboff and Catalano 2016), as
detailed in Supplementary Appendix S1 available on
Dryad. Where available, we compared our results with
optimal likelihood and Bayesian topologies described in
the original publications of our test studies (Table 1).
When needed, branch lengths were reconstructed with
parsimony in PAUP* (Swofford 2003).

Measuring Phylogenetic Bias Resulting from Fossilization
Another goal of our study is to test the assertion

that biological decay inherent in fossilization causes
fossils to appear closer to the root than they really are
(i.e., “stemward slippage” of Sansom and Wills 2013).
With bifurcating ArtEx and reference trees, we used
two approaches to quantify directional change of a
given taxon before and after artificial fossilization. One
followed Sansom and Wills (2013) and quantified the
distance in nodes from the root to a given taxon; the
other was the number of leaves (terminal taxa) in a given
taxon’s sister group (function “SisterSize” in TreeTools).
For each taxon, we defined its starting position as the
average position in each of the MPTs returned under
equal-weights parsimony including all data for extant
taxa (Supplementary Appendix S3 available on Dryad).

https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab072#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab072#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab072#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab072#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab072#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab072#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab072#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab072#supplementary-data
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Fully-bifurcating topologies are necessary because
a consensus polytomy underestimates the number of
nodes between the root and a given clade compared to a
resolved topology. In five of six cases, parsimony applied
to extant taxa from our morphology-DNA matrices yiel-
ded a single MPT; the Asher data set yielded three MPTs.
We therefore used the fully-bifurcating majority-rule
consensus to calculate starting positions for each extant
taxon in the Asher data set. We defined the finishing
position as each taxon’s average position in each MPT
recovered from every artificial extinction analysis in
which that taxon was the subject. We averaged both
sister group size and root-to-node distance first among
all MPTs for a given subject-template combination, then
among all templates for a given subject. This difference
in starting and finishing position provided the basis
to quantify directional change after deletion of non-
fossilizable data, using both root-to-node distance and
size of sister group.

Movement toward the root in a given topology is not
necessarily synonymous with “stemward” movement,
just as movement toward the most nested part in a
given topology is not necessarily synonymous with
“crownward” movement. Root-to-node distance can be
influenced by changes in tree shape that are independent
of the taxon of interest. For example, a taxon that
“climbs” away from the root in one clade may still have
a lower root-to-node distance if the overall position of
the clade becomes less nested (Fig. 2). Moreover, the
range of potential directional change is highly dependent
on tree shape. The maximum root-to-node distance in a
pectinate tree scales linearly with the number of leaves,
but the maximum root-to-node distance in a balanced
tree will be much smaller, increasing only with the
logarithm of the number of leaves. This observation
contradicts the assertion of Sansom and Wills (2013, 4)
that “the null expectation for a perturbed single terminal
taxon is an equal probability of displacement up or down
a phylogeny, toward or away from the root in a fully
resolved tree.” For example, in a balanced tree with 2n

leaves, all leaves exhibit maximum distance from the
root; in such a tree, no taxon can move crownward as
there is nowhere further from the root to go. A more
appropriate null expectation is for the position of a taxon
to become less predictable (more “random”) as data
are removed, such that the removal of all data leaves a
taxon equally likely to plot on any branch of the tree. To
generate expected taxon placements under this “random
null” model, we calculated the expected position of a
randomly-placed taxon, calculated by averaging across
all possible perturbations of removing the subject taxon
from the tree, and computing the position measured if
the subject taxon is added to each edge in this reduced
tree in turn.

A separate possibility, related to the concept of long-
branch error (e.g., Parks and Goldman 2014), is that
incompletely coded taxa are most likely to plot where
there is most uncertainty in the tree. An edge that
is reconstructed as unambiguously exhibiting a single
state has zero uncertainty; an edge on which any

FIGURE 2. The range of possible values of the root-to-node distance
is a function of the shape of the tree. In the top panel, leaf C falls in
the stem group of clade (A, B) and has a large root-to-node distance
(4). In the bottom panel, leaf C falls in the crown group of clade (A,
B), yet has a smaller root node distance (3). Sister-group size (light
shade) encapsulates the stemwardness/crownwardness of the subject
leaf regardless of topological changes elsewhere in the tree.

available state could be parsimoniously reconstructed
has maximum uncertainty. To construct an “uncertainty
null” model, we quantified the uncertainty associated
with each edge of the tree after removing a given
subject by calculating the Shannon entropy of the set
of character state symbols (i.e., “0”, “1”, etc.) that
would not increase the parsimony score tree if they
were exhibited by a taxon inserted at that edge. The
entropy of a set of these symbols is given by −∑

plog(p),
where p is the probability of observing each symbol.
As symbols corresponding to character states that are
observed in a majority of taxa are more likely to be
observed, we obtained a value for p by dividing the
number of taxa, excluding the subject, that bore each
permitted symbol, by the number of taxa bearing any
permitted symbol. We then used the uncertainty value
associated with each edge to calculate a weighted mean
stemwardness, by weighting the stemwardness value
obtained by re-inserting a taxon at each edge in line
with the uncertainty associated with that edge. Our
quantification of sister-group size thus uses these two
null expectations, “random” and “uncertainty,” to put
directional bias after artificial fossilization in context.

We also quantified root-to-node distances to invest-
igate directional bias. Due to the nature of our artificial
extinction technique, which deletes non-fossilizable data
for one taxon at a time, we expect (and have observed
empirically) that topological changes resulting from
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Adapt six morphological data matrices, combine each with DNA alignment.A

Measure congruence with well-corroborated tree

derived from independent, genomic data.

ArtEx: Create artificial fossils of extant subject

taxa to match "?" characters in fossil templates.

Undertake phylogenetic analyses for

subject-template combinations

(excluding fossils), one ArtEx subject

per analysis.

Undertake

phylogenetic

analyses at varying

amounts of included

DNA sitesA

Quantify change in root-node

distance and size of sister group of 

subject taxon in ArtEx vs. full

dataset topology

Undertake

phylogenetic

analyses at varying

amounts of included

taxa with DNA

1) Can fossilizable data accurately reconstruct

known branches of Tree?

2) Do morphological data sets vary in contribution

to accuracy?

3) Does loss of non-fossilizable data cause systemic

bias?

Retain real states from

each extant subject
Replace real with

randomized states

FIGURE 3. Flowchart illustrating the major elements of our methods and their relation to testing our main hypotheses.

this deletion will primarily influence each artificially
fossilized taxon. Because other taxa often (but not
necessarily) remain in the same starting positions,
the shape of the initial, full-data tree is relevant to
inform our expectations of how root-to-node distance
could change following deletion of non-fossilizable data.
A taxon that starts in a deeply nested position will
have more potential to reduce its root-to-node distance
after deletion of non-fossilizable data (i.e., “stemward
slippage”) than a taxon starting in a basal position.
Given the bifurcating topology from each full data set
(Supplementary Appendix S3 available on Dryad), we
therefore considered each taxon’s potential to direc-
tionally change along with our observed changes in
root-to-node distance for that taxon.

Figure 3 provides a flowchart to summarize our
methods and their relation to the hypotheses we
test. Supplementary Table S5 available on Dryad
gives our R script for calculating root-to-node dis-
tances. Supplementary Appendix S3 available on
Dryad provides newick formatted representations of
our well-corroborated trees and full data set topolo-
gies. Supplementary Appendix S4 available on Dryad
provides MPTs resulting from ArtEx analyses, and
Supplementary Appendix S5 available on Dryad strict
consensus topologies of MPTs derived from each ArtEx
subject-template combination.

RESULTS

Do Fossilizable Data Accurately Reconstruct Known Parts of
the Tree of Life?

All of our data sets exhibited a significant correlation
between quartet similarity and shared splits; both are

significantly correlated with increasing completeness of
fossil templates (see the section on Artificial Extinction,
below). In four of the six data sets (Asher, Huttenlocker,
Pattinson, Halliday-50) and for all but the most incom-
plete templates, real and binary randomized character
states fell in distinct, linear clusters on or near the same
best fit line (Fig. 4) and real character states resulted
in more congruence with the well-corroborated tree,
as indicated by higher shared splits, higher quartet
similarity, and lower RF, compared to randomized
character states. The exceptions were the data sets
of Halliday-All and Livezey-Zusi when we measured
congruence with the well-corroborated tree using a strict
consensus.

In Livezey-Zusi analyses with real character states,
quartet similarity increased proportionally with shared
splits but not RF distance (Fig. 4d). This was due to the
wide range of RF distances among the least complete
templates, many of which were poorly resolved with
a corresponding lack of conflict represented by the
RF distance metric. This behavior of RF distance was
exacerbated by the unresolved neoavian comb in the
well-corroborated tree for Aves (Fig. 1). Any increased
resolution of Neoaves from more resolved templates
would slightly increase RF distance to that otherwise
well-corroborated tree, whether or not such resolution
was correct. Another noteworthy aspect of the Livezey-
Zusi data set is the extremely narrow range of similarity
metrics for analyses using binary randomized character
states for a given subject. As discussed in more detail
below, nearly all of the Livezey-Zusi ArtEx results with
binary randomized states were drawn to the longest
branch, Crocodylia, which happens to occupy the root.

For the Halliday-All data set, strict-consensus topo-
logies from analyses using randomized and real states
overlapped considerably in terms of their congruence

https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab072#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab072#supplementary-data
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https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab072#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab072#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab072#supplementary-data
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FIGURE 4. Correlation of congruence indices (Robinson–Foulds and proportion shared splits, Y-axes; quartet similarity, X-axes) representing
the similarity of each data set’s ArtEx topologies to its respective well-corroborated tree. Each point depicts the average difference of topologies
reconstructed after modifying the character scores for one subject taxon, averaged over all templates. In all cases, characters coded as “?” in a
template taxon were coded as “?” in subjects. The remaining characters were either real states observed in extant subjects (dark shaded dots),
replaced with a character state drawn from different extant taxa (medium shaded “NoInfo” dots), or randomly replaced with an equally probable
“0” or “1” (light shaded “Random01” dots). Point size denotes the proportion of non-ambiguous states in the subject taxon, prior to treatment.
Black crosses and circles indicate congruence values derived without artificial extinction from data sets of extant taxa only, and extant + fossil
taxa, respectively.
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with the well-corroborated tree (Fig. 4e). This contrasts
with all of the other data sets, including Halliday-
50, in which real versus randomized character states
resulted in clusters with little or no overlap. This
peculiar behavior of Halliday-All was due to three
factors: 1) the high frequency of polytomies in strict
consensus topologies and the resulting zero congruence
from certain Halliday-All subject-template combinations
with real states, 2) the masking of distinct areas of
optimal tree space when measuring congruence with a
strict consensus, as opposed to averaging a congruence
index across all MPTs, and 3) the fact that average
quartet similarity per template did not drop as much
as average shared splits when including these instances
of zero congruence. When averaging quartet similarity
values across all MPTs for a given subject-template
combination (and not calculating congruence based on
a strict consensus thereof), all data sets exhibited higher
quartet similarity values in all but the least complete
templates, reflecting greater congruence with the well-
corroborated tree using real versus random states (Fig. 4,
lower X-axis).

Halliday-All (and no other data set) contained com-
pletely unresolved strict consensus topologies (with
therefore zero congruence) because some of their extant
subjects lacked key characters known for certain fossil
templates. Even a fairly complete template such as
Ocepeia (51% complete) combined with an incompletely
coded extant taxon (Macaca, 33% complete) still resulted
in a completely unresolved strict consensus. Other
templates of similar overall completeness (e.g., Pachyaena
at 50% complete) retained more characters that were also
present in subjects like Macaca, and therefore returned
more resolved topologies across all subjects. All subject-
template combinations that returned congruence values
(both shared splits and quartets) of “0” were from
Halliday-All, and nearly two-thirds of these used real
states. In some cases, subjects (Homo, Oryctolagus, Taman-
dua) returned higher quartet similarity values (but not
shared splits or RF) using binary randomized states
than real states, largely because quartet similarity does
not change as much as shared splits or RF when one
or few taxa are misplaced. The substantial overlap of
quartet similarity scores resulting from strict-consensus
representations of real versus randomized states in
Halliday-All largely disappeared when we excluded
their 19 morphologically least-coded (over 50% missing
and inapplicable) extant subjects, as shown in our
“Halliday-50” data set (Fig. 4f; see also Guillerme and
Cooper 2016a,b).

Phylogenetic analyses of morphology alone.—Perhaps the
simplest measure of phylogenetic signal in fossilizable,
morphological data are the extent to which they recover
well-corroborated nodes on their own. We applied equal
weights and a series of homoplasy-based step weights
(i.e., concavity values as implemented in TNT; Goloboff
et al. 2008) to morphology-only data sets for each of the
studies in Table 1, and measured congruence of strict

consensus topologies using shared well-corroborated
splits and quartet similarity. In order from best to worst
proportion of splits shared with the well-corroborated
tree, analyses using only morphological data (and
including fossils) were Pattinson, Huttenlocker, Livezey-
Zusi, Halliday-50, Asher, and Halliday-All (Fig. 5a).
Measured by quartet similarity, the relative performance
of four of the six data sets changes. Pattinson and
Huttenlocker including fossils are still among the best,
but Livezey-Zusi and Halliday-All improve at most levels
of implied weighting. Asher and Halliday-50 decrease in
congruence across the board (Fig. 5b).

Figure 6 shows topologies based on an optimal
implied weighting value applied to morphological data
from Asher and Halliday-All, with similarities with
their respective well-corroborated trees highlighted.
Topologies derived from morphological characters in
the Asher data set exhibit demonstrably incorrect
placements for several taxa, usually consistent with
homoplasy due to shared functional morphology (e.g.,
aquatic Trichechus with cetaceans) and with precedent
in the older, comparative-anatomical literature (e.g.,
“Insectivora” including tenrecoids, “Volantia” including
colugos and bats, “ungulates” including afrotheres and
euungulates, “Edentata” including myrmecophagids
and pangolins). The Halliday-All morphology data set
recovers a smaller proportion of well-corroborated splits
(0.18 vs. 0.3), all of which are either at or close to the
tips (Fig. 6a). In Halliday-All, extant taxa with many
missing characters appear in artifactual “clades” with
no historical precedent, such as Macropus-Loxodonta as
sister to Glires, Chlorocebus outside of primates, and
Otolemur with Ailuropoda. Inaccurate placement of these
taxa substantially decreases congruence as measured
by shared splits, and without these worst-coded extant
taxa, morphology from Halliday-50 performs better
(Fig. 5a). However, quartet similarity still rewards the
Halliday-All data set for placing at least some members
of well-corroborated clades in close proximity, such as
the remaining primates, some carnivorans, euungulates
(including cetaceans), and xenarthrans. Thus, in contrast
to shared splits (Fig. 5a), where morphology from
Halliday-All generates the least congruent topologies
with no overlap with any of the others, it overlaps and
sometimes exceeds morphological data sets of Asher
and Halliday-50 when measured by quartet similarity
(Fig. 5b).

Morphology combined with subsampled DNA.—Even when
one type of data (such as fossilizable morphological char-
acters) recovers relatively few well-corroborated groups
by itself, it can still improve phylogenetic resolution and
accuracy when combined with other data types (Gatesy
et al. 1999; Asher et al. 2005; Lee and Camens 2009;
Wiens 2009; Thompson et al. 2012), such as DNA. As
described in Materials and Methods, we investigated
the extent of this improvement with two subsampling
regimes: increasing samples of DNA sites across all taxa
and increasing proportions of taxa for all DNA sites.



Copyedited by: YS MANUSCRIPT CATEGORY: Systematic Biology

[13:22 17/6/2022 Sysbio-OP-SYSB210072.tex] Page: 995 986–1008

2022 ASHER AND SMITH—SIGNAL AND BIAS 995

0.2

0.4

0.6

a)

p
ro

p
o

rt
io

n
 s

h
a

re
d

 s
p

lit
s

q
u

a
rt

e
t 

s
im

ila
ri
ty

extant

fossils

0.2

0.4

0.6

0.8

b)

a
s
h

e
r

h
a

lli
d

a
y
A

ll

h
a

lli
d

a
y
5

0

h
u

tt
e

n
lo

c
k
e

r

liv
e

z
e

y
Z

u
s
i

p
a

tt
in

s
o

n

a
s
h

e
r

h
a

lli
d

a
y
A

ll

h
a

lli
d

a
y
5

0

h
u

tt
e

n
lo

c
k
e

r

liv
e

z
e

y
Z

u
s
i

p
a

tt
in

s
o

n

FIGURE 5. Proportion of shared splits (a) and quartet similarity (b) of topologies generated from equal and implied weighting using only
morphological data with each data set’s well-corroborated tree (Fig. 1). Concavity k-values ranged from 2, 4, 8, 16, 32, … 999 and equal weighting,
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All data sets exhibited at least a slight increase in
shared splits with the well-corroborated tree using
morphology plus increasingly large, random samples of
DNA sites (Fig. 7, upper Y-axes); this was also observed
without morphology for all data sets except birds. The
effect on quartet similarity values of sequentially adding
more DNA from each alignment was less pronounced
but still slightly positive except in Halliday-50 and
Livezey-Zusi (Fig. 7, lower Y-axes). The DNA alignment
we combined with Livezey-Zusi (Prum et al. 2015) is by
far the largest among our data sets; a 10% sample from
its 395 kb is comparable to the entire 39 kb alignment of
Upham et al. (2019), used to combined with the Asher,
Huttenlocker and Halliday data sets. Perhaps relatedly,
parsimony applied to 10–90% subsamples of the Prum
et al. (2015) alignment, without morphology, showed
nearly the same similarity to the well-corroborated tree
in every case (Fig. 7). Hence, this data set did not
show improvement with steadily increasing amounts
of subsampled DNA alone and reached its asymptote
of maximum congruence with just 20% of the 395 kb
alignment.

The effect of adding morphology to subsampled DNA
varied across data sets. In Asher and Pattinson, morpho-
logy increased similarity to the well-corroborated tree at
nearly all levels of DNA sampling; in Halliday-All and

Huttenlocker, morphology had little effect; in Halliday-
50 and Livezey-Zusi, the addition of morphological
data mostly decreased the proportion of shared splits,
but mostly increased mean quartet similarity without a
positively trending slope as DNA subsamples increased
in size (Fig. 7).

A reason for the downward trend of Halliday-50
(with 32 rather than 51 extant subjects sampled for
DNA) when measured by quartet similarity, and for
its lower levels of congruence compared to Halliday-
All, was its tendency to root placentals incorrectly
using parsimony, for example, with a paraphyletic
Laurasiatheria represented by Sorex and Solenodon. The
DNA alignment accompanying the Halliday-All data
set more frequently placed the placental root within
Afrotheria, which was usually accompanied by mono-
phyly of Laurasiatheria, Euarchontoglires, and several
clades therein. While this too resulted in paraphyly of
some well-corroborated nodes (e.g., Afrotheria), overall
it resulted in higher levels of congruence compared
to Halliday-50 (Fig. 7). In addition, Halliday-50 had
substantially fewer parsimony-informative sites (30% of
the 39 kb alignment) compared to Halliday-All (52%),
given the smaller taxon sample in Halliday-50 drawn
from the DNA alignment of Upham et al. (2019, see
Table 1).
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FIGURE 6. Optimal MPTs derived from morphological characters
from Halliday-All (a) and Asher (b) data sets with implied weighting
(concavity constant k =64) that maximize quartet similarity with
their respective, well-corroborated trees (Fig. 1). Topologies were
reconstructed using extant taxa and fossils, with fossils pruned for
display purposes. Stars indicate splits held in common with the
respective well-corroborated tree (8 of 44 in Halliday-All, 9 of 30 in
Asher). Halliday-All shows higher quartet similarity (0.52 vs. 0.35)
due to some near-misses (e.g., most but not all artiodactyls, primates,
carnivorans).

None of our study sets contained exactly the same taxa,
and two of them (Livezey and Zusi and Pattinson) used
larger DNA alignments (395kb and 61kb, respectively)
than the 39kb alignment from Upham et al. (2019)
combined with the Asher, Halliday, and Huttenlocker
morphology data sets (Table 1). Variation in the overall
proportion of recovered splits is in most cases more
indicative of the phylogenetic contributions of DNA than
morphology; the influence of the latter is evident by
comparing results with and without morphology added
to each level of DNA sampling shown in Figure 7.

The addition of taxa known for DNA is positively
correlated with both proportion of well-corroborated
splits and quartet similarity, but the relationship is not
linear (illustrated by the red diagonal in Fig. 8). Only
Pattinson completely matches the well-corroborated
topology when including all taxa known for DNA; the
other data sets are missing at least some splits at 100%
sampling. Below this, congruence measured by quartet
similarity is in most cases disproportionately higher than
the percent of taxa sampled for DNA; that is, nearly
all levels of sampling taxa with DNA appear above the
diagonal, except for Asher which drops below the line
at 40% when calculating quartet similarity with strict
consensuses. Measured with shared splits, congruence
is disrupted more by topological changes of individual
taxa and is therefore lower in all data sets. Even so, when

measured by shared splits Pattinson is consistently above
the diagonal; Halliday-All is consistently below it, and
the others move from above to below the diagonal at
either 40% (Asher) or 60% (Halliday-50, Huttenlocker,
Livezey-Zusi).

Artificial Extinction (ArtEx).—All of our data sets show
at least some improvement in congruence as fossil
templates increase in completeness, measured by either
shared splits or quartet similarity (Fig. 9). Except for
Halliday-All (below), and using either a strict consensus
or averaging across all MPTs, real character states
perform better than either binary or no-info random-
ized character states. The Pattinson data set performs
best, approaching complete congruence with the well-
corroborated tree steadily throughout its range of 8–88%
complete fossil templates (Fig. 9). In nearly all cases,
mean congruence indices derived from real character
states are prominently higher than means derived from
randomized character states. As fossil completeness
tends toward zero, the difference between real versus
randomized treatments decreases, but the extent of this
approach varies among our data sets.

Using strict consensus summaries, Halliday-All is
the only data set to show extensive overlap of mean
congruence values generated by real character states
with those from randomized character states. Indeed, for
many templates below 30% complete, mean congruence
values based on real character states drop below those
based on randomized states (Fig. 9e, top panel). As noted
above, this is due to the uniquely high frequency of unre-
solved consensus topologies with correspondingly zero
congruence. No such instances of zero congruence occur
in the other data sets using either strict consensuses or
all-MPT averages.

Figure 10 and Table 2 summarize the data in Figures
4 and 9, allowing a comparison of the mean congru-
ence of all subject-template combinations under each
treatment. The difference in mean congruence between
the artificial extinction and randomized treatments
indicates the extent to which each morphological data set
actively facilitates reconstruction of its associated well-
corroborated tree. Livezey-Zusi showed the smallest
difference, followed by Halliday-All, Halliday-50, Asher,
Pattinson, and Huttenlocker with the largest (Table 2).
In five of the six data sets, overlap in these ranges is
due to low congruence of MPTs derived from real states
for templates under 10% complete; Halliday-All shows
more overlap in congruence of topologies generated
by real versus random character states (Fig. 9). With
the Pattinson, Huttenlocker, Asher and Halliday-50 data
sets, real character states result in greater congruence
with the well-corroborated tree under any similarity
measure; this is less obviously the case in the Livezey-
Zusi and Halliday-All data sets (Fig. 10; Table 2).

Overlap of mean congruence values derived from
real versus randomized states in Livezey-Zusi partly
reflects the particularly incomplete nature of their
templates; only five of 39 templates were over 50%
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FIGURE 7. Proportion of well-corroborated splits using strict consensuses (top Y-axes) and quartet similarity score averaged across all MPTs
(bottom Y-axes) derived from 10% to 90% randomly sampled sites from DNA alignments (x-axis) with (dark shading) and without (light shading)
morphology, applying jitter in x-direction to allow distinction between treatments. Horizontal lines represent means of 25 subsamples at each
sampling level; vertical lines correspond to one median absolute deviation (0.5 above, 0.5 below) around each mean.

complete (Supplementary Fig. S1 available on Dryad).
On the other extreme was Asher with all tem-
plates over 53% complete. Restricting the comparisons
shown in Figure 10 to templates over 53% complete
(Supplementary Fig. S2 available on Dryad), the differ-
ences in proportion shared partitions obtained by real
versus 01-randomized character states increased, but the
order of these differences was the same. Livezey-Zusi
showed the smallest difference, followed by Halliday-
All, Halliday-50, Asher, Pattinson, and Huttenlocker.
When measured by quartets on either strict consensuses
or averaging across all MPTs, two switches in order
occurred: between Asher and Halliday-50, and between
Pattinson and Huttenlocker. Again, the overall order
remained intact, with the latter two showing the largest
difference in congruence obtained with real versus ran-
domized character states, and Halliday-All and Livezey-
Zusi the smallest (Table 2).

Are Fossils Reconstructed in Misleadingly Basal Positions?
Using either Sansom and Wills’ (2013) measure of

root-to-node distance or sister group size to quantify
directional bias, our results do not support the claim that
“fossilization causes organisms to appear erroneously
primitive.” Such a result can occur under certain circum-
stances, but this is neither a pervasive nor ubiquitous
effect of fossilization itself.

Root-to-node distances.—When phylogenetically mis-
placed, artificially fossilized taxa often moved toward
species sharing certain aspects of function or ecology.
For example, the pangolin Manis and the xenarthran
Tamandua possess a number of anatomical features
resulting from their shared diet of ants and termites.In
the combined DNA-morphology analyses of the Asher
data set (Fig. 1), Tamandua was reconstructed close to

https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab072#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab072#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab072#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab072#supplementary-data
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the root, whereas Manis appeared in a more nested
position as sister to Carnivora. With its DNA deleted
and using only Tamandua character states from fossil
template characters in the Asher data set, Tamandua
always appeared in a single MPT adjacent to Manis,
within laurasiatheres, moving from two to 11 nodes
from the root. Treating Tamandua as an artificial fossil
therefore changed root-to-node distance by +9 (Fig. 11f).
Tamandua exhibited the single greatest change in root-
to-node distance among the 37 subject taxa in Asher
(2007), followed by Mus with just under −6. Using
the definitions of Sansom and Wills (2013), Tamandua
exhibited “crownward” and Mus “stemward” slippage.

Given the shape of the full data topology for the
Asher data set, Tamandua had more ways in which it
could increase than decrease its root-to-node distance,
as shown by the shaded region in Figure 11f. Assuming
no changes in other taxa in the starting tree, the midpoint
of its potential for change in the starting tree was just over
4 nodes from the root, so its observed change (+9) was
indeed farther from the root given its available range,
reflecting its attraction to a morphologically convergent
species (Manis) located in a relatively nested part of
the tree. Conversely, when treated as an artificial fossil,
Manis always drifted toward Tamandua. Deletion of non-
fossilized characters in Manis resulted in a reduction
of root-to-node distance by −5, given its starting point
as sister to Carnivora. With this initial tree shape, and
assuming other taxa remain static, Manis could have
shown an increase in root-to-node distance up to +4 and
decrease of −7 nodes. Its observed change of −5 is thus
closer to the root than the midpoint of its available range
(−1.5).

The median of all observed stem-root changes added
to the midpoints of their available areas of change
for taxa in the Asher data set is +6.5, reflecting the
fact that root-to-node distance generally increased for
ArtEx subjects using real states. All of the other data
sets exhibited similarly positive median changes in
root-to-node distance, with most artificially fossilized
extant taxa with real states above the midpoints of their
respective areas of possible change given their full-data
topologies (Fig. 11).

When their character states were randomized as
binary, three of the six data sets (Pattinson, Halliday-
All, Halliday-50) exhibited root-to-node change at the
midpoints of their expected range, evident by the squares
in Figure 11 falling at or near the solid gray line. The other
three data sets exhibited a pronounced bias with bin-
ary randomizations: root-to-node distance decreased in
Huttenlocker and Livezey-Zusi and increased in Asher,
with squares below or above, respectively, the solid gray
line in Figure 11. For example, rather than moving from
its nested position adjacent to Carnivora to Tamandua
using its real character states, with randomized states
Manis appeared in many different clades farther from
the root than Tamandua, ranging from sister to Ele-
phantulus, paenungulates, cetaceans, and chiropterans.
Some of these clades which attracted the randomized
Manis exhibited long branches (e.g., chiropterans); others
occupied relatively short branches but had the highest
proportions of inapplicable characters, such as cetaceans
and Trichechus. Both of the latter occupied highly
nested positions and contributed to increased root-to-
node distance when taxa with randomized states were
attracted to them.
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FIGURE 9. Congruence of artificial-extinction topologies with well-corroborated trees. Each horizontal bar shows the mean number of
shared splits using strict consensuses (top Y-axes) or quartet similarity averaged across all MPTs (bottom Y-axes), averaged across all extant
subjects per fossil template. Vertical lines represent one median absolute deviation (0.5 above, 0.5 below) around each mean. Templates vary in
completeness for each morphological data set (x-axis). In all cases, characters missing in a fossil template were coded as missing in each extant
subject. Remaining characters were coded with the real states in each template (dark shading, “Real”), randomized using states drawn from
different extant taxa (middle shading, “NoInfo”), or randomized with states 0 or 1 (light shading, “Random01”).

In nearly all cases in the Livezey-Zusi data set, binary
state-randomization (but not real states) resulted in
the attraction of the artificial fossil to the root branch
(Crocodylia), which was the longest. Decreases in root-
to-node distance was therefore pervasive for the Livezey-
Zusi data set (Fig. 11a), but only with binary randomized
character states due to long-branch attraction.

The four longest branches in Huttenlocker led to
Rattus, Erinaceus, Theria to Marsupialia, Theria to
Placentalia, and root to Ornithorhynchus. The first two
longest branches were within Placentalia and not partic-
ularly near the root. However, the latter three were near
the root, and the tendency of artificial fossils with binary
randomized states to drift toward one of these branches
resulted in an overall negative change in root-to-node
distance (Fig. 11e).

Size of sister group.—Unlike root-to-node distance, “sis-
terSize” (TreeTools, Smith 2019a) defines any taxon with
a sister group size of one as maximally crownward,
regardless of distance from the root node. This has
the advantage of representing the directionality of
topological change of a given taxon after deletion of non-
fossilizable data without being influenced by topological
rearrangements that do not immediately pertain to
that taxon (Fig. 2). Most taxa in each of our optimal,
bifurcating trees derived from our six full data sets
(Supplementary Appendix S3 available on Dryad) have
only one sister taxon (Fig. 12) and have, accordingly, more
potential for “stemward” than “crownward” change
when defined using sisterSize.

As evident in the summary panels in Figure 12, taxa
made artificially extinct with real states appeared either

https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab072#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab072#supplementary-data
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FIGURE 10. Congruence of artificial-extinction topologies with well-corroborated trees for each data set. Each horizontal bar shows the
number of shared splits using strict consensuses (top Y-axis) or quartet similarity averaged across all MPTs (bottom Y-axis), averaged across all
extant subjects per fossil template. Data sets are ordered from largest (left) to smallest (right) difference in median shared splits obtained by real
versus 01-randomized character states (see Table 2). Boxes denote median and interquartile range, whiskers the range; non-overlapping notches
represent a significant difference in medians (Chambers et al. 1983). In all cases, characters missing in a fossil template were coded as missing
in each extant subject. Remaining characters were coded with the real states in each template (dark shading), randomized using states drawn
from different extant taxa (middle shading, “NoInfo”), or randomized with states 0 or 1 (light shading, “Random01”).

with slightly fewer mean sister taxa than both “random”
and “uncertain” (Asher, Halliday-50), or between these
null expectations (Halliday-All, Huttenlocker, Pattin-
son, Livezey-Zusi). The former corresponds to a slight
“crownward” movement, the latter to no significant
directional change. With randomized character states,
we observed pervasive bias in two cases: Livezey-
Zusi (Fig. 12d) and Huttenlocker (Fig. 12b), in which
mean sister size greatly increased. This corresponds to
“stemward” change, reflected also in the greatly reduced
root-to-node distances for subjects with randomized
character states (Fig. 11). Unlike the “crownward” change
reported for such subjects from the Asher data set
based on increased root-to-node distance (Fig. 11f,
squares), sister size does not follow suit and instead
exhibits a slight increase (Fig. 12a). This underscores the

importance of tree shape in quantifying “crownward”
versus “stemward” directional change for a given data
set (Fig. 2).

Using real character states, and measured either by
root-to-node distance (Fig. 11) or size of sister group
(Fig. 12), we find no evidence that the loss of non-
fossilizable data results in a systematic bias that causes
fossils to appear misleadingly primitive.

DISCUSSION

Our study has so far used interrelationships among
extant taxa as a standard against which to assess
phylogenetic information content of characters available
for fossils. An assumption of this study is that recovery
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FIGURE 11. Mean change in root-to-node distance (Y-axis) as a result of artificially fossilizing each extant subject taxon (X-axis) using characters
from fossil templates, averaging root-to-node distances for all MPTs in each subject-template combination and averaging change for all templates
within a subject. As indicated by the arrow insets, light and dark polygons refer to, respectively, mean increase and decrease/no-change in root-
to-node distance after artificial extinction. Real character states are shown by circles, binary randomized states with squares. The gray shaded
region shows the potential for change in root-to-node distance given the placement of each taxon in each data set’s optimal, equally-weighted
MP topology of extant taxa, the midpoint of which is shown by the solid gray line.

of well-corroborated splits among extant taxa implies
that a given data set can also accurately reconstruct splits
among fossil taxa. A strong test of this assumption would
come with the discovery of independent phylogenetic
data (e.g., molecular) from extinct taxa. Genomic and
proteomic data now available for upper Pleistocene
fossils have confirmed their morphologically hypo-
thesized associations with, for example, proboscideans
(Barnes et al. 2007), perissodactyls (Cappellini et al. 2019),
xenarthrans (Delsuc et al. 2019), and hominins (Slon
et al. 2018). Many truly ancient, pre-Neogene taxa are
much more difficult to place based on their morphology,
and molecular data for such taxa are not likely to be
forthcoming anytime soon (Saitta et al. 2019).

Our analyses sampling morphology (Fig. 5) and
extant taxa known for DNA (Figs. 7 and 8) comprise
a weaker, but more accessible, test. If it were true that
accurate phylogenetic reconstruction was only possible
given availability of molecular data, then increased
accuracy should be roughly proportional to the level of
DNA sampling. However, our results show that even
with no DNA, some congruence exists (Figs. 5 and 8).
Furthermore, the addition of a morphological data set to
subsampled DNA increases congruence in at least some
data sets (Fig. 7), and the addition of taxa known for
DNA and morphology can disproportionately increase
congruence, for example, any of the points above the red
diagonals in Figure 8. In other cases, congruence is below
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TABLE 2. Difference in mean proportion shared splits and quartet similarity of topologies generated by real versus binary random character
states with the well-corroborated tree for each data set, represented graphically in Fig. 10 and Supplementary Fig. S2 available on Dryad

Strict MPTs Average MPTs

Template % Real-rand Real-rand Real-rand Real-rand
Study complete propShared splits quartets propShared splits quartets

livezeyZusi >53 0.0550 0.0240 0.0558 0.0241
hallidayAll >53 0.0732 0.0399 0.0730 0.0341
halliday50 >53 0.1042 0.0475 0.1042 0.0469
asher >53 0.1333 0.0653 0.1225 0.0406
pattinson >53 0.1670 0.0787 0.1722 0.0743
huttenlocker >53 0.1824 0.0810 0.1905 0.0811
livezeyZusi All 0.0472 0.0183 0.0511 0.0232
hallidayAll All 0.0602 0.0304 0.0659 0.0293
halliday50 All 0.0955 0.0490 0.0922 0.0448
asher All 0.1333 0.0653 0.1225 0.0406
pattinson All 0.1478 0.0755 0.1513 0.0670
huttenlocker All 0.1608 0.0726 0.1686 0.0700

Note: “Strict MPTs” shows values calculated based on a strict consensus across all MPTs for a given subject-template combination; “average
MPTs” shows values calculated based on an average across all MPTs for a given subject-template combination. Template % complete shows
results from analyses starting with either the minimum complete value from the Asher data set (“>53”) or all templates from all data sets (“all”)
which range from 2% to 98% complete (see Supplementary Fig. S1 available on Dryad).

what one would expect given a proportional relationship
between number of added taxa with DNA, for example,
studies with proportion of shared splits below the red
diagonal in Figure 8. As any study approaches complete
congruence, the distances of points in Figure 8 above the
red diagonal necessarily become smaller. Nonetheless,
there are clear differences among data sets (Figs. 5, 7,
and 8), indicating that not all morphological data sets
retain equally informative phylogenetic signal.

Springer et al. (2007) undertook a variant of the
artificial extinction method used here, which they
termed “pseudoextinction.” Their analysis emphasized
cases in which morphological data could not accurately
reconstruct high-level relationships among placental
mammals. By deleting molecular data from groups of
taxa at the Linnean rank of “Order,” and using the
196-character data set of Asher et al. (2003; similar to
the Asher 2007 data set used here) they concluded
that “[M]orphological studies of eutherian interordinal
relationships have failed to separate homology and
homoplasy and have consistently been misled by the
latter.” Their results differ from ours in part because
they created artificial fossils using the arbitrary rank of
Linnean Order, usually entailing deletion of DNA from
multiple extant taxa per analysis (rather than just one
genus per analysis as in our Fig. 9). This is comparable to
a subset of our analyses in which multiple taxa known
for DNA were deleted simultaneously (e.g., lower levels
of taxon sampling in our Fig. 8).

Our evaluation of individual morphological data sets
with little or no added DNA also shows incongruence
with well-corroborated parts of the phylogenetic tree
(Figs. 5, 7, and 8). However, the extent of this incon-
gruence varies, and underscores our interpretation that
“morphology” should not be judged as a whole as either
“good” or “bad.” Rather, different morphological data
sets retain at least some phylogenetic signal depending
on the available sample of taxa and characters, and

data sets not sampled here will exhibit their own
idiosyncrasies. In practice, phylogenetic questions often
include groups (e.g., fossil adapiforms, microbiotheri-
ans, paenungulates, ratites) that are nested among
extant groups (e.g., primates, marsupials, afrotherians,
paleognaths). Such groups are amenable to analyses
of combined morphology plus densely sampled DNA
alignments. Since extant taxa can be accurately recon-
structed using only morphological characters when they
are sampled along with others known for both DNA and
hard-tissue morphology (Fig. 9), we hypothesize that
this is also true for fossils. Clearly, this becomes more
difficult with either fewer taxa known for DNA (e.g.,
for long-extinct clades without close extant relatives) or
when a data set is missing the morphological characters,
present in fossils, that would otherwise enable phylo-
genetic reconstruction in a combined-data context (e.g.,
Halliday-All with many extant taxa incompletely coded
for morphology). Regarding the latter point, our results
support the interpretation of Guillerme and Cooper
(2016a,b) that coding morphological data for living taxa
improves phylogenetic accuracy.

Discriminating Among Morphological Data Sets
The data set for primates (Seiffert et al. 2009; Pattinson

et al. 2015) was the only one to recover all of its
well-corroborated nodes with increasing DNA sub-
samples (Figs. 7 and 8) and fossil template completeness
(Fig. 9). The addition of morphological data increases
congruence in all of the subsampled DNA alignments
(Fig. 7), as does the use of fossil templates of increasing
morphological completeness (Figs. 9 and 10). We would
argue that the good performance of the Pattinson data
set is due to the fact that primates represent a younger
radiation that has left behind numerous fossils with
characters that are relatively more informative than

https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab072#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab072#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab072#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab072#supplementary-data
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f) Halliday−50

FIGURE 12. Mean sister group size of artificially fossilized subjects in all most parsimonious topologies, averaged across all fossil templates.
Plus (“+”) denotes sister-group size for given taxon in topology reconstructed from the complete, original data set; sister group size given
by solid, dark-shaded dots represent artificially fossilized taxa with real character states (“Real”), open, medium-shaded circles randomized
states drawn from other extant taxa (“NoInfo”), open, light-shaded circles binary randomized states (“Random01”). Panel at left summarizes
sister-group size based on real and randomized states for all taxa in each data set, along with two null models: “random null” (moving the
subject to a random edge on the tree) and “uncertainty null” (moving the subject to an edge with a probability proportional to the degree of
uncertainty in character state at that edge).
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TABLE 3. Optimal topologies from this study compared with those figured by Asher (2007, Fig. 3), Halliday et al. (2019, Figs. 1 and 2),
and Huttenlocker et al. (2018: Supplementary Fig. 9A available on Dryad), as indicated in “source” column, and given in newick format in
Supplementary Appendix S3 available on Dryad

Data Set Data Taxa Length MPTs Optimality Source Tree name RF QS Shared WC splits

asher comb e+f 94,175 34 MP majrules asherMR 11 0.98 27 30
asher comb e+f 94,175 34 MP strict asherStrict 13 0.74 22 30
asher comb e 94,029 3 MP strict asherExtant 9 0.98 27 30
asher comb e+f — — Bayes fig3 asher2007F3 9 0.99 28 30
asher* comb e+f 4258.25142 1 MP k =8 best asherK8 9 0.98 28 30
halliday comb e+f 121,989 8 MP majrules hallMR 16 0.97 38 44
halliday comb e+f 121,989 8 MP strict hallStrict 16 0.97 38 44
halliday comb e 114,942 1 MP best hallExtant 16 0.97 38 44
halliday comb e+f — — likelihood fig1 hall2019F1 14 0.86 36 43
halliday comb e — — likelihood fig2 hall2019F2 4 1 34 34
halliday* comb e+f 11,026.82414 1 MP k =2 best hallidayAllK2 10 0.98 41 44
halliday50 comb e+f 85,573 276 MP majrules hall50MR 13 0.86 21 26
halliday50 comb e+f 85,573 276 MP strict hall50Strict 13 0.86 21 26
halliday50 comb e 78,548 1 MP best hall50Extant 13 0.86 21 26
halliday50* comb e+f 46.99872 1 MP k =999 best halliday50K999 13 0.95 21 26
huttenlocker comb e+f 50,854 640 MP majrules huttMR 4 0.92 13 15
huttenlocker morph e+f 2667 1000 MP-morph strict huttmorphS 12 0.76 9 15
huttenlocker* comb e+f 50,854 640 MP strict huttStrict 4 0.92 13 15
huttenlocker comb e 48,993 1 MP best huttExtant 4 0.92 13 15
huttenlocker morph e+f — — Bayes suppF9a hutt2018sF9a 13 0.76 8 15
livezeyZusi comb e+f 995,720 2 MP majrules livezeyMR 33 0.88 60 70
livezeyZusi comb e+f 995,720 2 MP strict livezeyStrict 33 0.88 60 70
livezeyZusi comb e 992,701 1 MP best livezeyExtant 33 0.88 60 70
livezeyZusi* comb e+f 65,443.97516 1 MP k =4 best livezeyZusiK4 25 0.99 64 70
pattinson comb e+f 47,875 460 MP majrules pattMR 0 1 23 23
pattinson* comb e+f 47,875 460 MP strict pattStrict 0 1 23 23
pattinson comb e 46,010 1 MP best pattExtant 0 1 23 23

Note: Those shown with an asterisk are depicted in Supplementary Figures S3–S8 available on Dryad. “Comb” and “morph” indicate combined
DNA + morphology or just morphology for a given analysis, “e” and “f” = extant only or fossil +extant taxa, length and MPTs = length
and number of most parsimonious trees, “k” = implied weighting concavity value, QS = quartet similarity, RF = Robinson–Foulds distance,
treename = ID given in Supplementary Appendix S3 available on Dryad, shared = number of splits shared with well-corroborated tree, WCsplits
= maximum possible splits shared with well-corroborated tree (modified for Halliday following taxon sample in Halliday et al. (2019). MP =
maximum parsimony; “strict”, “majrules”, and “best” indicate, respectively, strict, majority-rules, and single-best MP topology.

those from our bird, Mesozoic and early Paleogene
mammal data sets. All of our other data sets focus on at
least some clades that are substantially older than those
sampled by Pattinson et al. (2015).

In terms of the impact of morphological data, the most
problematic data set in our study is that of Halliday et al.
(2019). The abundance of incompletely coded, extant taxa
in Halliday-All made accurate reconstruction of well-
corroborated splits highly variable, extensively overlap-
ping with ArtEx topologies generated by randomized
states (Figs. 4, 9e, and 10) and more dependent on
inclusion of DNA from living taxa to achieve congruence
compared to other studies. Our deletion of the 19
extant subject taxa missing 50% or more morphological
characters (Halliday-50) increased the performance of
their real character states over randomized ones (Figs. 4
and 10; Table 2). However, it made overall congruence
worse due to the inability of parsimony to accurately
root the Halliday-50 sample of placentals near the
Afrotherian-Xenarthran clade (Tarver et al. 2016).

Calculating congruence by averaging across all MPTs
for a given subject-template combination, rather than
using a strict consensus thereof, decreased the variation
in both Halliday-All and Halliday-50. This shows that
a set of optimal trees can still retain some areas of
agreement with an independent topology, masked when

they are summarized with a blunt instrument such as the
strict consensus. However, strict consensus topologies
remain widely used in paleontological systematics, and
intuitively convey when results from a given data set
are ambiguous (or not). We would predict that once the
many missing entries for extant taxa in their data set
are coded, Halliday-All will improve in its capacity to
consistently recover known parts of the mammalian tree.

The Livezey-Zusi data set shows mixed results. On
one hand, it shows only a small difference in con-
gruence achieved by real versus randomized character
states (Fig. 10), and it exhibits little improvement in
congruence beyond templates that are around 20%
complete (Figs. 9c,f). The addition of morphology
reduced the number of splits shared with the well-
corroborated tree at some levels of DNA sampling
but not others, particularly as measured by quartet
similarity (Fig. 7). Mayr (2008) criticized many of the
morphological codings of Livezey-Zusi, underscoring
the observation that Aves is a challenging radiation to
resolve. It has ancient roots in the Mesozoic and comes
from a morphologically and ecologically distinct stem
lineage (Dinosauria). Furthermore, Livezey-Zusi has the
greatest proportion of fragmentary templates, with most
(22 of 39) missing 80% or more of their morphological
characters (Supplementary Fig. S1 available on Dryad).
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None of the 12 templates for Asher are in this range; there
are 18 of 99 in Huttenlocker, 6 of 85 in Pattinson, and 18 of
174 in Halliday-All and Halliday-50. The high frequency
of missing data among Livezey-Zusi fossil templates,
and its anatomically and ecologically distant root taxon
Crocodylia, likely further reduces the capacity of the
Livezey-Zusi data set to reconstruct well-corroborated
nodes. Compared to Halliday-All, there is therefore less
reason to assert that further coding of extant Aves for
morphology will increase the ability of this data set to
contribute to phylogenetic accuracy. Instead, increasing
the completeness of fossil templates, along with further
resolution of the Neoavian comb (which remains the
least well-resolved of our well-corroborated trees; Fig. 1)
seem promising avenues for further work.

Parsimony Versus Published Bayesian and Likelihood Trees
Our use of equal-weights parsimony is a practical

one. As noted in Materials and Methods, running many
thousands of individual phylogenetic analyses required
that each one find an optimal tree within seconds or
minutes. While it is fast, well-known drawbacks of parsi-
mony include susceptibility to long-branch artifacts,
likely responsible for the suboptimal asymptotes of some
of the subsampled DNA alignments (Fig. 7) and ArtEx
experiments (Fig. 9). While a comprehensive analysis
of competing optimality criteria is beyond the scope of
our study, we can still investigate the performance of
our optimal parsimony topologies with Bayesian and
likelihood topologies already published for four of our
six data sets.

Pattinson and Asher.—The optimal parsimony topology
for the Pattinson data set under equal and all implied
weights (Supplementary Fig. S3 available on Dryad)
shares all well-corroborated nodes with the likelihood
analysis of extant taxa figured by Springer et al. (2012:
Fig. 1), and with the topology generated by the same
morphology-DNA alignment analyzed with a Bayesian
optimality criterion depicted by Pattinson et al. (2015:
Fig. 1). The Bayesian topology from Asher (2007) was
based on a smaller DNA alignment (17kb including
indels) than that used here, and it sampled only three
(Ukhaatherium, Zalambdalestes, Centetodon) of 12 fossil
templates. It shows slightly more congruence with the
well-corroborated tree (28 of 30 or 0.93 shared splits) by
placing Solenodon as sister to Talpa-Erinaceus-Sorex, rather
than Talpa-Solenodon as shown in the equally-weighted
parsimony topology derived from the combined Asher-
Upham data set. Optimal implied weights applied to
the Asher-Upham data set resembled the Asher (2007:
Fig. 3) Bayesian tree regarding Solenodon, but differed
in resolving Tupaia-dermopterans closer to Glires than
primates (Supplementary Fig. S4 available on Dryad).

Halliday.—The likelihood topology including extant taxa
and fossils from Halliday et al. (2019, Fig. 1) shows
less congruence (0.84 proportion shared splits) than

our equally-weighted (0.86) and best implied-weights
(0.93) parsimony topologies for their morphology data
set combined with the Upham DNA alignment (see
Table 3 and Supplementary Fig. S5 available on Dryad).
This is due to the placement by Halliday et al. (2019,
Fig. 1) of the rodents Aplodontia and Anomalurus closer
to cavioids than to (respectively) sciuroids and muroids,
of Dermoptera closer to tupaiids than primates, and
of the macroscelidid Rhynchocyon closer to Procavia
than Loxodonta. Figure 2 from Halliday et al. (2019)
excludes all fossils as well as the extant taxa with
incongruent placements in their Figure 1 (Aplodontia,
Anomalurus, the dermopteran and Rhynchocyon). For the
taxa they had in common with our well-corroborated
tree (Fig. 1), Figure 2 of Halliday et al. (2019) was
completely congruent, differing only in resolving some
of the polytomies shown in our well-corroborated tree
(such as Tupaia-primates, Cavia at the rodent root, and
perissodactyls-carnivorans; Halliday et al. 2019: Fig. 2
did not include Manis or Orycteropus).

Huttenlocker.—The Bayesian topology of morphological
data from Huttenlocker et al. (2018: their Supplementary
Fig. 9a available on Dryad) shows less congruence
(0.53 proportion shared splits) than equal- or implied-
weights parsimony applied to their data set plus the
Upham et al. (2019) alignment (0.87 proportion shared
splits for a majority rules consensus; see Table 3 and
Supplementary Fig. S6 available on Dryad). Hutten-
locker et al. (2018) depict a number of incongruent
nodes in their Bayesian tree of morphological data, such
as Erinaceus and murids as the two basal-most pla-
cental branches, Macropus closer to Vombatiformes than
Acrobates, the peramelemorphian taxon Thylacomyidae
closer to diprotodontians than Dasyurus, and Didelphis
at the base of Marsupialia rather than Caenolestes. Due
to a polytomy in Xenarthra, their Bayesian topology
also shows less congruence than MP applied to their
morphological data alone including both extant taxa
and fossils. Parsimony resolves [(Bradypus, Tamandua),
Dasypus], as evident in both their (Huttenlocker et al.
2018: their Supplementary Fig. 9b available on Dryad)
and our parsimony analyses of their morphological data
(Table 3; Supplementary Fig. S6 available on Dryad).

Despite its well-documented susceptibility to long-
branch effects (e.g., Swofford et al. 2001), our results
show that parsimony applied to combined morphology-
DNA data sets results in greater congruence than a
Bayesian optimality criterion applied to morphology
alone (Huttenlocker et al. 2018). Applied to the mor-
phological data set of Halliday et al. (2019) combined
with DNA from Upham et al. (2019), parsimony resulted
in greater congruence than the majority-rule likelihood
topology of the morphology-DNA data of Halliday et al.
(2019, Fig. 1). In addition to its computational speed,
parsimony as an optimality criterion benefits from not
assuming the same rates of change for all characters
proportionate to a given branch length (Goloboff et al.
2018). Furthermore, when taking into account resolution
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and using implied weights, its performance in at least
some cases is comparable to that of Bayesian consensuses
of post-burnin topologies (Smith 2019c), and compared
to Bayesian methods it shows more correspondence with
the tetrapod stratigraphic record (Sansom et al. 2018).

Directional Bias Caused by Fossilization
Our results contradict the claim that fossils sys-

tematically appear closer to the root taxon than they
actually are. Instead, taking into account the shape of
each full data set topology, most directional change
observed after artificial fossilization was toward higher
root-to-node distances (Fig. 11) and similar or smaller
sister group sizes compared to null models (Fig. 12),
both of which contradict the hypothesis of pervasive
“stemward” directional change. Only when character
states in artificial fossils were randomized did we
identify some examples of pervasive bias (e.g., Fig. 10a).
Loss of data in fossils is ubiquitous, but as long as
their character states are accurately scored, “stemward
slippage” as a result of this loss is not.

CONCLUSIONS

Results in this study are pertinent to a number of
issues regarding the phylogenetic analysis of fossils.
Among the most important is the substantial increase in
congruence with known parts of the Tree of Life when
fossilizable, morphological data are analyzed simultan-
eously with DNA from living taxa. This alone provides
the single greatest improvement in congruence we have
observed among our data sets. The most congruent topo-
logies from analyses using morphology alone (Fig. 5) are
still worse than the least congruent topologies joining
morphology and DNA (Fig. 7). Although the addition
of morphological characters does not always increase
congruence when combined with DNA (Fig. 7), overall
accuracy is still better in a combined data context than
with morphology alone (Table 3). Therefore, our take-
home message for anyone interested in reconstructing
the positions of fossils on the Tree of Life is, whenever
possible, include DNA and morphology from extant taxa
simultaneously with morphology from fossils.

It is counterintuitive to expect the addition of DNA
from extant taxa to alter relationships among fossils, or
for small morphological partitions to influence place-
ment of extant taxa sampled for much larger molecular
partitions, but such effects can happen (Asher et al. 2005;
Wiens et al. 2010). Our optimal parsimony topologies
from each data set (Supplementary Figs. S3–S8 available
on Dryad) often support the resolved parts of the
studies in which each morphological data set was
first published, with some exceptions. For example,
our analysis of Huttenlocker et al. (2018), including
DNA for living taxa shared with Upham et al. (2019),
supports their interpretation that Triassic and Jurassic
haramiyids are not crown mammals. However, the

Paleocene metatherians Andinodelphys and Pucadelphys
do not appear as successively distant sister taxa to
Marsupialia (Huttenlocker et al. 2018: Supplementary
Fig. 9 available on Dryad), but in our equal- and most
implied-weights analyses are within crown Marsupi-
alia as the sister taxon of didelphids (Supplementary
Fig. S6 available on Dryad). Our analysis of Halliday-
All (Supplementary Fig. S5 available on Dryad) and
Halliday-50 (Supplementary Fig. S8 available on Dryad)
resolved one or more groups of fossil plesiadapiforms
closer to tupaiids or glires, rather than primates as
figured by Halliday et al. (2019, Fig. 1). The analysis
of Livezey-Zusi (2007: Fig. 12) reconstructs Hesper-
ornis and Ichthyornis closer to Lithornis-Neornithes than
Apsaravis, in contrast to our optimal implied-weights
analysis showing Apsaravis closer to Lithornis-Neornithes
(Supplementary Fig. S7 available on Dryad). We do not
claim that any of these relationships are necessarily
accurate, which would require a dedicated analysis
(including additional phylogenetic reconstruction tech-
niques) in each case. However, several illustrate the
capacity of molecular data from living taxa to influence
the phylogenetic placement of fossils.

Vertebrate biologists now have the luxury of under-
standing many well-corroborated branches for living
taxa on the phylogenetic Tree of Life. Over the past
two decades, this tree has revolutionized how biologists
understand evolution. Fossils will never have as much
data as their living descendants, but thanks to our under-
standing of living species, it may yet be possible to obtain
more confidence in the phylogenetic affinities of long
extinct species. Paleontologists should take advantage
of this current knowledge of extant species’ phylogeny
when attempting to reconstruct the evolutionary history
of fossils.

SUPPLEMENTARY MATERIAL

Data available from the Dryad Digital Repository:
http://dx.doi.org/10.5061/dryad.w3r2280q3.
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