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Head and neck squamous cell carcinoma (HNSCC), originating from the mucosal epithelial
cells of the oral cavity, pharynx, and larynx, is a lethal malignancy of the head and neck.
Patients with advanced and recurrent HNSCC have poor outcomes due to limited
therapeutic options. Exosomes have active roles in the pathophysiology of tumors and
are suggested as a potential therapeutic target of HNSCC. Exosomes in HNSCC have
been intensively studied for disease activity, tumor staging, immunosuppression, and
therapeutic monitoring. In this review, the biological mechanisms and the recent clinical
application of exosomes are highlighted to reveal the potential of exosomes as biomarkers
and therapeutic targets for HNSCC.
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INTRODUCTION

Head and neck squamous cell carcinoma (HNSCC), as common malignant tumors of the head and
neck, originates from the mucosal epithelial cells of the oral cavity, pharynx, and larynx (Johnson
et al., 2020). Epidemiological studies have shown that 75–85% of HNSCCs are caused by smoking
and alcohol consumption (Machiels et al., 2020). Currently, various therapeutic interventions,
including surgery, radiotherapy, chemotherapy, and immunotherapy, are applied to improve the
HNSCC patient outcomes (Johnson et al., 2020). Despite the advances in the comprehensive
treatments of HNSCC, the 5-years overall survival rate of HNSCC patients remains lower than 60%
(Bray et al., 2018). About 50% of patients with locally advanced HNSCC develop disease recurrence
and drug resistance after initial treatment, resulting in a poor prognosis with a median survival of
about 12 months (Leeman et al., 2017; Ionna et al., 2021; Kozłowska et al., 2021). Therefore, there is
an urgent need to develop effective therapeutic targets for HNSCC (Martin et al., 2014).
Investigations have shown that exosomes are significantly associated with HNSCC in
tumorigenesis, development and other cancer hallmarks (Ebnoether and Muller, 2020). In
addition, HNSCC exosomes are involved in immune regulation, and drug resistance (Cheng
et al., 2019; Xiao et al., 2019). Recently, tremendous efforts also reveal exosomes may be a new
therapeutic target for HNSCC cure (Syn et al., 2017).

KNOWLEDGE IN COMPOSITION AND SECRETION OF EXOSOMES

As “natural nanoparticles” produced by plants, microbes, or the body’s cells, exosomes are a type of
extracellular vesicles (EVs) that differ from other larger types of EVs in their size as well as their
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biogenesis pathways (Srivastava et al., 2022). Exosomes, the
largest subtype of EVs from endosomes, are typically in the
40–160 nm (average-100 nm) diameter range (Kalluri and
LeBleu, 2020). Exosome membrane has a phospholipid bilayer
like the cytoplasmic membrane (Dai et al., 2020). (Table 1
summarizes the comparison of exosome membrane and
cytoplasmic membrane.) Exosomes are derived from the
endocytosis compartment of parental cells and widely exist in
all body fluids such as blood, saliva, urine, and cerebrospinal fluid.
Exosomes could be released by all cell types and recon sided as a

newly found pathway for cell-to-cell communication (Simpson
et al., 2008; Milane et al., 2015; Wiklander et al., 2019). Recent
data support that exosomes carry and deliver biologically active
components and regulate a wide range of physiological and
pathological events, including cancers (Peinado et al., 2011;
Dai et al., 2020; Kalluri and LeBleu, 2020).

The bioactive components of exosomes include nucleic acids,
proteins, lipids, amino acids, and metabolites are known to be
important for their functions (Kalluri and LeBleu, 2020).
Characteristic marker proteins are present on or within
exosomes, and their composition is highly dependent on their
source and cell state (rest, stimulation, inhibition, or
transformation) (Bang and Thum, 2012; Jan et al., 2021). In
addition, non-coding RNAs (ncRNAs) are found in exosomes,
including microRNA (miRNA), long non-coding RNA
(lncRNA), and circular RNA (circRNA). Nucleic acid content
in exosomes is proposed to be involved in the occurrence and
development of cancer by inducing carcinogenic transformation
and transfer of specific cancer genetic material (Kalluri and
LeBleu, 2016). Exosomes have lipid rafts that are different
from the parental plasma membrane and are rich in unique
lipids (Trajkovic et al., 2008; Record et al., 2014). Evidence has
shown that exosomes with high prostaglandin PGE2 content were
involved in promoting tumor growth and immune escape (Xiang
et al., 2009). We summarize the composition of exosomes in
Figure 1.

The production and release of exosomes are known as an
orderly process (Vlassov et al., 2012). Production of exosomes
begins with the uptake of extracellular components (functional
proteins, RNA, lipids, etc.) through plasma membrane
invagination or endocytosis. Exosomes can also be ingested by
lipid rafts, clathrin-coated pits, caveolae, phagocytosis, and
micropinocytosis (Commisso et al., 2013; Kamerkar et al.,
2017; Kalluri and LeBleu, 2020). The mixture of the two
polymerizes in early sorting endosomes (ESEs), most of which
form late sorting endosomes (LSEs), and a few could directly form
exosomes and be released into the cytoplasm (Wen et al., 2019).
LSEs change their contents through secondary invagination and
accumulate in lumen to form a multivesicular body (MVB)
containing many intraluminal vesicles (ILVs) (Zhao et al.,
2020a; Kalluri and LeBleu, 2020). The endosomal-sorting

TABLE 1 | Comparison of exosome membrane and cytoplasmic membrane.

Composition Biological functions Refs

Exosome
Membrane

a. Lipid rafts (Sphingolipids, cholesterol, phosphatidylserine,
ceramides) b. Tetraspanins (CD9, CD63, CD81) c.
Transmembrane proteins (FasL, PD-L1, CTLA-4) d.
Membrane trafficking proteins (Annexins, Rabs) e. Immuno-
regulatory molecules (MHCⅠ, MHCⅡ) f. Integrins

a. Angiogenesis b. Apoptosis c. Antigen presentation d.
Inflammation e. Biomarkers f. Receptor-mediated
endocytosis g. Cell proliferation and differentiation

Gurunathan et al.
(2019)

Cytoplasmic
Membrane

a. Glycerol phospholipids, sphingomyelins, and sterols b.
Extrinsic membrane protein (peripheral membrane protein) c.
Intrinsic membrane protein (integral membrane protein) d. lipid
anchored protein

a. Stable internal environment b. Selective transportation of
materials c. Recognition sites for transmembrane
transmission of intracellular and intracellular information d.
The binding site of enzyme e. Mediating cell-to-cell and cell-
to-extracellular matrix links f. Formation of different cell
surface transformation structures g. Therapeutic targets

Engelman (2005);
Grecco et al. (2011)

FIGURE 1 | The composition of exosomes. The membrane of
exosomes, like cells, is composed of the phospholipid bilayer. The membrane
surface contains a wide range of tetraspanins (CD9, CD63, CD81),
transmembrane proteins (FasL, PD-L1, CTLA-4), membrane trafficking
proteins (Annexins, Rabs), integrins and immuno-regulatory molecules (MHCⅠ,
MHCⅡ) that bind specific peptide chains. There are also several lipid rafts
involved, such as phosphatidylserine, sphingolipids, cholesterol, and
ceramides. Exosomes contain a variety of nucleic acids, including not only
DNA and mRNA, but also many ncRNAs, including miRNA, lncRNA and
circRNA. Some proteins, amino acids, and metabolites can also be
encapsulated in exosomes. This is a typical but not comprehensive
representation of exosomes, and no single exosome is expected to contain all
or even most of the bioactive molecules shown.
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complex required for transport (ESCRT) is the main mechanism
for the formation of ILVs and the sorting of specific goods
(Oggero et al., 2019). Starting from ESCRT-0, cargo specific
ILVs are formed through initiation, recruitment, assembly,
action and disassembly, which eventually become MVB
(Henne et al., 2011; Colombo et al., 2013). MVBs can be fused
with lysosomes for degradation. On the other hand, ILVs can
release exosomes from MVBs into the extracellular environment
through exocytosis (Fais et al., 2013; Zhao et al., 2020a; Kalluri
and LeBleu, 2020; Jan et al., 2021). We summarize the secretion
process of exosomes in Figure 2.

FUNCTION OF EXOSOMES IN HNSCC

Exosomes perform important extracellular functions through
communication between tumors and surrounding stromal
tissues, including interactions with the cellular
microenvironment through immune-mediated, morphogenesis

signaling and cell recruitment (Peinado et al., 2011;
Donnarumma et al., 2017). In oncology, tumor cells secrete a
large number of exosomes. Themolecular cargo of tumor-derived
exosomes (TEXs) is enriched with some key molecular
characteristics and can serve at least to some extent as a
substitute for parent tumor cells (Whiteside, 2016a). They are
involved in the occurrence, progression, metastasis, and in
immune escape (Zhao et al., 2020a). In a recent study, Pang
et al. found that exosomal CMTM6 secreted by oral squamous
cell carcinoma (OSCC) cells induced polarization of M2-like
macrophages through the ERK1/2 signaling pathway and
strongly promoted proliferation, invasion, and migration of
OSCC cells (Bellmunt et al., 2019; Pang et al., 2021).
Mutschelknaus et al. found that a low radiation dose of 3 Gy
did not lead to enhanced migration of HNSCC cells, while
exosomes isolated from HNSCC cells enhanced chemotaxis
under 6 and 9 Gy radiation, indicating that the pro-migration
response of exosomes was dose-dependent. Further investigation
of the mechanism revealed that exosomes isolated from HNSCC
cells promoted phosphorylation of mTOR, a downstream target
of AKT signaling, phosphorylation of rpS6, and induce the AKT
downstream targets release (such as MMP2 and MMP9)
(Mutschelknaus et al., 2017). Epstein-Barr Virus (EBV) is one
of the risk factors for OSCC. It had been found that EBER-1
(small RNA-1 encoded by EBV) was released into exosomes from
EBV-infected OSCC cells and internalized by adjacent stromal
macrophages. Exosomes carrying EBER-1 could induce up-
regulated expression of indoleamine 2,3 dioxygenase (IDO)
through RIG-I signaling mediated inflammatory pathways.
Activation of IDO in response to EBER expression of
monocyte-derived macrophages could be a key step in
inhibiting T cell response by upregulation of kynurenine.
Impaired T cell response prevents the transformation of
transformed oral cells, which promotes the occurrence and
development of OSCC (Burassakarn et al., 2021).

EXOSOMES AS DIAGNOSTIC AND
PROGNOSTIC BIOMARKERS FOR HNSCC

Traditional cancer diagnosis methods, such as endoscopy,
computed tomography, X-ray, positron emission computed
tomography, magnetic resonance imaging, and invasive biopsy,
are neither suitable for use in large populations nor repeated
screening (Park et al., 2017). Biomarkers are becoming a
promising strategy for cancer diagnosis and treatment effect
evaluation. However, the high heterogeneity of HNSCC is a
challenge in its identification. Since HNSCC is an enthusiastic
producer of exosomes, the level of exosomes in HNSCC patients
was used as diagnostic and prognostic biomarkers. Exosomes are
highly stable and easily collected from body fluids including urine
or blood through non-invasive or minimally invasive methods.
Compared with proteins or small molecules, exosomes are
located at the level of organelles with functionally
heterogeneous molecules representing the complexity of parent
cells (Maia et al., 2018; Pullan et al., 2019; Nam et al., 2020).
Previous studies have found higher levels of exosomes in the

FIGURE 2 | The secretion process of exosomes. Exosomes can either
produce endogenous exosomes through cytocytosis or plasma membrane
invagination to take up bioactive molecules (nucleic acids, proteins, lipids,
amino acids, or metabolites) (gray), or they can be secreted from the
outside through lipid rafts, clathrin-coated pits, caveolae, phagocytosis or
macropinocytosis in the form of external uptake of exosomes (yellow). The
mixture of the two is aggregated in ESEs. During this period, the exosomes
inside can either fuse with the plasma membrane and release exosomes
outside the cell, or fuse downward to form LSEs and then formMVB. One part
of MVB is released to the extracellular environment through exocytosis, while
the other part is Fusion and degradation in the lysosome.
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plasma of HNSCC patients compared to healthy donors.
Furthermore, it was found that the protein levels in exosomes
isolated from the plasma of HNSCC patients were sufficient to
distinguish stage I/II patients from stage III/IV patients (Ludwig
et al., 2017). In terms of prognosis, total exosome levels, TEX/total
exosome ratio, and phenotypic characteristics of exosomes from
TEX or T cells showed the ability to distinguish HNSCC patients
who responded to or did not respond to tumor therapy
(Theodoraki et al., 2019). This evidence suggests that HNSCC
exosomes can be used as “molecular markers” to provide relevant
information about the diagnosis and prognosis of HNSCC.

PROTEIN

The exosomes secreted by HNSCC are rich in many invasive
molecules, and the specific proteins can be detected and used as
biomarkers to monitor the disease progression of HNSCC (Zhao
et al., 2020a). HSP90 levels in exosomes were elevated in OSCC
cells with lymph node metastasis and that high levels of HSP90
were associated with poor prognosis, especially OSCC patients
with metastasis (Ono et al., 2018). One study, based on the
seventh edition of UICC (Union for International Cancer
Control) tumor-node-metastasis (TNM) classification of
malignant tumors, demonstrated that serum exosome lysyl
oxidase-like 2 (LOXL2) levels were significantly higher in stage
I/II HNSCC patients than in healthy volunteers and stage III
HNSCC patients. LOXL2 promoted tumor progression by
remodeling HNSCC extracellular matrix and increasing
epithelial-mesenchymal transition (EMT). In addition,
previous studies had verified that LOXL2 mRNA expression
was up-regulated in metastatic HNSCC cells compared with
non-metastatic cells (Demory Beckler et al., 2013). Taken
together, these results suggest that serum exosome LOXL2
levels are only associated with early-stage HNSCC, and may
serve as biomarkers for early diagnosis and a potential target
for therapeutic intervention (Cox et al., 2016; Sanada et al., 2020).
Both protein and mRNA levels of Annexin A1 (ANXA1) were
down-regulated in HNSCC. Knockdown ANXA1 reduced the
production of exosomes in HNSCC cell lines and the number of
associated exosomes phosphorylated with epidermal growth
factor receptor (EGFR) (Raulf et al., 2018). The increased
EGFR phosphorylation is associated with poor prognosis
(Patel et al., 2005; Hiraishi et al., 2006). Serum Alix level in
patients with OSCC lymph node metastasis was significantly
higher than that in healthy controls, which was related to the
stage of OSCC. The elevation of Alix level outside saliva was not
associated with OSCC stage. Serum exosome Alix level has high
specificity and positive predictive value, which can be used as a
prognostic indicator of treatment response (Nakamichi et al.,
2021).

MIRNA

As tumor suppressors or oncogenes, miRNAs have been shown to
regulate cell differentiation, proliferation, and apoptosis, and

have a role in promoting tumor development (Nassar et al.,
2017). Due to the lack of endogenous RNase, many investigators
have found a high concentration of multiple functional oncogenic
miRNAs in HNSCC exosomes (Yang et al., 2020a). Coon, et al.
demonstrated that in OSCC cells, miR-365 was much higher than
the level required for basic maintenance of cell function.
Overexpressed miR-365 is delivered to the OSCC exosomes
and has the potential to serve as a potential biomarker for
OSCC for saliva diagnosis and other types of liquid biopsies
(Coon et al., 2020). Regarding human papillomavirus (HPV)
infected HNSCC, exosomes rich in miR-9 could transform
polarized macrophages into M1 type by down-regulating
PPAR δ. The increased radiosensitivity of HPV(+) HNSCC
demonstrated that miR-9 expression in exosomes could be a
potential biomarker and therapeutic approach (Tong et al., 2020).
Another study found that miR-941 was detected in serum
exosomes of laryngeal squamous cell carcinoma (LSCC),
quantitative reverse transcription PCR and ROC curve analysis
showed that up-regulated level of miR-941 promoted cell
proliferation and invasion (Zhao et al., 2020b).

Tumor-associated fibroblasts (CAFs) are the most abundant
cells in the microenvironment of tumor cells. They release
exosomes that alter the tumor microenvironment with a
variety of proteins and miRNAs (Donnarumma et al., 2017).
The disorder of miRNA is a characteristic manifestation of the
transformation of normal fibroblasts into CAF according to
cancer status (Yang et al., 2017). It has been reported that, as
a mediator involved in CAF-OSCC cell communication, miR-
382-5p could transport miR-382-5p from CAF-derived exosomes
to OSCC cells, thereby promoting the invasion and metastasis of
OSCC (Sun et al., 2019). Another study found that miR-14
expression was significantly down-regulated in CAF-derived
exosomes isolated from OSCC tissues, further leading to
activation of the Wnt/β-catenin signaling pathway and EMT,
thereby enhancing OSCC invasion and metastasis (Jin et al.,
2020).

Hypoxia is common in tumor tissues and is characteristic of
the tumor microenvironment, which enhances the release of
TEX. As tumor tissues develop in an anoxic environment, they
not only further exacerbate anoxic conditions but are also prone
to drug resistance under such conditions (Bhandari et al., 2019).
In addition, hypoxia could stimulate the production of miR-21-
rich exosomes in OSCC cells, which was directly regulated by
HIF-1α and HIF-2α. Those exosomes rich in miR-21 were
delivered to non-hypoxic cells to promote pre-metastatic
phenotypes and played an important role in the migration and
invasion of OSCC. Notably, circulating exosome miR-21 was
found to have the potentials for the diagnosis and prognosis of
OSCC (Li et al., 2016).

miRNAs have been extensively studied in saliva to regulate
various pathogenic processes of cancer through their interactions
with target mRNAs (Topkas et al., 2012; Schulz et al., 2013).
Exosome protein in saliva is less than that in blood, which is easy
to collect and non-invasive, greatly simplifying the identification
procedure, and is an excellent method for monitoring OSCC
(Topkas et al., 2012; Schulz et al., 2013). miRNAs in saliva are
potential biomarkers for a variety of diseases, including OSCC
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(Brinkmann et al., 2011). For example, He et al. confirmed that
the expression of miR-24-3p in salivary exosomes of OSCC
patients was significantly higher than that of normal
individuals, which could be distinguished from normal
individuals with high accuracy. Further data analysis showed
that miR-24-3p could inhibit PER1 by directly targeting its 3′-
UTR, thereby promoting the proliferation of OSCC cells (Gai
et al., 2018).

Drug resistance is a major challenge with molecular
mechanisms unknown for HNSCC treatment (Zhao et al.,
2020a). Exogenous drug resistance caused by crosstalk between
the tumor and tumor microenvironment (TME) can be mediated
by miRNA exosome transfer (Valadi et al., 2007; Nwabo et al.,
2017). Qin et al. found that CAFs were inherently resistant to
cisplatin and are transmitted from CAF to tumor cells through
exosome miR-196a, which significantly improved cell
proliferation and survival rate of HNSCC cells. Then, exosome
miR-196a endowed HNSCC with a cytochemical resistance
phenotype by binding downstream target genes CDKN1B and
ING5 in the HNSCC microenvironment. Exosomes of CAF or
depletion of exosomes miR-196a restored the sensitivity of
HNSCC to cisplatin. In addition, Kaplan-Meier analysis and
Cox regression analysis showed that plasma high expression of
exosome miR-196a in HNSCC patients was associated with poor
overall survival and was a valuable prognostic factor. These
results indicate that exosome miR-196a can be used as a
predictor of cisplatin resistance and an important prognostic
factor in HNSCC patients (Qin et al., 2019). Other experimental
results showed that cisplatin-resistant OSCC cells secreted higher
levels of exosome miR-21 than those secreted from OSCC
patients. Those exosomes could induce cisplatin resistance in
OSCC cells by increasing the expression of miR-21 and thereby
reducing the levels of downstream tumor-suppressive targets
PTEN and PDCD4. This may further lead to miR-21 being
used as a biomarker and cancer treatment target to improve
prognosis in OSCC patients (Liu et al., 2017).

LNCRNA

LncRNAs are also packaged in exosomes (Fang et al., 2020).
Exosome lncRNA mainly acts as messengers in intercellular
communication and participates in the regulation of the cell
microenvironment. Dysregulation of exosomal lncRNA will
affect angiogenesis, metastasis, and drug resistance, thus
promoting the occurrence and development of tumors (Xu
et al., 2018). Oral submucosal fibrosis (OSF) is a precancerous
lesion of OSCC (Mithani et al., 2007). Zhou and others
investigated the role of a disintegrin and metalloproteinase
with thrombospondin motifs (ADAMTS) family protein
members in OSF carcinogenesis. They found that lncRNA
ADAMTS9-AS2 was significantly up-regulated in normal oral
mucosa tissues, but down-regulated in OSCC and OSF tissues,
and low expression was associated with poor prognosis. Further
study of the mechanism revealed that lncRNA ADAMTS9-AS2
inhibited PI3K-Akt signaling pathway, regulated EMT, and
suppressed proliferation and metastasis of OSCC cells. It

highlights the key role of exosomal lncRNA ADAMTS9-AS2
in OSF carcinogenesis and is expected to be a biomarker for the
early diagnosis of OSCC (Zhou et al., 2021). Zinc finger antisense
1 (ZFAS1), as a lncRNA, was demonstrated by Wang et al. to be
up-regulated in serum exosomes of OSCC. As a result of
upregulation, OSCC cells increased proliferation and inhibited
the sensitivity of OSCC cells to cisplatin. Specifically,
overexpressed ZFAS1 inhibited transcription by down-
regulating the expression of miR-421, thereby increasing
myeloid ecotropic viral integration site 1 homolog 2 (MEIS2)
expression, ultimately leading to the proliferation and promotion
of chemical resistance to OSCC. The ZFAS1/miR-421/MEIS2
pathway regulates OSCC proliferation and chemoresistance to
cisplatin and may serve as a promising therapeutic target in
OSCC (Wang et al., 2020). Tumor cells and CAF can
communicate directly and effectively through the generation of
lncRNA-rich exosomes (Dai et al., 2020). Ding et al. found that in
OSCC cells, exosomes containing lncRNA-CAF (lnc-CAF) could
be secreted into fibroblasts, thereby secreting more lnc-CAF to
activate CAF, forming a positive feedback loop and promoting
the proliferation of OSCC cells (Ding et al., 2018).

CIRCRNA

CircRNA is rich in exosomes. The covalent closed-loop structure
of circRNA endows circRNA with high stability and unique
molecular conformation. In vitro synthesis of circRNA also
has potential immunogenicity (Meng et al., 2017). CircRNA
can be used as miRNA sponge, competitive binding protein or
protein scaffold to serve as a tool for cell function detection and
manipulation of intracellular processes, to enhance the efficiency
of response and protein translation. These characteristics make it
a good diagnostic biomarker or therapeutic target for HNSCC (Li
et al., 2018; Bai et al., 2019; Slack and Chinnaiyan, 2019). Luo et al.
demonstrated that overexpressed circ_0000199 in circulating
exosomes was significantly associated with areca chewing,
tumor size, lymph node metastasis, and TNM staging in
OSCC patients. Tumor recurrence and mortality were also
higher in OSCC patients with low exosome circ_0000199. It
was further found by gain and loss function experiments that
overexpression of circ_0000199 could promote cell proliferation
and inhibit apoptosis, while knockdown of circ_0000199 showed
the opposite effect. ECM-receptor interaction, transforming
growth factor-β (TGF-β) signaling pathway, and MAPK
signaling pathway were mainly downstream signaling
pathways, which regulated the proliferation and apoptosis of
OSCC cells. These results suggest that highly expressed
circulating exosome circ_0000199 can be an independent
predictor of survival and disease recurrence in OSCC patients,
but the specific regulatory mechanisms remain to be further
studied (Luo et al., 2020). Tian et al. found that serum
exosome circRASSF2 was highly expressed in LSCC cells.
Moreover, it was verified that circRASSF2 promotes the
development of LSCC through its sponge effect on miR-302b-
3p. Western blotting confirmed that circRASSF2 inhibition
reduced insulin-like growth factor 1 receptor (IGF-1R)
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expression. Thus, it is verified that serum exosome circRASSF2
caused the malignant progression of LSCC through circRASSF2/
miR-302b-3p/IGF-1R axis (Tian et al., 2019).

Although growing evidence has shown that bioactive
molecules in the exosomes of HNSCC can be used as potential
non-invasive biomarkers for detection and monitoring of
HNSCC, the results are still not validated for clinical practice
in HNSCC subtypes (Bhat et al., 2021). In order to find more
possible prognostic and early screening markers, sensitivity and
specificity are crucial, and it is necessary to address the cross-
reactivity of multiple exosome markers and interference of
nanoparticles (Cheng et al., 2019). Most studies have focused
on the mechanism of a single signaling pathway mediated by
exosomes containing certain proteins and RNAs. Other exosomal

cargoes (DNA, lipids, and metabolites) need to be searched and
verified to further study the complex regulatory network on TME,
determine the overall function of a single bioactive component
and the synergistic function of multiple bioactive components
and verify driving factors and causal relationships (Yáñez-Mó
et al., 2015; Fang et al., 2020). In addition, the scarcity of
circulating biomarkers and their relative instability in
circulation is also an urgent problem to be solved (Hofmann
et al., 2020a). In conclusion, further studies are needed to deepen
the understanding of the complex functions of exosomes, clarify
the exact mechanisms of biomarkers, and develop technical
standards to improve therapeutic outcomes in patients with
HNSCC (Yang et al., 2020a). (Table 2 summarizes the
comparison of features and role in tumor of miRNA, lncRNA

TABLE 2 | Comparison of features and role in tumor of miRNA, lncRNA and circRNA.

Features Role in tumor Refs

miRNA a. NcRNAs of approximately 22 nt in
length

a. Translation inhibition Krol et al. (2010); Ryan et al. (2010); Pallante et al. (2014); Slack and
Chinnaiyan (2019)

b. Not easy to degrade, with high
stability

b. Degradation of mRNA —

c. Highly conservative c. Transcriptional regulation —

d. Timing expression specificity — —

e. Tissue expression specificity — —

f. The regulation is not very strong — —

lncRNA a. NcRNAs greater than 200 nt in
length

a. Regulation of transcription levels Hart and Goff (2016); Slack and Chinnaiyan (2019); Alessio et al.
(2020)

b. No or weak protein coding ability b. Regulation of the level of epigenetic modification —

c. Low conservatism c. Regulation of post-transcriptional levels —

d. Timing expression specificity — —

e. Tissue expression specificity — —

circRNA a. High stability a. Regulation of transcription, splicing, and
chromatin interactions

Li et al. (2015); Qu et al. (2015); Slack and Chinnaiyan (2019)

b. Highly conservative b. A miRNA sponge —

c. Timing expression specificity c. Acting as a protein scaffold —

d. Tissue expression specificity d. Competitive binding proteins —

TABLE 3 | Biomarkers of HNSCC exosomes.

Exosome source Bioactive substance Outcome Application Refs

OSCC HSP90↑ Metastasis ↑ P Ono et al. (2018)
HNSCC LOXL2↑ Early HNSCC ↑ D Sanada et al. (2020)
HNSCC ANXA1 ↓ Proliferation and invasion ↑ P Raulf et al. (2018)
OSCC Alix ↑ Metastasis and tumor stage ↑ D&P Nakamichi et al. (2021)
OSCC miR-365 ↑ Liquid biopsy D Coon et al. (2020)
HPV (+) HNSCC miR-9 ↑ Radiosensitivity ↑ P Tong et al. (2020)
LSCC miR-941 ↑ Proliferation and invasion ↑ D Zhao et al. (2020b)
OSCC CAFs miR-382-5p ↑ Proliferation and invasion ↑ P Sun et al. (2019)
OSCC CAFs miR-14 ↑ Proliferation and invasion ↑ P Kozłowska et al. (2021)
OSCC miR-21 ↑ Proliferation and invasion ↑ D&P Li et al. (2016)
OSCC miR-21 ↑ Cisplatin resistance ↑ P&C Liu et al. (2017)
OSCC miR-24-3p ↑ Proliferation ↑ D He et al. (2020)
HNSCC miR-196a ↑ Tumor size, metastasis, tumor stage, and chemical resistance ↑ P&C Qin et al. (2019)
OSCC lncRNA ADAMTS9-AS2 ↓ Proliferation, migration and invasion ↑ D&P Zhou et al. (2021)
OSCC ZFAS1↑ Proliferation/cisplatin resistance ↑ P&C Wang et al. (2020)
OSCC circ_0000199 ↑ Tumor size, metastasis, and tumor stage ↑ P Luo et al. (2020)
LSCC circRASSF2 ↑ Proliferation, migration and invasion ↑ P Tian et al. (2019)

(P=Prognosis D = Diagnosis C=Chemical resistance).
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and circRNA. Table 3 summarizes the studies on biomarkers of
exosomes in HNSCC patients.)

EXOSOMESASDRUGDELIVERY VECTORS

Compared with free drug delivery in mouse models, exosome-based
drug delivery has better anti-tumor effects (Wang et al., 2017).
Exosomes are being actively explored as suitable drug delivery
vectors or therapeutic agents because of their molecular structure
advantages (Batrakova and Kim, 2015). First, clinically widely used
blood transfusions involve injections of more than one trillion other
exosomes, but do not exhibit immune-related toxicity in recipients.
Exosome injection of allogeneic exosomes may not cause major
complications, reflecting the low immunogenicity of exosomes
(Kalluri and LeBleu, 2020). Exosomes can then lead to surface
lipid composition and protein content with inherent targeting
properties. This can be used to design ligand enrichment on
exosomes, induce or inhibit signaling events in recipient cells, or
target exosomes to specific cell types (Murphy et al., 2019; Zhao et al.,
2020a). Finally, exosomes but also have good biological
compatibility, easy to produce and store, non-toxic, long shelf
life, and high load capacity. These advantages make exosomes
unresponsive to patients with conventional or drug-resistant
HNSCC for targeted delivery of metastatic recurrence and
chemotherapy drugs, reducing cytotoxicity. It could be used as a
potential drug delivery tool to treat HNSCC (Srivastava et al., 2016;
Wang et al., 2017; Gupta et al., 2021). Currently, clinical trials of
chemotherapy-loaded exosomes as anticancer drug delivery systems
are increasing. Other cancers already have carriers of
chemotherapeutic drugs, such as doxorubicin (DOX), curcumin,
and paclitaxel (PTX), which have shown promising performance in
improving therapeutic efficacy and reducing side effects (Ketabat
et al., 2019). As an exogenous cancer treatment, electroporation, co-
incubation, or ultrasound can be used to deliver chemotherapeutic
drugs into exosomes. Endogenous methods, which rely on cellular
mechanisms, can spontaneously embed drugs through a continuous
process from cell isolation to chemical drug incubation (Walker
et al., 2019). Cui et al. reported that exosomes of normal tongue
epithelial cells overexpressing miR-200c could deliver miR-200c to
PTX resistant tongue squamous cell carcinoma (TSCC) cells in vitro,
increasing sensitivity to PTX treatment. In vivo, intratumor injection
of overexpressing exosome miR-200c significantly inhibited the
growth of TSCC in response to PTX treatment. MiR-200c
reduced the PTX resistance of PTX-resistant TSCC cells mainly
by targeting TUBB3 and PPP2R1B. Therefore, exosome-mediated
miR-200c delivery may be an effective and promising strategy for
regulating TSCC chemical resistance (Cui et al., 2020).

In summary, ligands and adhesive proteins in exosomes bind
to cell membranes, making exosomes excellent carriers for
targeted drug delivery. As it stands, the application of
exosomes derived from human tissues as drug delivery tools
for performing specific therapies in the context of personalized
medicine takes full advantage of exosomes as natural carriers, but
some key issues still need to be addressed. Although they have
encouraging preclinical evidence for cancer therapy, the ability of
high-purity exosomes to deliver high-dose therapeutic drugs is

limited and methods for isolating high-purity exosomes need to
be improved. It is necessary to address the differences in drug
uptake by different exosomes in different target tissues and to
determine the optimal dose, delivery method, and kinetic
properties of the drug. Furthermore, studies have shown that
exosome administration in patients may lead to adverse immune
reactions (Ha et al., 2016; Luan et al., 2017). In response to the
complexity of exosomes, it has been proposed that the exosomes
of therapeutic drugs can be internalized by incorporating cell-
penetrating peptides on the surface of microcytosis-interacting
cells at the target site (Jan et al., 2021). It is also important to
explore the therapeutic response (Yang et al., 2020a). These
aspects limit the use of exosomes as an effective drug delivery
system and further research is needed to advance progress.

EXOSOMES IN TUMOR IMMUNOTHERAPY

The immune activity of exosomes plays an immunomodulatory role
in antigen presentation, immunomodulatory monitoring,
immunomodulatory activation, and inhibition (Xiao et al., 2019).
As a highly immunosuppressive malignancy, exosomes in HNSCC
contain mainly immunosuppressive molecules, which help cancer
cells to evade immune responses and advance the progression of
immunosuppression in HNSCC (Filipazzi et al., 2012; Monypenny
et al., 2018). Exosomes derived from different cell sources play
different roles in tumor immunity. Exosomes derived from tumor
cells and immune cells are abundant in plasma of HNSCC patients
(Ludwig et al., 2017; Theodoraki et al., 2018a). TEX mainly reflects
the tumor status of HNSCC, while exosomes produced by immune
cells mainly reflect the immune dysfunction of HNSCC (Whiteside,
2018;Whiteside, 2019; Hofmann et al., 2020b). Although the specific
mechanisms by which tumor exosomes regulate host immunity are
complex and largely unknown, some recent research results on
HNSCC are trying to explain the great heterogeneity of immune
regulation mechanisms (Xie et al., 2019).

IMMUNE CELLS

In HNSCC, exosomes secreted by various immune cells including
T cells, macrophages, and monocytes extensively regulate T cell
function and antigen presentation mainly by exerting an
immunosuppressive effect, thus leading to efficient
immunosuppression (Lugini et al., 2012; Liu et al., 2016;
Saunderson and McLellan, 2017; Xie et al., 2019). Although
the current research on immune cell exosomes is far behind
compared with tumor cell exosomes, it is of great significance to
understand the function of immune cells, especially in exploring
the composition, characteristics, and functional proteins of
different immune cell exosomes (Xie et al., 2019). CD3 (+)
exosomes derived from T cells carry immunomodulatory
molecules that inform parental T cell function and correlate
closely not only with clinicopathological parameters but also
significantly with immunotherapeutic responses (Theodoraki
et al., 2018a; Theodoraki et al., 2019). Studies assessed the
predictive value of plasma derived HNSCC CD3 (+) exosomes
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as T lymphocyte substitutes. Enrichment and isolation of
exosomes secreted by CD3 (+) T cells from CD3 (-) TEX by
immunocapture revealed higher levels of CD3 (+) exosomes in
patients who responded to treatment. This finding was mainly
related to stronger T-cell activation and lower level of
immunosuppression in patients (Theodoraki et al., 2019).
Hofmann and others found CD16 on the surface of plasma
exosomes from tumor patients and significantly elevated levels
of CD16 in the exosomes of HNSCC patients. Because the plasma
exosome population represents a mixture of exosomes from
different cell types, while TEX showed some levels of surface
CD16, total exosomes, representing all cell populations in TME,
showed higher levels. In addition, total exosome CD16 levels were
significantly higher in patients with advanced-stage T3/4 tumors
and UICC III/IV HNSCC than in patients with early-stage T1/2
tumors and UICC I/II HNSCC. This was not only significantly
correlated with tumor stage and invasion but may even be an
indicator of HNSCC immunosuppression grade (Hofmann et al.,
2020b). The results of Hofmann and other laboratory studies
emphasized the expression of CD16 in monocyte subpopulations,
although it was not possible to distinguish which immune cell
population CD16 positive exosomes come from, based on current
data (Yeap et al., 2016). Bellmunt and his team determined that
macrophage exosome-mediated signaling enhances LSCC cell
migration using a transwell system and scratch assay. This
study also found that exosomes could also enhance the
immunosuppressive state by inducing IL-10 expression in
LSCC macrophages (Bellmunt et al., 2019).

TEX

Immune cells infiltrate tumor tissue and interact with tumor and
stromal cells in TME. Tumor cells can secrete TEX to deliver
immune-stimulating or immunosuppressive signal molecules,
and target to regulate the development, maturity, and anti-
tumor ability of the immune system (Robbins and Morelli,
2014; Whiteside, 2016b; Xie et al., 2019). However, in most
cases, TEX acts as an immunosuppressant in HNSCC (Xie
et al., 2019). TEXs can carry a variety of tumor antigens, and
TEXs play an important role in immunosuppressive mediators
and are considered to be one of the key immunosuppressive
mechanisms in TME (Hofmann et al., 2020a; Sharma et al., 2020).
Beccard et al. found that although CD45 (+) exosomes had
immunosuppression potential in HNSCC, the highest
immunosuppression was caused by TEX. CD45 (-) exosomes
were highly enriched in TEX. CD45 (-) exosomes were
significantly higher in HNSCC stage III/IV patients than in
HNSCC stage I/II patients, inducing more apoptosis. This
might be because high levels of CD45 (-) HNSCC exosomes
had higher stage-dependent variability in immunosuppressive
molecular cargo compared to CD45 (+) exosomes with higher
static molecular cargo. It might also be reflected in the high
inhibition of CD69 on activated CD8 (+) T cells. CD45 (-)
presentation showed that TEX significantly induces
immunosuppression in HNSCC (Beccard et al., 2020). It had
also been reported that TEX secreted CD44v3 (+) exosomes rich

in Programmed death ligand 1 (PD-L1), human factor related
apoptosis ligand (FasL), TGF-β, and EGFR proteins, promoting
the growth and immunosuppression of HNSCC. At the same
time, the relative fluorescence intensity values of these proteins
were significantly increased in stage III/IV patients compared to
HNSCC stage I/II patients (Hofmann et al., 2020b).

The incidence of HNSCC caused by human papillomavirus
(HPV) infection is increasing. Patients with HPV(+) tumors
respond well to initial therapy, so HPV has become an area of
HNSCC immune research (Taberna et al., 2017). Ludwig et al.
found that only exosomes released by HPV(+) HNSCC cells
contained viral proteins E6/E7, P16, and survivin. These
exosomes also carried costimulant OX40, OX40L, and HSP70
molecules, which produced strong stimulants in human T
lymphocyte assays, leading to strong immune responses to
viral antigens. These results suggest that exosomes released by
HPV(+) HNSCC cells may play a role in mediated immune
activation in anti-tumor immune response, providing a method
to improve the sensitivity of conventional tumor therapy (Ludwig
et al., 2018). In addition, HPV(+) HNSCC cells contained
immune-effector cell-associated antigens CD47 and CD276.
CD47 protected tumors by sending inhibitory signals to
macrophages and other cells via SIRPα to inhibit phagocytosis.
CD276, as a coinhibitory molecule, also played a similar role. In
addition to the discovery that HPV(+) exosomes were rich in
CD47 and CD276, it was also found by proteomics that HPV(-)
exosomes contained negative modulators of immune response
MUC-1 and HLA-DRA, which played a crucial role in anti-tumor
defense. The difference in immune response between HPV(+)
type and HPV(-) HNSCC is due to the protein content. This
provides a possible explanation for the higher resistance and poor
prognosis of HPV(-) HNSCC (Ludwig et al., 2019).

As a membrane-binding ligand on many cancer cells, PD-L1
can bind the programmed death 1 (PD-1) receptor on T cells,
inhibiting the antigen-derived activation of T cells and triggering
immune checkpoint responses (Yokosuka et al., 2012; Hui et al.,
2017). Previous studies have found that PD-L1 has been found in
TEXs in plasma samples of patients with various cancers
(Theodoraki et al., 2018b). Other study found that plasma PD-
L1 (+) exosomes in HNSCC patients inhibited T cell activation by
driving CD69 expression on the PD-1/PD-L1 down-regulation
signal on T cells. It is proved that circulating PD-L1 (+) exosomes
can induce immune dysfunction in HNSCC patients by inducing
T cell dysfunction. In addition, HNSCC patients with disease
activity or advanced exosome PD-L1 levels have a status that the
higher the exosome PD-L1 level, the stronger the inhibitory effect
on T cell activity. The level of exosome PD-L1 is significantly
positively correlated with the progression of HNSCC, lymph node
involvement, and high tumor stage (Theodoraki et al., 2018b).

Although exosome-based strategies have been shown to
enhance anti-cancer immunotherapy, they are still in the early
stages of clinical trials and are still some ways from reaching the
clinical stage (Li et al., 2020). The specific mechanisms of
exosomes in immune regulation are complex and largely
unknown, but it is essential to distinguish between relapse and
increased levels of exosomes due to inflammation after
immunotherapy, as exosomes are involved in both pathways
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and have an important identity. In addition, further proof is
needed of whether targeted therapies with exosomes have a
preventive effect on tumor metastasis (Yang et al., 2020b).
These will further investigate the effect of exosomes on the
immune system and may reveal yet undiscovered mechanisms
underlying the suppression of antitumor immunity, leading to the
discovery of novel immune targets for drug therapy (Clayton
et al., 2020). Guidelines or international guidelines for the new
treatment also need to be developed (Zhang and Yu, 2019).
(Table 4 summarizes the studies on immunosuppression of
HNSCC exosomes.).

CONCLUSION AND PROSPECTS

New evidence is being presented for the importance of exosomes
as multifunctional carriers of intercellular communication in
HNSCC. Exosomes secreted by HNSCC cells and their
surrounding stromal cells mix and communicate with
recipient cells and participate in metabolic reprogramming
and microenvironmental remodeling, leading to metabolic
changes (Yang et al., 2020b). Exosomes can be used as an
ideal diagnostic and prognostic biomarker for HNSCC due to
their unique secretion pattern. Exosomes can be directly involved
in the anti-tumor process of drugs, and can also be transformed
into transport vectors of anti-tumor substances in vitro, and can
also be used as immune inducers to induce specific anti-tumor
immune responses (Jang et al., 2013; Armstrong and Stevens,
2018; Chulpanova et al., 2018). However, exosomes that intend to
be used as diagnostic or therapeutic agents in the future still are
required to elucidate the molecular mechanisms of exosome
production, endocytosis, and biological roles in tumor
progression, based on larger patient cohorts (Dai et al., 2020;
Ebnoether and Muller, 2020). Standardized methods for the
selection of exosome sources and isolation techniques are
currently being explored to achieve more and pure production

of exosomes with unique characteristics and functions (Hofmann
et al., 2020a; Yang et al., 2020a). The main frustration of exosome
research is the lack of in-depth research on the underlying
biology. Therefore, the application as a drug delivery system
and targeted drug therapy is delicate. Because the exact changes
and interactions of exosomes as therapeutic vesicles are not
known (Ebnoether and Muller, 2020). There are still many
immature areas in the field of exosomes, but it is undeniable
that it greatly promotes the occurrence, proliferation, metastasis,
immunosuppression and chemotherapy resistance of HNSCC,
opening a window of hope for the fight against HNSCC. The
potential is enormous.
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TABLE 4 | Immunosuppression of HNSCC exosomes.

Exosome
source

Bioactive
substance

Function Refs

HNSCC CD3 (+) Levels of CD3 (+) exosomes were higher in patients who responded to treatment. It is mainly related to
the strong T cell activation ability and low immunosuppression level of patients

Theodoraki et al.
(2019)

HNSCC CD16 The level of total exosome CD16 in HNSCC patients was significantly correlated with tumor stage and
invasion, indicating that the later the stage was, the greater the immunosuppressive effect was

Hofmann et al. (2020b)

HNSCC CD45 (-) CD45 (-) exosomes, highly enriched in TEX, not only correlated with stage but also induced more
apoptosis, thus inducing immunosuppression of HNSCC.

Beccard et al. (2020)

HNSCC CD44v3 (+) TEX secreted CD44v3 (+) exosomes rich in PD-L1, FasL, TGF-β and EGFR proteins, promoting
HNSCC progression and immunosuppression

Hofmann et al. (2020b)

HNSCC MUC-1 and
HLA-DRA

Negative regulators of immune responses in HPV(-) exosomes included MUC-1 and HLA-DRA. MUC-1
(+) exosomes protect HNSCC cells from activated NK cell-mediated lysis. HLA-DRA was the ligand of
T cell receptor, and its signal transduction promoted the production of Treg

Ludwig et al. (2019)

HNSCC CD69 Plasma PD-L1 (+) exosomes in HNSCC patients inhibited T cell activation by driving CD69 expression of
down-regulation PD-1/PD-L1 signaling for T cells

Theodoraki et al.
(2018b)
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GLOSSARY

ADAMTS a disintegrin and metalloproteinase with thrombospondin
motifs

ANXA1 Annexin A1

CAFs cancer-associated fibroblasts

circRNA circular RNA

DOX doxorubicin

EBV Epstein-Barr Virus

EGFR epidermal growth factor receptor

EMT epithelial-mesenchymal transition

ESEs early sorting endosomes

ESCRT endosomal-sorting complex required for transport

EVs extracellular vesicles

FasL human factor related apoptosis ligand

HNSCC head and neck squamous cell carcinoma

HPV human papillomavirus

IDO indoleamine 2,3 dioxygenase

IGF-1R insulin-like growth factor 1 receptor

ILVs intraluminal vesicles

Lnc-CAF lncRNA-CAF

lncRNA long non-coding RNA

LOXL2 lysyl oxidase-like 2

LSEs late sorting endosomes

LSCC laryngeal squamous cell carcinoma

MEIS2 myeloid ecotropic viral integration site 1 homolog 2

miRNA microRNA

MVB multivesicular body

ncRNAs non-coding RNAs

OSCC oral squamous cell carcinoma

OSF oral submucosal fibrosis

PD-1 programmed death receptor 1

PD-L1 Programmed death ligand 1

PTX paclitaxel

TEXs tumor-derived exosomes

TGF-β transforming growth factor-β

TME tumor microenvironment

TNM tumor-node-metastasis

TSCC tongue squamous cell carcinoma

ZFAS1 zinc finger antisense 1
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