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Influenza A virus (IAV), one of the most prevalent respiratory diseases, causes pandemics 
around the world. The multifunctional non-structural protein 1 (NS1) of IAV is a viral 
antagonist that suppresses host antiviral response. However, the mechanism by which 
NS1 modulates the RNA interference (RNAi) pathway remains unclear. Here, we identified 
interactions between NS1 proteins of Influenza A/PR8/34 (H1N1; IAV-PR8) and Influenza 
A/WSN/1/33 (H1N1; IAV-WSN) and Dicer’s cofactor TAR-RNA binding protein (TRBP). 
We found that the N-terminal RNA binding domain (RBD) of NS1 and the first two domains 
of TRBP protein mediated this interaction. Furthermore, two amino acid residues (Arg at 
position 38 and Lys at position 41) in NS1 were essential for the interaction. We generated 
TRBP knockout cells and found that NS1 instead of NS1 mutants (two-point mutations 
within NS1, R38A/K41A) inhibited the process of microRNA (miRNA) maturation by binding 
with TRBP. PR8-infected cells showed masking of short hairpin RNA (shRNA)-mediated 
RNAi, which was not observed after mutant virus-containing NS1 mutation (R38A/K41A, 
termed PR8/3841) infection. Moreover, abundant viral small interfering RNAs (vsiRNAs) 
were detected in vitro and in vivo upon PR8/3841 infection. We identify, for the first time, 
the interaction between NS1 and TRBP that affects host RNAi machinery.

Keywords: influenza A virus, non-structural protein 1 of IAV, TRBP, antiviral RNAi response, RNA interference 
machinery

INTRODUCTION

Influenza A viruses (IAVs) are widespread pathogens causing severe respiratory disease around 
the world (Neumann et al., 2010; Su et al., 2015; Coughlan and Palese, 2018). Seasonal epidemics 
of influenza affect 5%–15% of the global population, and cause about 250,000 to 500,000 
respiratory deaths annually, with influenza A causing considerable morbidity and mortality (Li 
et  al., 2018; Yassine et  al., 2018). IAVs are negative-stranded RNA viruses belonging to the 
Orthomyxoviridae family, which contain 8 segments encoding approximately 14 proteins (Krammer 
et  al., 2018; Ampomah and Lim, 2020). Different subtypes of IAVs are classified according to 
two glycoproteins, haemagglutinin (HA) and neuraminidase (NA). The three polymerase proteins 
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(PA, PB1, and PB2) form a viral ribonucleoprotein (vRNP) 
with the nucleoprotein (NP)-encapsidated RNA segment in 
the replication of IAVs.

Non-structural protein 1 (NS1) consists of 215 to 237 amino 
acids (aa) and consists of an N-terminal RNA binding domain 
(RBD; 1 to 73 aa) and a C-terminal effector domain (ED; 85 
aa to end) and joined by a linker domain (LD; 74 to 84 aa; 
Hale et  al., 2008; Krug, 2015). The RBD non-specifically binds 
double-stranded RNA (dsRNA) of different lengths and mediates 
several interactions (Chien et  al., 2004; Hale et  al., 2008). 
Highly expressed NS1 performs a range of activities to inhibit 
the host antiviral response by interacting with interferon (IFN)-
induced proteins and antagonizing IFN production during 
infection (Krug et  al., 2003; Krug, 2015). Two residues of 
NS1, arginine 38 (R38) and lysine 41 (K41), are the key 
functional sites for binding dsRNA and retinoic acid-inducible 
gene I  (RIG-I) to inhibit signal transduction (Qian et al., 1994; 
Wang et al., 1999; Talon et al., 2000; Wang et al., 2000; Mibayashi 
et al., 2007). NS1 competes with 2′-5′-oligoadenylate synthetase 
(2′-5’-OAS) for interaction with dsRNA, thereby blocking 
cleavage by RNase L of viral and cellular mRNA (Ji-Young 
Min, 2006). The ED also mediates functional interactions with 
host proteins. The interaction between NS1 and ubiquitin ligase 
TRIM25 suppresses RIG-I signal transduction, which requires 
E96/E97 residues in the ED of NS1 (Gack et  al., 2009). NS1 
binds to protein kinase R (PKR) at residues 123–127, which 
in turn inhibits PKR-mediated eukaryotic translation initiation 
factor eIF2α phosphorylation (Li et  al., 2006; Min et  al., 2007; 
Schierhorn et  al., 2017). Furthermore, the cellular cleavage 
and polyadenylation specific factor 30 (CPSF30) binds to the 
ED, in turn blocking the maturation of pre-mRNA (Nemeroff 
et  al., 1998).

RNA interference (RNAi) has been recognized as an important 
gene silencing mechanism in mammals (Ding, 2010; Guo et al., 
2019). In the processing of RNAi, the stem-loop structure of 
precursor microRNAs (pre-miRNAs) or viral double-stranded 
RNA replicative intermediates (dsRNA-vRIs) are cleaved into 
~22 nucleotide (nt) miRNAs or viral small interfering RNAs 
(vsiRNAs) by Dicer, an enzyme belonging to the RNase III 
family (Bernstein et  al., 2001; Hutvágner et  al., 2001). Then, 
these small RNAs (sRNAs) are loaded into Argonaute-2 (AGO2) 
protein, an important component of RNA-induced silencing 
complex (RISC), leading to silencing or degradation of target 
sequences (Jinek and Doudna, 2009; Ding et  al., 2018). As 
another essential member of RISC, TRBP serves as a cofactor 
of Dicer in the processing of miRNAs (Chendrimada et  al., 
2005; Haase et  al., 2005; Takahashi et  al., 2018). However, 
whether TRBP affects miRNA abundance or isoforms remains 
controversial (Chendrimada et  al., 2005; Haase et  al., 2005; 
Melo et  al., 2009; Lee and Doudna, 2012; Kim et  al., 2014). 
Numerous proteins, including adenosine deaminases acting on 
RNA-1 (ADAR1) and the protein activator of PKR (PACT), 
have also been reported to enhance the cleavage activity of 
Dicer (Lee et  al., 2006; Ota et  al., 2013; Heyam et  al., 2015).

Many studies indicate that host miRNA expression levels 
are regulated to resist viral infections. In hepatocytes, hepatitis 
C virus (HCV)-induced IFN-β regulates the expression of 

cellular miRNAs including miR-196, miR-351, and miR-431, 
which target the RNA genome of HCV to inhibit viral 
replication (Pedersen et  al., 2007). Increased expression of 
miR-296-5p directly targets VP1 and VP3 coding sequences 
of the genome to inhibit the Enterovirus 71 (EV71) replication 
in rhabdomyosarcoma (RD) and human neuroblastoma 
(SKN-SH) cells (Zheng et  al., 2013). In addition, miR-32 
targets viral nucleic acids, which restricts the expression of 
primate foamy virus type 1 (PFV-1) mRNA in 293 T cells 
(Lecellier et  al., 2005). Many viruses in turn inhibit host 
miRNA maturation for viral replication. Flaviviruses, including 
dengue viruses (DENV), Kunjin virus (KUNV), and Japanese 
encephalitis virus (JEV), suppress miRNA production through 
non-coding subgenomic flavivirus RNAs (sfRNAs) that 
associate with Dicer and AGO2  in infected cells (Moon 
et  al., 2015). Human cytomegalovirus (HCMV) encodes 
intergenic sequences that are complementary to miR-17, 
resulting in its degradation (Lee et  al., 2013). In addition, 
Zika virus (ZIKV) capsid protein binds to Dicer to dampen 
miRNA production in neural stem cells (NSCs; Zeng 
et  al., 2020).

On the other hand, there is growing evidence that siRNA-
based antiviral immunity plays an important role in mammals 
(Li et  al., 2013; Maillard et  al., 2013; Li et  al., 2016; Qiu 
et  al., 2017; Han et  al., 2020; Zeng et  al., 2020). Recent studies 
including ours have shown several viruses, such as Nodamura 
virus (NoV), IAV, Sindbis virus (SINV), and ZIKV induce 
vsiRNA production in vitro or in vivo (Li et  al., 2013; Li 
et  al., 2016; Zhang et  al., 2020; Zhang et  al., 2021). To counter 
the defense mechanism, many viruses encode viral suppressors 
of RNAi (VSRs), including NoV B2, IAV NS1, Ebolavirus 
(EBOV) VP35, and human enterovirus 71 (HEV71) 3A (Fabozzi 
et  al., 2011; Li et  al., 2013; Li et  al., 2016; Qiu et  al., 2017). 
For instance, VP35 directly interacts with TRBP and PACT 
to suppress the effects of siRNAs (Fabozzi et  al., 2011). 3A 
inhibits siRNAs production by sequestrating viral dsRNA (Qiu 
et  al., 2017).

Similar to several viruses, IAV has also been recognized to 
functionally regulate cellular miRNA expression (Terrier et  al., 
2013; Tan et al., 2014; Jiao et al., 2019). Moreover, our previous 
study has shown that vsiRNAs are detected in mammalian 
cells only when infected with IAV lacking NS1, suggesting 
that NS1 blocks vsiRNA production (Li et  al., 2016). Our 
emerging study also determines that NS1 encoded by influenza 
A/WSN/1/33 (WSN) interacts with AGO2, which induces nuclear 
import of AGO2 (Wang et  al., 2020). In addition, multiple 
studies have observed that NS1 interacts with many host proteins 
including ADAR1 and PACT that participate in the RNAi 
process (de Chassey et  al., 2013; Tawaratsumida et  al., 2014).

Although IAV NS1 has been shown to inhibit the production 
of sRNAs, few studies have clarified the mechanism underlying 
suppression by NS1. Here, we  show the interaction between 
PR8 NS1 and TRBP, which inhibits some miRNAs production. 
Further analysis reveals that R38 and K41 of NS1 are vital 
sites for this binding. Moreover, our findings provide the first 
evidence for the in vivo production canonical duplex vsiRNAs 
by mutant IAV virus. Our work explains the mechanism of 
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NS1  in modulating RNA interference machinery from a 
new perspective.

MATERIALS AND METHODS

Cell Culture and Viruses
Human embryonic kidney cells (293 T) were cultured in 
Dulbecco’s modified Eagle’s medium (DMEM; Sigma) containing 
10% fetal bovine serum (FBS; Gibco) at 37°C with 5% CO2. 
Influenza A/Puerto Rico/8/34 (H1N1), designated PR8-wild 
type (WT), Influenza A/WSN/1/33 (H1N1), designated WSN-WT, 
and the mutant virus, designated PR8/3841, were gifts from 
Dr. A. García-Sastre.

Plasmids and Molecular Cloning
The sequences encoding NS1, N-NS1, C-NS1, and NS1 38/41 
of PR8-WT and the sequences encoding NS1, NS1 38/41 of 
WSN-WT were generated by reverse transcription–polymerase 
chain reaction (RT-PCR) and cloned into pcDNA3.1 vector 
digested by EcoRI and HindIII (NEB) to generate pcDNA-
NS1, pcDNA-N-NS1, pcDNA-C-NS1 and pcDNA-NS1 38/41. 
The open reading frame (ORF) of EGFP was cloned into 
the EcoRI and HindIII sites of the pcDNA3.1 vector to 
generate pcDNA-EGFP. The plasmids expressing EGFP, TRBP, 
T7, and different mutants of TRBP (TA, TB, and TC) were 
constructed into pCMV vectors with an N-terminal 3xFLAG 
epitope digested by HindIII and EcoRI to generate pCMV-
3Flag-EGFP, pCMV-3Flag-TRBP, pCMV-3Flag-T7, pCMV-
3Flag-TA, pCMV-3Flag-TB, and pCMV-3Flag-TC. The ORFs 
of EGFP and TRBP were cloned with C-terminal His tag 
into the SalI and XhoI sites of pDEST-myc-DICER (Addgene, 
Cat. #19873) to generate pDEST-His-EGFP and pDEST-His-
TRBP. The sequence encoding TRBP was cloned into pGEX-4 T-1 
digested by BamHI and SalI to generate GST-TRBP. The 
expression plasmid for human Dicer was purchased from 
Addgene (Cat. #41584). Human miRNA expression plasmid 
MIR-21 (pCMV-MIR-21) was purchased from OriGene (Cat. 
#SC400271). The designed short hairpin RNAs (shRNAs) 
targeting EGFP or luciferase were cloned into pLKO.5 vector 
(gift from Dr. Feng Qian) digested by AgeI and EcoRI to 
produce pLKO-sh-EGFP (shEGFP) and pLKO-sh-LUC (shLUC). 
The CRISPR/Cas9 plasmids were gifts from Dr. Yongming 
Wang (Xie et  al., 2017). Two designed guide RNAs (gRNAs), 
gRNA1 and gRNA2, were ligated with tracrRNA-U6 sequence 
from gRNAU6 plasmid. Then, the fragment was constructed 
into an epiCRISPR vector that was digested by BspQI to 
generate epiCRISPR-TRBP. The primer sequences and gRNA 
sequences are shown in Supplementary Tables 1 and 2.

Cell Culture Infection and Transfection
293 T cells were seeded in a 6-cm plate at a density of 2 × 106/
plate 1 day before infection. Approximately 24 h after inoculation 
with serum-free DMEM (mock), PR8-WT, or PR8/3841 at a 
multiplicity of infection (MOI) of 1 as previously described 
(Li et  al., 2016), the infected cells were lysed in TRIzol 

(Invitrogen) for RNA and protein extraction using the 
manufacturer’s protocol.

To identify the interaction between NS1 and TRBP, 293 T cells 
(6 × 105 cells/well) were seeded into a 6-well plate 1 day before 
transfection. Plasmids expressing NS1 (2 μg) and FLAG-TRBP 
(2 μg) were co-transfected into 293 T cells using Lipofectamine 
2000 (Life Technologies) for 48 h. 293 T cells were transfected 
with plasmids expressing FLAG-TRBP (2 μg) or FLAG-EGFP (2 μg) 
for 24 h and then inoculated with PR8-WT (MOI = 1) or WSN-WT 
(MOI = 1) or PR8/3841 (MOI = 1) in different wells for 24 h.

To determine the effect of the interaction on miRNA 
production, 293 T cells (6 × 105 cells/well) were seeded into a 
6-well plate 1 day before transfection. Plasmids expressing 
FLAG-TRBP (2 μg) were transfected into TRBP-KO cells using 
Lipofectamine 2000 for 48 h or TRBP-KO cells were transfected 
with pCMV-MIR-21 (2 μg) and FLAG-TRBP (2 μg) or FLAG-
EGFP (2 μg) for 24 h and then inoculated with DMEM (mock) 
or PR8-WT (MOI = 1) or PR8/3841 (MOI = 1) in different wells 
for 24 h.

For the EGFP RNAi assay, 293 T cells (4 × 105 cells/well) 
were seeded into a 12-well plate one day before transfection. 
pCMV-3Flag-EGFP (0.1 μg) and shEGFP (0.3 μg) or shLUC 
(0.3 μg) were co-transfected into cells using Lipofectamine 2000. 
Six hours post-transfection, the cells were infected with PR8-WT 
(MOI = 1) or PR8/3841 (MOI = 1). After 48 h post-transfection, 
cells were washed with PBS and lysed in TRIzol for RNA and 
protein extraction using the manufacturer’s protocol.

Co-immunoprecipitation and 
AGO-Immunoprecipitation
293 T cells transfected with Flag-tagged plasmids or infection 
with viruses were co-immunoprecipitated (co-IP) by anti-FLAG 
affinity resin (GenScript). Briefly, 293 T cells lysates in lysis 
buffer (20 mM Tris–HCl [pH 7.5], 150 mM NaCl, 0.5% NP-40, 
5 mM MgCl2, 10% glycerol) mixed with a protease inhibitor 
(Roche) were incubated with 30 μl anti-FLAG affinity resin for 
4 h at 4°C in the presence or absence of 10 μg/ml RNase A 
(Thermo Fisher Scientific) and 5 U/ml RNase III (NEB). After 
five times washes with 1 × wash buffer (IBA BioTAGnology), 
the precipitated complexes were used to detect specific proteins 
by Western blotting.

For AGO-IP, cells lysates in 1 ml RIPA (Cell Signaling 
Technology) were precleared by incubation with 20 μl of protein 
A/G PLUS-Agarose (Santa Cruz Biotechnology) and 2 μg of 
mouse IgG (Santa Cruz Biotechnology) for 1 h at 4°C for 
pre-clearing. 2 μg of Anti-pan Ago antibody (Millipore) or 2 μg 
of mouse IgG antibodies (Santa Cruz Biotechnology) and 20 μl 
of protein A/G PLUS-Agarose were added into the lysates and 
incubated together for 4 h at 4°C followed by washing five 
times with 1 × wash buffer. Total RNAs were extracted from 
the precipitated complexes using TRIzol to construct small 
RNA libraries.

Protein Purification and GST Pulldown
Plasmids expressing GST and GST-TRBP were expressed in 
Escherichia coli BL21 (DE3) strain cells. The cells were harvested 
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and sonicated in lysis buffer (50 mM Tris–HCl [pH 8.0], 50 mM 
NaCl, 5 mM β-mercaptoethanol, 5% glycerol). Then, lysates 
were cleared by centrifugation at 20,000 g for 30 min at 4°C. The 
supernatants were purified with Glutathione Resin (GenScript) 
and dialyzed overnight at 4°C. GST and GST-TRBP proteins 
were detected by SDS-PAGE and used for GST pulldown.

For GST pulldown, the GST and GST-TRBP proteins were 
bound to glutathione beads and incubated with lysates expressing 
NS1 or NS1 38/41 protein for 5 h at 4°C in the presence or 
absence of 10 μg /ml RNase A and 5 U/ml RNase III. After 
five times washes with 1 × wash buffer, the bound proteins 
were detected by SDS-PAGE and Western blotting analysis.

Western and Northern Blotting Assays
Two assays were performed as previously described (Li et  al., 
2016; Wang et  al., 2020). The following primary antibodies 
were used for detection: β-actin (Cell Signaling Technology), 
TRBP, PACT, Dicer, and EGFP (Santa Cruz Biotechnology), 
Flag and His (GenScript). The antibody of IAV-NS1 was gift 
of Dr. Yan Zhou. For Northern blotting, 10 μg of total RNA 
was used to detect miRNA. The probes used in this study are 
listed in Supplementary Table  3.

Generation of KO Cell Lines
293 T cells (1 × 106 cells/well) were seeded into a 6-well plate 
1 day before transfection. The CRISPR/Cas9 plasmid (2 μg) were 
transfected into 293 T cells (80%–90% confluent) with 
Lipofectamine 2000. 24 h after transfection, cells were selected 
by puromycin (2.5 μg/ml). 72 h after selection, cells were identified 
by PCR and Western blotting. For analysis of single cell-derived 
clones, separated cells were plated at a density of 100–300 
cells per 100 cm dish and were incubated for 2 weeks until 
colony formation. The KO cell lines were confirmed by DNA 
sequencing and Western blotting.

RT-qPCR
One microgram of RNA was reverse transcribed to cDNA 
using HiScript III First Strand cDNA Synthesis kit (+gDNA 
wiper; Vazyme). qPCR was performed using ChamQ Universal 
SYBR qPCR Master Mix (Vazyme). All samples were performed 
in triplicate. The results were normalized to β-actin mRNA. The 
expression levels of specific miRNAs were analyzed by quantitative 
PCR with specific stem-loop RT primer. The results were 
normalized to U6 small nuclear RNA. The primer sequences 
used in RT-qPCR are listed in Supplementary Table  4.

Animals
BALB/c and C57BL/6 mice were purchased from Charles River 
Laboratory (Shanghai, China). All animal experiments were 
carried out under the guidelines of the Institutional Animal 
Care and Use Committee, Fudan University of China.

Intranasal Infections
Six- to eight-week-old female BALB/c and C57BL/6 mice were 
kept under specific pathogen-free conditions in individual 

ventilated cages. Briefly, mice were anesthetized by intraperitoneal 
injection of a mixture of atropine, diazepam, and pentobarbital 
and infected intranasally with 104 PFU PR8/3841  in 50 μl of 
PBS or 104 PFU PR8-WT in 50 μl of PBS. Total RNAs were 
extracted from the lung tissues of mice 4 days post-infection (dpi).

Construction of Small RNA Libraries
RNA extractions were used for the construction of small RNA 
libraries by the method that depends on the 5′ monophosphate 
of small RNAs as previously described with the TruSeq Small 
RNA Sample Preparation Kit of Illumina (San Diego, CA; Li 
et  al., 2016).

Deep Sequencing and Bioinformatic 
Analysis of Small RNAs
Libraries of small RNAs were cloned from the RNA samples 
and sequenced by Illumina HiSeq  2000/2500. Small RNA 
reads were mapped to the virus genome references or compared 
to mature miRNAs with a perfect match by Bowtie 1.1.2 
before removed from adapter sequences. Bioinformatics analysis 
of virus-derived small RNAs was conducted using in-house 
Perl scripts as previously described (Li et  al., 2016). Pairs 
of complementary 22-nt vsiRNAs in each library with different 
base-pairing lengths were computed using a previously 
described algorithm (Li et  al., 2013). Content and properties 
of the small RNA libraries sequenced are shown in 
Supplementary Table  5. The following reference sequences 
were used in this study:

PR8-WT: The sequences were downloaded from NCBI: 
AF389115.1, AF389116.1, AF389117.1, AF389118.1, AF389119.1, 
AF389120.1, AF389121.1, and AF389122.1.

PR8/3841: Obtained from PR8-WT by mutating amino acids 
R38A and K41A in the NS1 segment.

Mature miRNAs: miRbase 21 (http://www.mirbase.org/).

RESULTS

IAV NS1 Interacts With Host TRBP Protein
To explore RNAi suppression by the NS1 protein of IAV, 
we  conducted co-immunoprecipitation (co-IP) experiments 
to identify interactions between IAV NS1 and cellular proteins 
that are involved in RNAi. We  detected NS1  in TRBP 
immunoprecipitants when plasmids encoding FLAG-tagged 
TRBP or FLAG-tagged EGFP (negative control) and plasmid 
encoding PR8 NS1 or WSN NS1 were co-transfected into 
293 T cells (Figure  1A, lanes 1–6 and Figure  1B, lanes 
1–6). To confirm whether NS1 is associated with TRBP 
upon IAV infection, 293 T cells were infected with 
PR8-wildtype (WT) or WSN-WT after ectopically expressing 
TRBP protein. NS1 was specifically co-immunoprecipitated 
with TRBP with viral infection, whereas NS1 was undetected 
in the control of EGFP (Figure  1A, lanes 7–12, Figure  1B, 
lanes 7–12, and Supplementary Figure  1). Because NS1 
and TRBP are both dsRNA binding proteins (dsRBPs), 
we  then examined whether the interaction is dependent on 
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RNA. RNase A and RNase III were added into the cell 
lysate to exclude potential interactions mediated by 
single-stranded RNA (ssRNA) and dsRNA 
(Supplementary Figure  2). The NS1-TRBP interaction was 
maintained with RNase A and RNase III treatment 
(Figures  1C,D). These results suggest that the NS1-TRBP 
interaction is likely mediated by protein–protein binding 
instead of RNA.

To further characterize complex formation, we  aimed to 
validate the interaction using purified NS1 and 
TRBP. Unfortunately, full-length NS1 protein was observed to 
aggregate at various concentrations, consistent with those 
previously reported (Bornholdt and Prasad, 2008; Koliopoulos 
et  al., 2018; Chen et  al., 2020b). We  finally purified the 
recombinant glutathione-S-transferase (GST)-fusion TRBP 
protein and performed GST pull-down experiments. PR8 NS1 
or WSN NS1 from ectopic expression or viral infection in 
293 T cells was incubated with GST-TRBP or GST purified 
from E. coli (Figure  2A). We  found that NS1 bound with 

high affinity to GST-TRBP but not to GST with RNase treatment 
(Figure  2B). Together, these results demonstrate that IAV NS1 
physically binds to the host TRBP protein.

R38A and K41A Mutations in NS1 Abolish 
the NS1-TRBP Interaction
It has been demonstrated that a variety of important sites 
mediate interactions between NS1 and cellular proteins (Ji-
Young Min, 2006; Mibayashi et  al., 2007; Hale et  al., 2008; 
Krug, 2015; Moriyama et  al., 2016; Schierhorn et  al., 2017). 
To further identify the binding sites in NS1, we  constructed 
the C-terminal deletion mutant of NS1 (N-NS1) and the 
N-terminal deletion mutant of NS1 (C-NS1; Figure  3A). 
N-NS1 was specifically co-immunoprecipitated with TRBP 
(Figure  3B). However, we  did not detect the interaction 
between C-NS1 and TRBP protein (Figure 3C). It was inferred 
that the N-terminal domain of IAV NS1 harbored critical 
sites that mediated the interaction with TRBP protein. We thus 

A

B

C

D

FIGURE 1 | IAV NS1 interacts with TRBP. (A) Plasmids encoding PR8 NS1 and FLAG-TRBP or FLAG-EGFP or empty vector were co-transfected into 293 T 
cells for 48 h (lanes 1–6). 293 T cells were transfected with FLAG-TRBP or FLAG-EGFP or empty vector for 24 h before infected with PR8-WT (MOI = 1) for 24 h 
(lanes 7–12). Immunoprecipitations were performed with anti-FLAG antibody. FLAG-tagged proteins, NS1, and β-actin were detected with specific antibodies. 
(B) Plasmids encoding WSN NS1 and FLAG-TRBP or FLAG-EGFP or empty vector were co-transfected into 293 T cells for 48 h (lanes 1–6). 293 T cells were 
transfected with FLAG-TRBP or FLAG-EGFP or empty vector for 24 h before infected with WSN-WT (MOI = 1) for 24 h (lanes 7–12). Immunoprecipitations were 
performed and processed as in (A). (C,D) The NS1-specific interaction with TRBP persists in the presence of RNase. RNase A (10 mg/ml) and RNase III (5 U/ml) 
were treated with cell lysates. Immunoprecipitations were performed with anti-FLAG antibody. Samples were analyzed by SDS–PAGE with the indicated 
antibodies.
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generated NS1 mutants and found that two-point mutations 
within NS1 (R38A/K41A) completely abolished NS1-TRBP 
interaction (Figures 3D,E). Furthermore, a recombinant virus 
carrying the R38A-K41A substitutions in NS1 (PR8/3841) 
was rescued to identify the interaction. The results of the 
virus-infected group were consistent with the plasmid-
transfected group (Figure 3F). These results demonstrate that 
the region comprised of R38 and K41 is essential to bind 
TRBP protein.

The First Two Domains of the TRBP 
Protein Mediate the Interaction With NS1
TRBP contains three dsRNA binding domains (dsRBDs), 
including dsRBD-A, dsRBD-B, and dsRBD-C (Chendrimada 
et  al., 2005; Haase et  al., 2005; Kok et  al., 2007). The first 
two domains bind dsRNA, while the third domain mediates 
protein–protein interactions including the Dicer protein (Daniels 
et  al., 2009). To determine which domain NS1 binds to, 
we  constructed FLAG-tagged plasmids expressing different 
domains of TRBP (Figure 4A). NS1 and each plasmid encoding 
TRBP including full-length plasmid (TRBP-WT) and truncated 
plasmids (TA, TB, and TC) were co-transfected into 293 T 
cells. Co-IP assays and Western blotting were conducted to 
identify the interaction region. It showed that the dsRBD-A 
and dsRBD-B of TRBP were responsible for NS1-TRBP 
interaction (Figure  4B).

TRBP forms a complex with Dicer and promotes the activity 
of Dicer in the processing of sRNAs (Chendrimada et  al., 
2005; Takahashi et  al., 2014; Kurzynska-Kokorniak et  al., 
2015). To confirm the relationship between NS1 and Dicer 
in viral infection, we expressed FLAG-tagged Dicer or FLAG-
tagged T7 (negative control) in 293 T cells and infected with 
PR8-WT. The results showed a weak interaction between NS1 
and Dicer (Figure  4C). We  subsequently tested whether the 

interaction between TRBP and Dicer was influenced by NS1. 
FLAG-Dicer and His-tagged TRBP or His-tagged EGFP 
(negative control) were co-transfected into 293 T cells and 
then infected with mock or PR8-WT or PR8/3841. Co-IP 
analysis were performed to examine the interaction between 
Dicer-TRBP and Dicer-NS1. The TRBP-Dicer interaction was 
not influenced with or without viral infection. However, the 
NS1-Dicer interaction was enhanced during PR8-WT infection 
(Figure  4D). We  previously found that TRBP interacted with 
NS1 via its RBD instead of the ED that interacted with 
Dicer. Therefore, we  inferred that the NS1 protein might 
be  in the complex with TRBP and Dicer during sRNAs  
production.

NS1-TRBP Interaction Reduces the 
Expression of Endogenous miRNAs
The effect of TRBP on the expression level of miRNA has 
remained elusive (Chendrimada et  al., 2005; Melo et  al., 2009; 
Ota et  al., 2013; Kim et  al., 2014). To verify the effect of 
TRBP on miRNAs, TRBP knockout (KO) 293 T cells were 
generated with the CRISPR/Cas9 system. Western blot analysis 
was performed to confirm the depletion of full-length TRBP 
protein in TRBP-KO cells. The expression of key protein 
components of the RISC, including Dicer, AGO, and PACT 
proteins, were similar between parental and TRBP-KO cells 
(Figure  5A). Northern blot analysis was performed to confirm 
miRNA production. We  identified that the expression levels 
of let-7a-5p and the abundance of 22-nt miR-126-3p decreased 
in the absence of TRBP (Figure  5B and 
Supplementary Figure  3A), which were concordant to the 
results of a previous study (Chendrimada et  al., 2005; Kim 
et  al., 2014).

To validate the function of TRBP, TRBP-KO cells were 
transfected with FLAG-TRBP plasmid. It showed that TRBP 

A

B

FIGURE 2 | GST pull-down assays of NS1 and TRBP. (A) Purification of GST and GST-TRBP proteins. (B) GST pull-down assay showing the interaction between 
NS1 and TRBP. Lysates of 293 T cells transfected with PR8 NS1 or WSN NS1 or infected with PR8-WT (MOI = 1) or WSN-WT (MOI = 1) were incubated with an 
equal amount of GST or GST-TRBP bound to glutathione-sepharose 4B beads with RNase A (10 mg/ml) and RNase III (5 U/ml) treatment. Samples were analyzed 
by SDS–PAGE with the indicated antibodies.
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overexpression indeed upregulated let-7a-5p (Figure  5C and 
Supplementary Figure  3B). We  also evaluated the expression 
level of exogenous miR-21 as previously described (Wang 
et al., 2020). The human miR-21 expressing plasmid and FLAG-
TRBP or FLAG-EGFP (negative control) were co-transfected 
into TRBP-KO cells. It revealed that TRBP also affected exogenous 
miR-21 expression (Figure 5D and Supplementary Figure 3C). 
These results demonstrate that TRBP affects the maturation 
of miRNAs in 293 T cells.

To further elucidate the role of NS1  in miRNA expression 
mediated by TRBP, we  first compared the expression level of 
the specific miRNA after viral infection of WT and TRBP-KO 
cells. We found that the abundance of let-7a-5p was significantly 
reduced in PR8-infected WT cells (Figure  6A, lanes 1–3 and 
Supplementary Figure  3D). In contrast, infection with or 
without virus did not alter the expression of let-7a-5p in 
TRBP-KO cells (Figure  6A, lanes 4–6 and 
Supplementary Figure  3E). We  then transfected FLAG-TRBP 
in TRBP-KO cells and then infected with mock or PR8-WT 
or PR8/3841. The same results were observed that PR8-WT 

instead of PR8/3841 inhibited the production of let-7a-5p 
(Figure  6B and Supplementary Figure  3F), which suggested 
that NS1-TRBP interaction affected the production of the 
endogenous miRNA. NS1 has been shown to be  involved in 
the regulation of miRNAs processing (Terrier et  al., 2013; Tan 
et  al., 2014; Bamunuarachchi et  al., 2021). To exclude the 
potential effect of the endogenous miRNA, we  also examined 
the expression of exogenous miR-21. A reduction in miR-21 
expression was observed after infection with PR8-WT, while 
NS1 mutants did not affect miR-21 expression (Figures  6C,D, 
and Supplementary Figures  3G,H). Taken together, IAV NS1 
influences the function of Dicer by binding to the TRBP protein.

R38A-K41A Substitutions Abolish the 
Inhibition of shRNA-Mediated RNAi by 
NS1
Dicer can cleave short hairpin RNA (shRNA) into siRNAs 
(Haasnoot et  al., 2007; Jinek and Doudna, 2009; 
Qian et  al., 2020). As a VSR, NS1 modulates functions of 

A

B C

D E F

FIGURE 3 | R38A and K41A mutations in NS1 abolish the NS1-TRBP interaction. (A) Domain architecture of PR8 NS1 protein (NS1-WT) and the generated 
mutant constructs (N-NS1, C-NS1, NS1 38/41). (B) Immunoprecipitation of N-NS1 protein with the TRBP protein. Plasmids encoding FLAG-TRBP or FLAG-EGFP 
and N-NS1 were co-transfected into 293 T cells for 48 h. Immunoprecipitations were performed with anti-FLAG antibody. FLAG-tagged proteins, N-NS1, and β-actin 
were detected with specific antibodies. (C) Immunoprecipitation of C-NS1 protein with the TRBP protein. Plasmids encoding FLAG-TRBP or FLAG-EGFP and 
C-NS1 were co-transfected into 293 T cells for 48 h and processed as in (B). (D) Plasmids encoding FLAG-TRBP or FLAG-EGFP and PR8 NS1-WT or PR8 NS1 
38/41 were co-transfected into 293 T cells for 48 h and processed as in (B). (E) Plasmids encoding FLAG-TRBP or FLAG-EGFP and WSN NS1-WT or WSN NS1 
38/41 were co-transfected into 293 T cells for 48 h and processed as in (B). (F) 293 T cells were transfected with FLAG-TRBP or FLAG-EGFP for 24 h before 
infected with PR8-WT (MOI = 1) or PR8/3841 (MOI = 1) for 24 h and processed as in (B).
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Dicer to facilitate viral replication and pathogenesis (Bucher 
et  al., 2004; Li et  al., 2004; de Vries et  al., 2009). To further 
determine whether mutant NS1 was capable of affecting 
Dicer’s activities, shRNAs were assessed. The EGFP-specific 
short hairpin RNA (shEGFP) can induce shRNA-mediated 
silencing to destroy the EGFP transcript. Luciferase-specific 
shRNA (shLUC) was used as a negative control. We observed 
that, compared to co-transfection of EGFP with shLuc in 
293 T cells, transfection with EGFP and shEGFP statistically 
significantly reduced EGFP mRNA level (Figure 7A). We then 
infected 293 T cells with PR8-WT or PR8/3841 after 
transfection with EGFP and shEGFP. Quantitative real-time 
PCR (qRT-PCR) and Western blotting analysis showed that 
the mRNA expression level of EGFP was recovered in 
PR8-WT-infected cells instead of PR8/3841-infected cells 

(Figures 7A,B). These results show that infection of PR8-WT 
effectively suppresses shRNA-induced silencing in 293 T cells. 
However, PR8/3841 is deficient in the ability to suppress 
the process.

Abundant vsiRNAs are Produced in vitro 
and in vivo With PR8/3841 Infection
We previously reported that IAV-WT suppressed vsiRNAs 
production in mammalian cells. We next investigated whether 
the 38/41 amino acid sites of NS1 were associated with 
vsiRNAs induction. Total RNAs from PR8/3841 infected 
293 T cells without or with AGO-IP were sequenced. 
We  detected abundant vsiRNAs that were predominantly 
22-nt in size from viral positive and negative strands 

A C

B D

FIGURE 4 | The dsRBD-A and dsRBD-B of TRBP are critical for interacting with NS1. (A) Domain architecture of TRBP protein (TRBP-WT) and the 
generated mutant constructs (TA, TB, and TC). (B) Immunoprecipitation of PR8 NS1 protein with different mutants of TRBP proteins. PR8 NS1 and the 
indicated FLAG-tagged constructs were co-transfected into 293 T cells, followed by FLAG immunoprecipitation. FLAG-tagged proteins, NS1, and β-actin 
were detected with specific antibodies. (C) The weak interaction between Dicer and NS1. 293 T cells were transfected with FLAG-Dicer or FLAG-T7 for 24 h 
before infected with PR8-WT (MOI = 1) for 24 h and processed as in (B). (D) NS1 participates in the complex with TRBP and Dicer. 293 T cells were co-
transfected with FLAG-Dicer and His-EGFP or His-TRBP for 24 h before infected with mock or PR8-WT (MOI = 1) or PR8/3841 (MOI = 1) and then processed 
as in (B).
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(Figure  8A). The vsiRNA reads were mainly derived from 
the first three segments (PB2, PB1, and PA), and exhibited 
a discrete distribution pattern (Figure  8C). In conclusion, 
amino acids 38/41 of NS1 are key sites to induce and 
suppress vsiRNA production in mammalian somatic cells.

To date, no study on IAV-derived siRNAs in vivo has 
been reported. We  sequenced sRNAs from lung tissues of 
PR8-WT or PR8/3841 infected C57BL/6 and BALB/c mice 
by intranasal inoculation. PR8-WT did not generate the 
visible properties vsiRNAs in C57BL/6 mice (Figure  8B). 
In contrast, it showed a 22-nt predominant size distribution 
of IAV-specific siRNAs for both viral positive and negative 

strands in the PR8/3841-infected C57BL/6 and BALB/C mice 
(Figure  8B). To further identify the distribution of vsiRNAs 
on the genome, 21–23-nt vsiRNAs were mapped onto the 
viral genome and exhibited a discrete distribution pattern 
with high abundance in the segment PB2, PB1, and NP, 
especially NP (Figure  8C). 46% of the viral reads were 
derived from the NP segment in PR8/3841-infected BALB/c 
mice, while the length of NP segment accounted for 11.5% 
of the length of the viral genome. In contrast, we previously 
found that most of the vsiRNA reads were mapped to the 
segment NS in PR8/delNS1-infected 293 T cells (Li et  al., 
2016), suggesting the distribution of vsiRNAs varied from 

A

B

C D

FIGURE 5 | TRBP affects miRNAs production. (A) RISC-associated proteins of 293 T and TRBP-KO cells were detected by Western blotting. (B) Northern blotting 
analysis of miR-126a-3p and let-7a-5p expression levels in the indicated cells. The relative expression levels of miRNAs are normalized to that of U6 small nuclear 
RNA and to the miRNA level from the WT 293 T cells. (C) TRBP promotes endogenous let-7a-5p expression. FLAG-TRBP was transfected into TRBP-KO cells for 
48 h. Northern blotting and Western blotting were performed to detect let-7a-5p, U6, TRBP, and β-actin expressions in the indicated cells. The relative expression 
level of let-7a-5p is normalized to that of U6 small nuclear RNA and to the miRNA level from the TRBP-KO cells. (D) TRBP promotes exogenous miR-21 expression. 
TRBP-KO cells were transfected with a miR-21 expressing plasmid and FLAG-TRBP or FLAG-EGFP for 48 h. Northern blotting and Western blotting were 
performed to detect expression levels of miR-21, U6, FLAG-tagged proteins and β-actin. The relative expression level of miR-21 is normalized to that of U6 small 
nuclear RNA and to the miRNA level from the miR-21-transfected TRBP-KO cells.
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recombinant virus-expressing NS1 protein with different 
mutations. Together, our findings show that vsiRNAs are 
readily detectable in vitro and in vivo after infection with 
PR8/3841.

DISCUSSION

Many studies have demonstrated the suppressor role of 
influenza virus NS1 protein in RNAi. NS1 from different 

A C

B D

FIGURE 6 | NS1-TRBP interaction reduces miRNAs production. (A) The expression level of let-7a-5p is downregulated in PR8-infected WT cells. WT 293 T cells 
and TRBP-KO cells were infected with mock or PR8-WT (MOI = 1) or PR8/3841 (MOI = 1) for 48 h. Northern blotting and Western blotting were performed to detect 
expression levels of let-7a-5p, U6, NS1, and β-actin. The relative expression level of let-7a-5p is normalized to that of U6 small nuclear RNA and to the miRNA level 
from the uninfected WT 293 T cells or the uninfected TRBP-KO cells. (B) NS1-TRBP interaction reduces the expression of endogenous let-7a-5p. TRBP-KO cells 
were transfected with FLAG-TRBP for 24 h before infected with PR8-WT or PR8/3841 for 24 h. Northern blotting detection of let-7a-5p and U6 expressions. The 
relative expression level of let-7a-5p is normalized to that of U6 small nuclear RNA and to the miRNA level from the uninfected cells. Western blotting detection of 
TRBP, NS1, and β-actin proteins. (C, D) NS1-TRBP interaction reduces the expression of exogenous miR-21. (C) TRBP-KO cells were transfected with a miR-21 
expressing plasmid for 24 h before infected with mock or PR8-WT or PR8/3841 for 24 h. (D) TRBP-KO cells were co-transfected with FLAG-TRBP and miR-21 
expressing plasmid for 24 h before infected with mock or PR8-WT or PR8/3841 for 24 h. Northern blotting detection expressions of miR-21 and U6. The relative 
expression level of miR-21 is normalized to that of U6 small nuclear RNA and to the miRNA level from the uninfected cells. Western blotting detection of TRBP, NS1, 
and β-actin proteins.
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subtypes of influenza viruses suppress RNA silencing via 
dsRBD in Drosophila (Li et  al., 2004). NS1 of IAV binds 
to siRNA and serves as a suppressor of RNA silencing in 
plants (Bucher et al., 2004). Moreover, we previously reported 
that NS1 inhibits the generation of vsiRNAs in IAV-infected 
mammalian cells (Li et  al., 2016). An important function 
of NS1 RBD is binding dsRNA to mediate protein–protein 
interactions (Chen et al., 2020a). However, not all interactions 
that occur in RBD are associated with dsRNA. For instance, 
NS1 directly interacts with importin-α isoforms via its amino 
acids R35, R38, and K41 (Melen et  al., 2007). In this study, 
RNase A and RNase III were used to remove ssRNA and 
dsRNA. Our results showed that NS1 likely formed an 
RNA-independent complex with TRBP in vitro and TRBP 
may not compete with dsRNA for binding to NS1. Therefore, 
as a VSR, NS1 uses various mechanisms for not only dsRNA 
binding but also interacting with TRBP to interfere with 
Dicer-mediated sRNA induction (Figure  9). In addition to 
the role in small RNA processing, TRBP also functions as 
a PKR inhibitor to suppress the phosphorylation of PKR 
and eIF2α in interferon response (Park et al., 1994). Besides, 
NS1 interacts with PKR via its 123–127 aa and inhibits 
translation (Min et  al., 2007). The interaction of NS1 and 
TRBP is likely to affect the activity of PKR indirectly. Future 
studies should examine whether virus replication is affected 
by the PKR pathway.

MiRNA expression is influenced by multiple factors. Two 
factors that we are mainly concerned with include the TRBP 
protein and viral infection. In this study, we generated 293 T 
TRBP-KO cells and found that the isoform of miR126-3p 
and the abundance let-7a-5p were significantly downregulated, 
which are consistent with the findings of previous studies 
(Chendrimada et  al., 2005; Ota et  al., 2013; Kim et  al., 
2014). There are several reports about the inhibition of IAV 
in miRNA maturation. Terrier et al. reveal that five miRNAs 

(miR-21, miR-29a, miR-29b, miR-146a, and miR-452) are 
downregulated in human lung epithelial cells (A549) infected 
with H1N1 and H3N2 IAV (Terrier et  al., 2013). MiRNA 
microarray has been used to demonstrate that four miRNAs 
(miR-221-3p, miR-22-3p, miR-20a-5p, and miR-3,613-3p) 
are upregulated and two miRNAs (miR-3,178 and miR-4,505) 
are downregulated in HEK293 cells stably expressing the 
NS1 protein of H5N1 IAV (Jiao et  al., 2019). Another 
microarray study indicates that 22 and 114 miRNAs in lungs 
are downregulated at 7 and 15 days post-infection when 
BALB/c mice are infected with PR8-WT (Tan et  al., 2014). 
However, the mechanism by which the IAV NS1 protein 
regulates miRNAs is unclear. Here, we  compared the effects 
of miRNA production between NS1 and NS1 38/41 and 
found that let-7a-5p and miR-21 were downregulated by 
NS1-TRBP interaction. Based on these results, there are 
still some issues needed to be  resolved in future studies. 
First, we  only tested a few miRNAs, which may not reflect 
the overall miRNA expression. Second, more types of cells 
need to be  analyzed, preferably the results of in vivo 
IAV infection.

Previous studies have demonstrated that the recombinant 
viruses containing R38A and K41A mutations in NS1 increase 
the expression of IFN-α/β and are attenuated in cells and 
mice (Talon et  al., 2000; Donelan et  al., 2003; Ramos et  al., 
2013). In our study, PR8/3841 induces vsiRNAs following 
infection, activating the antiviral RNAi in vivo and in vitro. 
Dicer-mediated cleavage of viral dsRNAs into vsiRNAs leads 
to suppression of viral replication by knocking down viral 
genes. Our recent study indicates that NoV-derived siRNAs 
have antiviral function in vivo by constructing a recombinant 
SINV containing part of NoV genomic RNA 1 sequences 
(Zhang et  al., 2021). In addition, Zhou and colleagues 
designed peptides targeting the 3A protein of enterovirus 
A71 (EV-A71), which abrogate VSR function and promote 

A B

FIGURE 7 | R38A-K41A substitutions in NS1 abolish the inhibition of shRNA-mediated RNAi. (A) Relative mRNA levels of EGFP as quantified by qRT-PCR. 293 T 
cells were co-transfected with a plasmid encoding EGFP and EGFP-specific shRNA (shEGFP) or luciferase-specific shRNA (shLUC) as a negative control and then 
infected with PR8-WT (MOI = 1) or PR8/3841 (MOI = 1). After 48 h post-transfection, total RNAs were extracted, and the level of EGFP mRNA was examined by 
qRT-PCR. The experiments were repeated three times independently. The mRNA level of EGFP+shLUC group was set as 1. ***p < 0.001 (Student’s t-test). ns 
indicates no significance. (B) Western blotting detection of EGFP, NS1, and β-actin proteins.
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vsiRNAs production (Fang et  al., 2021). These vsiRNAs are 
able to load into AGO proteins and silence cognate viral 
RNA in vivo. In present work, we  show for the first time 
the production of IAV-derived siRNAs in vivo. These IAV 
vsiRNAs have the characteristics of canonical viral siRNAs 
and are likely to have antiviral functions. Because both NoV 
and SINV can infect the muscle tissue of mice, we generated 
the SINV reporting system to detect the function of vsiRNAs 
from the NoV virus (Zhang et  al., 2021). Unfortunately, 
because IAV mainly replicates in lung tissues, the SINV 

reporting system is not suitable for testing the function of 
IAV vsiRNAs. Future work needs to establish an optimized 
reporter system to confirm the antiviral function of these IAV  
siRNAs in vivo.
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FIGURE 8 | The abundant vsiRNAs produced in mammalian cells and mice with PR8/3841 infection. (A) Properties of vsiRNAs (per million total mature miRNAs) 
sequenced from 293 T cells without or with AGO-IP (at 1 dpi). Size distribution, abundance, the 5′-nucleotide preference of vsiRNAs (per million total 18–28 nt reads) 
with PR8/3841 infection. (B) Properties of vsiRNAs (per million total mature miRNAs) sequenced from adult C57BL/6 or BALB/c mice (at 4 dpi) infected with PR8-
WT or PR8/3841. Size distribution, abundance, the 5′-nucleotide preference of vsiRNAs (per million total 18–28 nt reads) with PR8-WT or PR8/3841 infection. 
(C) Relative abundance of 21–23 nt vsiRNA hotspots mapped to PR8-WT or PR8/3841 genomic RNAs, presented from the 3′ end to the 5′ end.
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