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Serratia marcescens has emerged as an important opportunistic pathogen responsible
for nosocomial and severe infections. Here, we determined phenotypic and molecular
characteristics of 54 S. marcescens isolates obtained from patient samples from
intensive-care-unit (ICU) and neonatal intensive-care-unit (NIUC) of a Brazilian tertiary
hospital. All isolates were resistant to beta-lactam group antibiotics, and 92.6% (50/54)
were not susceptible to tigecycline. Furthermore, 96.3% showed intrinsic resistance
to polymyxin E (colistin), a last-resort antibiotic for the treatment of infections caused
by MDR (multidrug-resistant) Gram-negative bacteria. In contrast, high susceptibility
to other antibiotics such as fluoroquinolones (81.5%), and to aminoglycosides (as
gentamicin 81.5%, and amikacin 85.2%) was found. Of all isolates, 24.1% were
classified as MDR. The presence of resistance and virulence genes were examined by
PCR and sequencing. All isolates carried KPC-carbapenemase (blaKPC) and extended
spectrum beta-lactamase blaTEM genes, 14.8% carried blaOXA−1, and 16.7% carried
blaCTX−M−1group genes, suggesting that bacterial resistance to β-lactam antibiotics
found may be associated with these genes. The genes SdeB/HasF and SdeY/HasF
that are associated with efflux pump mediated drug extrusion to fluoroquinolones and
tigecycline, respectively, were found in 88.9%. The aac(6′)-Ib-cr variant gene that can
simultaneously induce resistance to aminoglycoside and fluoroquinolone was present in
24.1% of the isolates. Notably, the virulence genes to (i) pore-forming toxin (ShlA); (ii)
phospholipase with hemolytic and cytolytic activities (PhlA); (iii) flagellar transcriptional
regulator (FlhD); and (iv) positive regulator of prodigiosin and serratamolide production
(PigP) were present in 98.2%. The genetic relationship among the isolates determined
by ERIC-PCR demonstrated that the vast majority of isolates were grouped in a single
cluster with 86.4% genetic similarity. In addition, many isolates showed 100% genetic
similarity to each other, suggesting that the S. marcescens that circulate in this ICU
are closely related. Our results suggest that the antimicrobial resistance to many drugs
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currently used to treat ICU and NIUC patients, associated with the high frequency of
resistance and virulence genes is a worrisome phenomenon. Our findings emphasize the
importance of active surveillance plans for infection control and to prevent dissemination
of these strains.

Keywords: Serratia marcescens, intensive care units, KPC, virulence and resistance genes, ERIC-PCR

INTRODUCTION

Serratia marcescens is a Gram-negative bacillus that naturally
resides in the soil and water and produces a red pigment at room
temperature. Although previously considered non-pathogenic,
this species has emerged as a prominent opportunistic pathogen
found in nosocomial outbreaks in neonatal intensive care
Units (NICUs), intensive care units (ICUs) and other hospital
units over the last few decades (Enciso-Moreno et al., 2004;
Moradigaravand et al., 2016; Ghaith et al., 2018).

The true occurrence of S. marcescens is still underestimated
(Zingg et al., 2017). In NICUs, studies have showen that infected
newborns are a potential source of S. marcescens (Cristina et al.,
2019), although there is a constant increase of S. marcescens
bacteremia across all age groups (Vetter et al., 2016; Phan
et al., 2018). S. marcescens increasingly adapts to hospital
environments (Yoon et al., 2005; Gastmeier, 2014). It accounts
for 15% of all isolates from nosocomial infections (Raymond
and Aujard, 2000). Although it is difficult to identify the source
of S. marcescens during outbreaks, it is the third most frequent
pathogen identified (Gastmeier et al., 2007), and more than one
clone can be usually identified (David et al., 2006; Montagnani
et al., 2015; Dawczynski et al., 2016).

Serratia marcescens associated with hospital outbreaks
or epidemic events are commonly resistant to several
antibiotics (Moradigaravand et al., 2016; Cristina et al.,
2019). In fact, one important feature of S. marcescens is its
resistance to narrow-spectrum penicillins and cephalosporins;
nitrofurantoin; tetracycline; macrolides; cefuroxime;
cephamycins; fluoroquinolone, and colistin (Stock et al., 2003;
Liou et al., 2014; Moradigaravand et al., 2016; Sandner-Miranda
et al., 2018). The resistance to some of these molecules may be
intrinsic to this specie and is explained by either the presence
of resistance genes on the chromosome or by the acquisition of
such genes via horizontal transfer. It is noteworthy that the latter
mechanism is considered the most important event that leads
to multiple antibiotic resistance (von Wintersdorff et al., 2016;
Sandner-Miranda et al., 2018).

Extended-spectrum β-lactamases (ESBLs) are a group of
bacterial enzymes that can be rapidly transferred via plasmid
exchange (Rawat and Nair, 2010) causing resistance to a broad
range of β-lactams (Naas et al., 2008). Carbapenemases are
the most versatile family of β-lactamases able to hydrolyze
carbapenems and many other β-lactams (Jeon et al., 2015)
including penicillins, cephalosporins, and monobactams
(Anderson et al., 2007; Marschall et al., 2009). In general, bacteria
carrying the blaKPC and/or ESBLs genes usually harbor other
resistance genes associated with several classes of antimicrobials
(Tzouvelekis et al., 2012; Cao et al., 2014; Ribeiro et al., 2016).

Since S. marcescens has been acquiring a range of ESBLs
and commonly exhibit co-resistance to many other classes of
antibiotics, the infections caused by these multidrug-resistant
(MDR) isolates impair therapy and limit treatment options (Yu
et al., 1998; Mostatabi et al., 2013; Herra and Falkiner, 2018).

In this study, we investigated the phenotypic characteristics
regarding antimicrobial resistance and the genotypic traits of
S. marcescens isolated from a tertiary care hospital’s ICUs
including the search for resistance and virulence genes as well as
the genetic relationship among the isolates. Our report describes
MDR profile and KPC-producing S. marcescens isolates and
highlight the importance of monitoring S. marcescens infection
and the need of constant surveillance to support continuous and
effective measures to prevent the spread of these strains.

MATERIALS AND METHODS

Study Design and Bacterial Isolates
From February 2014 to June 2015, a total of 54 S. marcescens
were isolated of clinical specimens collected from 45 patients
admitted to intensive-care-unit (ICU) and neonatal intensive
care unit (NICU) of a tertiary care government hospital in
Palmas, Tocantins, Brazil. Since 2013, there has been an increase
in detection of S. marcescens isolates from hospital inpatients, and
in 2015, the hospital reported an apparent S. marcescens outbreak
that occurred from July to August 2015. Appropriate intervention
measures were established, such as reviewing the infection
control policies, hand antisepsis practices and determination of
trends of isolation of S. marcescens over time. To trace the
source of the infection, bacteria were isolated from various
samples obtained from clinical indications of infections during
the patients’ ICU stay.

As part of the control measures, surveillance cultures were
obtained from tracheal aspirate and rectal swabs from all ICU
patients, on admission (within the first 24 h) and during the
stay (once a week). Blood, wound, catheter tip, drain, sputum,
urine, rectal swab, and tracheal aspirate samples were primarily
sent to the hospital’s laboratory, processed and cultured by
standard microbiological techniques. The blood samples were
inoculated first in blood culture bottles (Hemoprov-NewProv,
Brazil). All clinical samples, including blood culture bottles
giving positive signals were cultured onto MacConkey agar
(Probac, Brazil), blood agar (Probac, Brazil), and chocolate
blood agar (Probac, Brazil). Plates were incubated at 37◦C for
up to 48 h. S. marcescens were identified by Gram staining,
cultural characteristics in MacConkey agar (Probac, Brazil),
blood agar (Probac, Brazil), and biochemical tests (Bactray I,
II,III; Laborclin, Brazil). The antimicrobial susceptibility profile
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was determined by Kirby-Bauer disk diffusion method. All
S. marcescens isolates and the microbiological reports prepared at
the hospital were sent to the Central Laboratory of Public Health
of Tocantins (LACEN-TO) for further phenotypic validations.

Bacterial Identification and Antimicrobial
Susceptibility Test
Once samples were received at LACEN, bacterial identification
and antimicrobial susceptibility tests were performed by the
Vitek 2 system (Biomerieux, France), according to Clinical and
Laboratory Standards Institute guidelines (CLSI, 2019). All 54
S. marcescens isolates were screened for susceptibility against 16
antimicrobial agents: ampicillin (AMP), ampicillin/sulbactam
(SAM), piperacillin/tazobactam (TZP), cefuroxime (CXM),
cefoxitin (FOX), ceftazidime (CAZ), ceftriaxone (CRO), cefepime
(FEP), ertapenem (ETP), imipenem (IPM), meropenem (MEM),
amikacin (AMK), gentamicin (GEN), ciprofloxacin (CIP),
tigecycline (TGC), and colistin (CST). Broth microdilution
method was performed to determine tigecycline and colistin
minimum inhibitory concentration (MICs) and results were
interpreted based on the European Committee on Antimicrobial
Susceptibility Testing (EUCAST, 2018) criteria, available at
https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_
files/Breakpoint_tables/v_8.1_Breakpoint_Tables.pdf. All isolates
were tested for carbapenemase production by Modified Hodge
test, synergy test and ethylenediaminetetraacetic acid (EDTA) test
under the CLSI guidelines (CLSI, 2019) as described elsewhere
(Miriagou et al., 2010; Nordmann et al., 2011; Okoche et al.,
2015; Ferreira et al., 2019). Multidrug-resistance S. marcescens
isolates were classified by non-susceptibility to at least one agent
of three or more antimicrobial categories (Magiorakos et al.,
2012). S. marcescens is intrinsically resistant to AMP, SAM, CXM,
FOX, and CST; therefore, these antibiotics were not included in
the MDR classification (Magiorakos et al., 2012).

Genomic DNA Extraction
Isolates of S. marcescens were subcultured on Brain Heart
Infusion (BHI) agar (Oxoid, United Kingdom) and incubated
for 24 h at 37◦C. All samples were submitted to genomic
DNA extraction using the Wizard Genomic DNA Purification
Kit (Promega, Madison, WI, United States), according to
manufacture’s instructions.

Detection of Antibiotic-Resistance
Polymerase chain reaction (PCR) was performed for detection
of β-lactamase genes (blaTEM , blaSHVvariants, blaOXA−1, 4and
30, blaCTX−M−1group), carbapenemase genes (blaKPC, blaIMP,
blaVIM , blaNDM , blaOXA−48) (Ferreira et al., 2019), plasmid
mediated quinolone resistance (PMQR) gene (aac(6’)-Ib-cr)
(Wong et al., 2014; Mitra et al., 2019), resistance-nodulation-
division (RND) efflux pumps (SdeB, SdeY), and outer membrane
gene (HasF, a TolC homolog) involved in energy-dependent
efflux of antimicrobial agents (Kumar and Worobec, 2005b). The
genes were amplified using specific primers designed to follow
the conditions described in the references from Table 1. All
primers were synthesized by Exxtend (Brazil). Amplicons were

analyzed by gel electrophoresis in 1.0% agarose and visualized
under ultraviolet (UV) light.

Virulence Gene Detection
The presence of four virulence genes were assessed by
PCR: genes PigP, a positive regulator of prodigiosin and
serratamolide production; FlhD, a flagellar transcriptional
regulator; ShlA, a pore-forming toxin with hemolytic activity;
PhlA, a phospholipase A with hemolytic activity. The primers
sequences amplicon sizes and annealing temperatures are listed
in Table 1. Amplicons were analyzed by gel electrophoresis in
1.0% agarose and visualized under ultraviolet (UV) light.

Sequence Analysis of
Antibiotic-Resistance Markers and
Virulence Genes
One amplicon of each studied gene was randomly selected
for confirmation of identity by DNA sequencing using an
automated sequencer (ABI 3500xL Genetic Analyzer; Applied
Biosystems, Foster City, CA, United States). After amplification,
we extracted the PCR products from agarose gels using the
Illustra GFX PCR DNA (GE Healthcare), which were purified
using the Gel Band Purification Kit (GE Healthcare), both
according to manufacturer’s instructions. Obtained sequences
were edited with Bioedit v7.0.5 (Hall, 1999), compared with the
nr database using the Blastn tool1 and submitted to the GenBank
database. Genes and their respective accession numbers: blaCTX –
MK576103; blaKPC – MK576104; blaOXA – MK576105; blaTEM –
MK576106; SdeB – MN583232; SdeY – MN583233; HasF –
MN583234; aac(6′)-Ib-cr – MN583235; FlhD – MN583236;
PigP – MN583237; ShlA – MN583238; PhlA – MN583239).
Access to genetic heritage was approved by the National System
for the Management of Genetic Heritage (SisGen n◦ AFF27ED).

Enterobacterial Repetitive Intergenic
Consensus Polymerase Chain Reaction
Enterobacterial repetitive intergenic consensus PCR (ERIC-
PCR) analysis was performed to evaluate the genetic similarity
among the 54 S. marcescens isolates using the primers and
conditions previously described by Versalovic et al. (1994).
PCR reactions were performed using the enzyme TaKaRa
Ex Taq DNA Polymerase (Takara Bio, Kusatsu, Japan). The
BioNumerics program version 5.1 (AppliedMaths, Keistraat,
Belgium) was used to construct the unweighted pair group mean
method (UPGMA) similarity dendrogram with Dice’s similarity
coefficient, following Ferreira et al. (2019).

Statistical Analyses
In the analysis of contingency tables, we used Fisher’s exact
test and/or Barnard’s exact test. Maximum likelihood did not
present superior efficiency in relation to the previous methods
(data not show). It was used logistic regression model with two
predictor variables x1 and x2. Statistical software R was used in
all data analysis.

1https://blast.ncbi.nlm.nih.gov/
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TABLE 1 | Sequences of primes used for detection of resistance markers.

Gene Sequence (5′-3′), F/R TM (◦C) Amplicon size (bp) References

blaKPC CGTCTAGTTCTGCTGTCTTG 61.3 797 Poirel et al., 2011

CTTGTCATCCTTGTTAGGCG

blaTEM TGCGGTATTATCCCGTGTTG 63 296 Xiong et al., 2007

TCGTCGTTTGGTATGGCTTC

blaCTX−M−1group, ACAGCGATAACGTGGCGATG 64 216 Li and Li, 2005

TCGCCCAATGCTTTACCCAG

blaSHVvariants AGCCGCTTGAGCAAATTAAAC 55.6 712 Dallenne et al., 2010

ATCCCGCAGATAAATCACCAC

blaOXA−1 GGCACCAGATTCAACTTTCAAG 63 563 Dallenne et al., 2010

GACCCCAAGTTTCCTGTAAGTG

blaOXA−48 GCGTGGTTAAGGATGAACAC 55 438 Poirel et al., 2011

CATCAAGTTCAACCCAACCG

blaIMP CTACCGCAGCAGAGTCTTTGC 55 587 Martins et al., 2007

ACAACCAGTTTTGCCTTACC

blaVIM AAAGTTATGCCGCACTCACC 55 865 Yan et al., 2001

TGCAACTTCATGTTATGCCG

blaNDM GCAGCTTGTCGGCCATGCGGGC 60 782 Doyle et al., 2012

GGTCGCGAAGCTGAGCACCGCAT

mcr-1 CGGTCAGTCCGTTTGTTC 51.6 309 Liu et al., 2015

CTTGGTCGGTCTGTAGGG

aac(6′)-Ib-cr ATGACTGAGCATGACCTTGC 55.4 519 Platell et al., 2011

TTAGGCATCACTGCGTGTTC

SdeB AGATGGCCGATAAGCTGTTG 55.4 200 Hornsey et al., 2010

CAGCGTCCAGCTTTCATACA

SdeY TCCATCAACGAAGTGGTGAA 55.5 200 Hornsey et al., 2010

GTTTATCGAGAAGCCGAACG

HasF CATGTCGAAATGGCGCCAAC 57.5 785 Hornsey et al., 2010

TTGTAGGCGTTGATGCTGCT

PigP GAACATGTTGGCAATGAAAA 53.4 207 Srinivasan et al., 2017

ATGTAACCCAGGAATTGCAC

FlhD TGTCGGGATGGGGAATATGG 57 307 Salini and Pandian, 2015

CGATAGCTCTTGCAGTAAATGG

ShlA AGCGTGATCCTCAACGAAGT 55.4 217 Aggarwal et al., 2017

TGCGATTATCCAGAGTGCTG

PhlA GGGGACAACAATCTCAGGA 55.4 207 Aggarwal et al., 2017

ACGCCAACAACATACTGCTTG

Ethical Considerations
In our study, we did not use/collect human genetic material
and biological samples. Strains were part of the collection of the
Central Laboratory of Public Health, (LACEN-TO), a health-care
facility that is a reference in diagnosis in the state of Tocantins,
Brazil. It was a retrospective study, and epidemiological data
were obtained from a database or similar, which will be kept
confidential in accordance with the with the terms of Resolution
466/12 of the National Health Council. These epidemiological
data were also provided by LACEN-TO. Informed consent was
not required according to resolution 466/12 concerning research
involving humans of the National Health Council (Conselho
Nacional de Saúde/Ministério da Saúde, Brasília, Brazil, 2012).
The study was approved by the Committee of Ethics in Human
Research of the Federal University of São Carlos (no. 1.088.936).
Permission to conduct the study was also obtained from the

Health Department of the State of Tocantins (Secretaria de Saúde
do Estado do Tocantins – SESAU) and LACEN/TO.

RESULTS

Serratia marcescens Isolates
A total of 54 S. marcescens strains were isolated from 39 ICU
and 6 NICU patients’ samples at a tertiary hospital located in
city of Palmas, Tocantins state. In six patients, 5 from ICU and 1
from NCIU, S. marcescenswas isolated in more than one infection
site. The prevalence of S. marcescens strains by age group was
the following: 0–1 day (12.96%; n = 7), 18–59 years (38.89%,
n = 21), 60 years or more (48.15%, n = 26). The median age
of patients was 57.0 years (range, 0–93 years). S. marcescens
strains were more frequently found in male (68.5%, n = 37)
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than in female (31.5%, n = 17) patients (Figure 1A). Forty-
three samples (79%) were from tracheal aspirate (33%, n = 18),
rectal swab, (22%, n = 12), and blood (24%, n = 13) cultures,
while 11 (21%) came from wound (9%, n = 5), catheter tip (4%,
n = 2), surgical drain (4%, n = 2), sputum (2%, n = 1), and
urine (2%, n = 1) cultures (Figure 1B). Antibiotic resistance
profiles of S. marcescens isolated from the abovementioned
different sites showed that all strains were resistant to β-lactams
antibiotics. In addition, colistin (CST) and tigecycline (TGC)
non-susceptibility pattern of S. marcescens per site of isolation
was statistically significant (p < 0.01) in several organs (tracheal
aspirate, blood, rectal swab, and wound) when compared with
amikacin (AMK), gentamicin (GEN), and ciprofloxacin (CIP)
antibiotics (Figure 1C).

Antimicrobial Resistance Profile and
Genetic Markers for
Antibiotic-Resistance and Virulence
Patterns
Serratia marcescens strains showed high-levels of resistance to
all β-lactams (100%, n = 54) (TZP, CAZ, CRO, FEP, ETP,
IPM, MEM), including high-levels of intrinsic resistance to
β-lactams (AMP, SAM, CXM, FOX) (100%, n = 54) and
colistin (CST) (96.3%, n = 52). Resistance to tigecycline (TGC)
S. marcescens was found in nearly all isolates (92.6%; n = 50).
However, for the antibiotics classes fluoroquinolones (CIP)
(81.5%, n = 44) and aminoglycosides such as gentamicin (GEN)
(81.5%, n = 44), amikacin (AMK) (85.2%, n = 46) (Figure 2A),
high susceptibility profile was detected. In contrast, MDR was
observed in 24.1% (n = 13) of the isolates, and the most
common MDR profile was related to β-lactams-glycylcycline-
aminoglycosides-quinolone (14.8%, n = 8), followed by β-
lactams-glicylcycline-quinolone (5.6%, n = 3), and (β-lactams-
glicylcycline-aminoglycosides 3.7%, n = 2).

All 54 tested isolates harbored KPC-carbapenemase (blaKPC)
and ESBL (blaTEM) genes. The ESBL-encoding genes blaOXA−1
was detected in 14.8% (8/54), and the blaCTX−M−1group in
16.7% (9/54). However, the blaSHV variants, blaIMP, blaOXA−48,
blaNDM , blaVIM , and mcr-1 genes were not detected. The aac(6′)-
Ib-cr variant gene that can induce simultaneous resistance
against aminoglycoside and fluoroquinolone was found in 13
(24.1%) strains. The RND pump efflux encoding genes SdeY and
SdeB were identified in all strains while the outer membrane
component gene (HasF) was present in 48 (88.9%). Thus, the
coexistence of SdeY/HasF genes and SdeB/HasF was observed in
49 (88.9%) strains (Figure 2B). Finally, with the exception of one
strain (Sm40), the virulence-associated genes PigP, FlhD, ShlA,
and PhlA were regularly distributed among S. marcescens strains,
which were detected in 98.2% of all strains (Figure 2B).

Resistance Phenotype-Genotype
Correlation and Genetic Markers for
Virulence Factors
The correlation between the results of phenotypic and genotypic
detection and the presence of virulence genes is shown
in Figure 3.

All isolates carried blaKPC and conferred resistance to all
beta-lactam, including carbapenem antibiotics. Furthermore, all
detectable bla genes in blaCTX−M−1 blaOXA−1, and blaTEM group
presented ESBL phenotype. Of the 13 isolates with aac(6’)-
Ib-cr gene, 9 (69.2%) were non-susceptible to gentamicin, 7
(53.9%) to amikacin, and 8 (61.5%) to ciprofloxacin. Among
the 49 (88.9%) HasF-positive isolates, 44 (81.5%) were non-
susceptible to tigecycline.

ERIC-PCR
The ERIC-PCR results indicated that the majority of the isolates
presented a rate of genetic similarity above 85% (Figure 4).
Almost all strains (96.3%) were grouped into a large cluster
named B cluster, sharing 86.4% of genetic similarity. In addition,
the B cluster was separated into two sub-clusters named B1, with
21 isolates, and B2, with 31 isolates, sharing a genetic similarity of
96.1% and 100%, respectively. Although the cluster B1 presented
two subgroups with 4 and 17 isolates, they showed 100% genetic
similarity in each one. Interestingly, two strains (Sm38 and Sm40)
were grouped separately within the A cluster and presented 71.4%
of genetic similarity (Figure 4).

DISCUSSION

Serratia marcescens is a prominent opportunistic pathogen that
frequently causes infections in intensive care, surgical and
dialysis units (Krishnan et al., 1991; Martineau et al., 2018).
In Brazil, there are only few studies on S. marcescens (Ribeiro
et al., 2013; Silva et al., 2015). Therefore, we here describe
the presence of MDR S. marcescens isolates producing KPC-
carbapenemase (blaKPC) and extended spectrum beta-lactamase
(blaTEM , blaCTX−M−1group e blaOXA−1, 4and 30) in the state of
Tocantins, Brazil. Tocantins, located southeast of the Northern
Region, is the newest state of Brazil and shares borders with six
states presenting intensive migration flow.

Serratia marcescens were isolated mainly from male patients
with 60 or more years of age, similarly to previous studies
that demonstrated advanced age male patients as presenting a
higher risk of contracting S. marcescens infections (Ulu-Kilic
et al., 2013; Kim et al., 2015; O’Horo et al., 2017). Samples
with higher amounts of S. marcescens were those from tracheal
aspirate, followed by blood, rectal swab, and wounds. Our
findings corroborate studies by Kim et al. (2015) and Liou et al.
(2014) that reported the respiratory tract as the main route of
infection for S. marcescens. Other studies have also reported
S. marcescens in other sites as bloodstream (Seeyave et al., 2006)
and wounds (Us et al., 2017), demonstrating the versatility of
these strains in colonizing the host and affecting a wide variety
of physiological system.

In addition to the intrinsic resistance to the antibiotics
AMP, SAM, CXM, FOX, and CST, we found multidrug-resistant
(MDR) S. marcescens isolates to beta-lactam, glycylcycline,
and/or aminoglycoside and quinolone group antibiotics. This
is in line with other studies that have also reported MDR
S. marcescens mainly to beta-lactam, aminoglycoside, and
quinolone antibiotics groups (Stock et al., 2003), in hospital
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FIGURE 1 | (A) Demographic characteristics of patients. (B) Percentage of S. marcescens per site of isolation. (C) Antibiotic non-susceptibility pattern of
S. marcescens per site of isolation. *** statistical significance, p-value < 0.01.

environment (Merkier et al., 2013), and particularly in critically
ill patients and neonatal intensive care units (Maragakis et al.,
2008). We also observed a significant resistance to colistin and
tigecycline in several colonization sites, as shown by a previous
study (Silva et al., 2017).

All the S. marcescens strains tested here were resistant to
β-lactams, including carbapenems antibiotics. Resistance to
carbapenems used to be uncommon among Serratia species
(Stock et al., 2003), but many resistant strains have now
emerged throughout the world (Lin et al., 2016). Although
few studies have related resistance to carbapenems in
S. marcescens in Brazil (Milisavljevic et al., 2004; da Costa
Guimarães et al., 2013; Ribeiro et al., 2013), Silva et al. (2015)
obtained similar results. They have isolated S. marcescens
resistant to imipenem, meropenem and ertapenem in samples
from different infection sites of ICU patients in another
Brazilian locality. Both results are troubling. Infections
caused by carbapenem-resistant bacteria often do not
respond to conventional treatment (Okoche et al., 2015), as
produced carbapenemases hydrolyze not only carbapenems
but also penicillins, cephalosporins and monobactams

(Queenan and Bush, 2007). The most common carbapenem
resistance of S. marcescens in Brazil is due to the production of
carbapenamases, especially the KPC-2 type (da Costa Guimarães
et al., 2013; Ribeiro et al., 2013), that is encoded by the gene
blaKPC−2.

Enterobacteriaceae, such as S. marcescens, have the genes
blaTEM−1 and blaSHV−1; these genes express classical class A beta-
lactamases, encoded by plasmid that hydrolyze first generation
penicillins and cephaloporins (Bush, 2010). We found gene
blaTEM in all isolates while gene blaSHVvariants was not detected.
It is noteworthy that even though S. marcescens also carries
the gene blaCTX−M (Yu et al., 2003; Kim et al., 2005; Tenover
et al., 2013), few of our strains had the gene. Some strains
also carried the genes blaOXA−1, 4 and 30, that have been
reported in few studies in Brazil or in other countries, either
alone or associated with extended spectrum beta-lactamases
genes (ESBL) (blaTEM , blaSHV e blaCTX−M) in S. marcescens
strains. Although there are discrepancies in frequency rate
and in genotyping of ESBL-producing S. marcescens (Cheng
et al., 2006), the observed beta-lactam antibiotic resistance may
have also been caused by the genes blaTEM , blaCTX−M , and
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FIGURE 2 | (A) Percentage of clinical isolates not susceptible to 16 antibiotics tested. AMP (ampicillin), SAM (ampicillin-sulbactam), TZP (piperacillin-tazobactam),
CXM (cefuroximeaxetil), FOX (cefoxitin), CAZ (ceftazidime), CRO (ceftriaxone), FEP (cefepime), ETP (ertapenem), IPM (imipenem), MEM (meropenem), AMK
(amikacin), GEN (gentamicin), CIP (ciprofloxacin), TGC (tigecycline), CST (colistin); * intrinsic resistance to antibiotics. (B) Percentage of genetic markers for resistance
and virulence genes. blaKPC, blaTEM, blaCTX−M1, aac(6′)-Ib-cr: resistance genes; SdeB, SdeY, HasF: efflux pump and outer membrane component genes; PigP,
FlhD, ShlA, PhlA: virulence genes.

blaOXA, since the production of broad-spectrum beta-lactamases
enzymes (TEM-1, TEM-2, SHV-1, OXA-1) generate resistant
to ampicillin, ticarcillin, piperacillin, piperacillin/tazobactam

and cephalosporin antibiotics, and the enzymes CTX-M have
hydrolytic activity against cefotaxime (Levy and Marshall, 2004;
Sugumar et al., 2014).
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FIGURE 3 | Phenotyping and genotyping of Serratia marcescens isolates. Sm represents Serratia marcescens and numbers represent identifications of strains. *Sm
is classified as multidrug resistant (MDR) strains. AMP (ampicillin), SAM (ampicillin-sulbactam), TZP (piperacillin-tazobactam), CXM (cefuroximeaxetil), FOX (cefoxitin),
CAZ (ceftazidime), CRO (ceftriaxone), FEP (cefepime), ETP (ertapenem), IPM (imipenem), MEM (meropenem), AMK (amikacin), GEN (gentamicin), CIP (ciprofloxacin).
Serratia marcescens are intrinsically resistant to TGC (tigecycline) and CST (colistin). AMP, SAM, CXM, FOX, and CST antibiotics were not included in the MDR
classification. The blaIMP, blaOXA−48, blaNDM, blaVIM, blaSHV variants and mcr-1 genes were not detected. Blue box correlates with AMP, SAM, TZP, CXM, FOX, CAZ,
CRO, FEP, ETP, IPM, MEM. Green box correlate with AMK, GEN, CIP. Multicolored box (HasF) correlates with CIP and TGC. Brown box shows number of
S. marcescens caring virulence genes.

In our study, most strains of S. marcescens were only
sensitive to aminoglycosides (gentamicin and amikacin) and
fluoroquinolone (ciprofloxacin). Aminoglycosides are the oldest
antibiotics that have been used less frequently in the last years,
thus possibly preserving activity against some resistant bacteria
that cause difficult to cure infections (Falagas et al., 2008;
Gad et al., 2011). The observed low resistance to ciprofloxacin
(18.18%) is in agreement with the results obtained by Sheng
et al. (2002) who observed 20–30% resistance to quinolone
in S. marcescens isolates. However, it is important to consider
that S. marcescens is highly adaptable, so rates of resistance
to fluoroquinolones diverge considerably among institutions
(Young et al., 1980; Mahlen, 2011; Sader et al., 2014), including
within Brazilian ones.

Resistance to fluoroquinolones may be caused by alterations
in the target enzymes DNA gyrase and topoisomerase IV, and

by acquisition of the transferable plasmid-mediated quinolone
resistance (PMQR) determinants qnr, qepA, aac(6’)-Ib-cr, and
oqxAB (Veldman et al., 2011; Poirel et al., 2012; Moradigaravand
et al., 2016). The gene aac(6′)-Ib-cr, a variant gene of the
aminoglycoside acetyltransferase, was also present in most of
strains that presented fluoroquinolone and/or aminoglycoside
resistance. This finding is consistent with others studies that have
shown that aac(6′)-Ib-cr may be associated with antibacterial
resistance against fluoroquinolone and aminoglycoside (Kim
et al., 2009, 2011) antibiotics.

Three RND-type efflux have been reported in S. marcescens,
namely SdeAB (Kumar and Worobec, 2005a), SdeCDE (Kumar
and Worobec, 2005a; Begic and Worobec, 2008), and SdeXY
(Chen et al., 2003). SdeAB and SdeXY interact with HasF (an
outer membrane component, TolC homolog gene) contributing
to resistance against a wide variety of antimicrobial agents
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FIGURE 4 | Dendrogram representing the genetic relationship between 54 strains of Serratia marcescens associated with patient localization, isolation site, antibiotic
resistance, and virulence genes. ICU: Intensive Care Unit. NICU: Neonatal Intensive Care Unit. *Patients presenting S. marcescens in more than one infection site.
# multidrug resistance (MDR) pattern.

(Begic and Worobec, 2008; Hornsey et al., 2010). Although we
did not analyze the genes SdeA e SdeX, the genes SdeB and SdeX
were present in all strains and the gene HasF was also found in
most strains. Drug extrusion by efflux pumps as SdeAB-HasF
comprises one of the main mechanisms for fluoroquinolones
antibiotic resistance (Dalvi and Worobec, 2012). Additionally,
Hornsey et al. (2010) has shown the intrinsic activity of
the SdeXY-HasF efflux pump is responsible for the lower

susceptibility to ciprofloxacin. Thus, in addition to the presence
of the genes aac(6′)-Ib-cr [associated with plasmid-mediated
quinolone resistance (PMQR)], the genes SdeB, SdeY, and HasF
that encode RND-type efflux pump may have contributed to the
observed ciprofloxacin resistance.

Our data shows high prevalence of tigecycline-resistant
S. marcescens strains and SdeY and HasF genes. The reduced
sensitivity of S. marcescens to tigecycline may be related to the
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up-regulation of the SdeXY-HasF efflux pump (Hornsey et al.,
2010). Although the gene SdeX was not analyzed, our findings
strongly suggest that these genes may be responsible for the high
tigecycline resistance.

Many bacteria produce virulence factors as hydrolytic
enzymes and toxins that enable host invasion, bacterial
proliferation and inhibit host defense mechanisms, sometimes
resulting in host death (Aggarwal et al., 2017). S. marcescens
strains were also evaluated for the presence of toxin genes
ShlA and phlA, and all but the Sm40 strain carried these
genes. Our findings are in agreement with other studies that
reported the presence these genes in S. marcescens (strain
SEN) (Aggarwal et al., 2017). FlhDC has been proposed as a
regulator controlling flagellum biogenesis, biofilm formation,
cell septation and expression of virulence factors during
swarming (Givskov et al., 1995; Fraser and Hughes, 1999;
Chilcott and Hughes, 2000; Lin et al., 2010). In our study,
the presence of FlhC was not analyzed but the gene FlhD
was present in almost all isolates. S. marcescens produces
biosurfactant serrawettin and red pigment prodigiosin
used in surfaces colonization (Hejazi and Falkiner, 1997).
PigP is a positive regulator of prodigiosin production that
regulates swarming and hemolysis through serratamolide
production (Fineran et al., 2005; Shanks et al., 2013). In our
study, PigP gene was found in almost all isolates (98.15%).
Overall, our results suggest that the combination of these
virulence genes could have contributed to the pathogenicity of
S. marcescens strains.

The dendrogram based on ERIC-PCR fingerprint analysis
demonstrated that the vast majority of isolates are closely
related, sharing a genetic similarity of 86.4% (except for two
strains). In addition, many isolates showed 100% similarity
to each other. A study conducted by Ferreira-Firmo et al.
(2019) evaluated nine S. marcescens from different clinical
sources and three hospitals in Northeast Brazil showed a
greater genetic diversity among the studied strains. Lin et al.
(2016) studied 83 carbapenem-resistant S. marcescens isolates
recovered from Zhejiang Provincial 501 People’s Hospital,
China, from which they found 63 blaKPC-2 positive strains
sharing nine different profiles. Our results demonstrate the
predominance of few genetic profiles grouped together, with
similarity above 85%, indicating that, although bacteria
have been isolated from different patients and devices,
the circulating S. marcescens in this hospital is highly
genetically related.

Our study has some limitations worth noting. There was
a high number of S. marcescens isolated from rectal swabs
and tracheal aspirate, and both cultures are recommended
for surveillance in ICU and NICU patients. However,
microbiological reports sent to LACEN were not clear regarding
how many of these samples were analyzed for both clinical
and surveillance purposes. This study was further limited
by the duration of the research, which was relatively short
(2014–2015), and by conventional phenotypic and genotypic
techniques, that have their own particular strengths and
limitations in detecting MDR strains. Nonetheless, we intend
to extend the analysis period of S. marcescens isolates, and

whole genome sequencing to type relevant MDR strains
must be performed. We expect that this study broadens
our understanding on epidemiology, antibiotic resistance,
and putative virulence factors of these strains, and provides
relevant information for the prevention and management of
S. marcescens infections.

In conclusion, S. marcescens represents a problem for
public health (Kurz et al., 2003) and the resistance pattern
exhibited by clinical isolates along with the transmission
to other clones show the importance of researching factors
associated with the increase in frequency and/or emergence
of infections caused by S. marcescens in Brazilian hospitals.
The occurrence of antibiotic-resistant bacteria considerably
varies according to country, region and susceptible population,
and the mitigation of this problem in ICUs is especially
associated with actions to control the spreading of such drug-
resistant bacteria (Ko et al., 2002; Hou et al., 2015). Thus,
it is crucial to eliminate sources of resistance development
and associated reservoirs as well as to overtake standardized
sanitation and enforce mandatory notification to gather
important data for continuous risk assessment evaluation
and effective decision making to control these species in
hospital environments.
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