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As a machine-learning-driven decision-making problem, the surface electromyography (sEMG)-based hand movement rec-
ognition is one of the key issues in robust control of noninvasive neural interfaces such as myoelectric prosthesis and rehabilitation
robot. Despite the recent success in sSEMG-based hand movement recognition using end-to-end deep feature learning tech-
nologies based on deep learning models, the performance of today’s SEMG-based hand movement recognition system is still
limited by the noisy, random, and nonstationary nature of SEMG signals and researchers have come up with a number of methods
that improve sEMG-based hand movement via feature engineering. Aiming at achieving higher SEMG-based hand movement
recognition accuracies while enabling a trade-off between performance and computational complexity, this study proposed a
progressive fusion network (PFNet) framework, which improves sEMG-based hand movement recognition via integration of
domain knowledge-guided feature engineering and deep feature learning. In particular, it learns high-level feature representations
from raw sEMG signals and engineered time-frequency domain features via a feature learning network and a domain knowledge
network, respectively, and then employs a 3-stage progressive fusion strategy to progressively fuse the two networks together and
obtain the final decisions. Extensive experiments were conducted on five sSEMG datasets to evaluate our proposed PFNet, and the
experimental results showed that the proposed PFNet could achieve the average hand movement recognition accuracies of 87.8%,
85.4%, 68.3%, 71.7%, and 90.3% on the five datasets, respectively, which outperformed those achieved by the state of the arts.

1. Introduction

As a precise and noninvasive way of decoding user’s in-
tention of hand movements, the surface electromyography
(sEMG)-based hand movement recognition has been ex-
tensively investigated in the area of rehabilitation engi-
neering [1,2] and human-computer interaction [3,4]. Having
realized that one of the key issues of sSEMG-based hand
movement recognition is a machine-learning-driven deci-
sion-making problem of classifying sequences of SEMG
signals, many efforts have been made in improving sSEMG-
based hand movement recognition by designing more
representative features [5], developing more sophisticated

machine-learning models [6], and increasing the number of
sensors [7].

From the perspective of machine learning, existing
SEMG-based hand movement recognition approaches can
be broadly categorized into (1) methods based on feature
engineering and (2) methods based on feature learning [8].
The former refers to methods based on conventional shallow
learning models and handcrafted time domain (TD), fre-
quency domain (FD), or time-frequency domain (TFD)
features, and the latter refers to methods based on end-to-
end deep learning models that can learn representative high-
level features from raw sEMG signals without relying on any
engineered feature.
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Over the past five years, feature learning approaches
based on end-to-end deep learning models such as con-
volutional neural networks (CNNs) [9] and recurrent neural
networks (RNNs) [10] have been widely studied in SEMG-
based hand movement recognition. On the other hand, due
to the noisy, random, and nonstationary nature of SEMG,
researchers have also realized that achieving robust sSEMG-
based hand movement recognition accuracy remains a
challenging issue for end-to-end deep learning models. For
example, one of the early studies in this field revealed that the
average hand movement recognition accuracy achieved by
the end-to-end CNN model was significantly lower than that
achieved by conventional shallow learning models such as
random forests and support vector machine (SVM) on the
large-scale noninvasive adaptive prosthetics (NinaPro) da-
tabase [11]. Later studies on this database [12,13] presented
more promising results achieved by the fine-tuned and
manually optimized end-to-end deep learning models,
which outperformed shallow learning models.

Compared with feature learning approaches, the hand
movement recognition performance of conventional feature
engineering approaches is largely dependent on the selection
and extraction of features, which is usually done manually
based on the domain knowledge accumulated through a vast
quantity of experiments and evaluations in the field. Such
heuristically accumulated domain knowledge is often
thought to be useful in enhancing deep learning-based
myoelectric pattern recognition [14]. Thus, a number of
recent studies in this field have tried to extract and evaluate
multiple engineered features as the input of their deep
learning models. For example, Millar et al. [15] extracted a
set of 11 TD features from sEMG signals for hand movement
recognition using a long short-term memory (LSTM) model
and achieved an averaged recognition accuracy of 99.8% in
classifying a series of functional grasps on 2 diametric ob-
jects. Cheng et al. [16] extracted two TD features and one FD
feature from sEMG signals and constructed them into the
multi-sEMG feature image for hand movement recognition
using a CNN model, and they achieved an averaged rec-
ognition accuracy of 82.5% in classifying 52 hand move-
ments over 27 subjects. Allard et al. [17] evaluated different
input modalities of a CNN model with transfer learning
architecture and found that short-time Fourier transform-
based spectrograms and continuous wavelet transform
(CWT) features outperformed raw sEMG signals in classi-
tying 7 hand movements over 17 subjects. Shen et al. [18]
extracted FD and TFD features from sEMG signals, rep-
resented them by images, and used them for stacking en-
semble CNN-based hand movement recognition, and they
achieved an averaged recognition accuracy of 72.1% in
classifying 40 hand movements over 10 subjects. Our pre-
vious study [14] extracted three sets of features from sEMG
signals, constructed them into multi-view representations of
sEMG signals for hand movement recognition, and achieved
an averaged recognition accuracy of 83.7% in classifying 50
hand movements over 40 subjects.

To sum up, existing deep learning approaches for
sEMG-based hand movement recognition can be cate-
gorized into end-to-end deep learning approaches and
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non-end-to-end deep learning approaches considering
their input. Although the existing non-end-to-end deep
learning approaches improved the sEMG-based hand
movement recognition performance using engineered
features instead of raw sSEMG signals as their input, they to
a considerable extent ignored the feature learning capa-
bility of deep learning models. In other words, their hand
movement recognition performance was highly depen-
dent on the selection of engineered features, which is
usually based on domain knowledge or offline experi-
mental results on a small set of data. Moreover, for
methods that employed multiple engineered features as
the input of deep learning models [14,18], the feature
engineering process required additional computational
time and resources, which limited their use in real-time
systems.

Therefore, in this study, we propose a progressive
fusion network (PFNet), which aims at improving
sEMG-based hand movement recognition via progres-
sive integration of domain knowledge-guided feature
engineering and CNN-based deep feature learning. In
particular, the proposed PFNet architecture is composed
of three parts, namely the feature learning network, the
domain knowledge network, and the progressive fusion
module. The feature learning network and the domain
knowledge network learn high-level feature represen-
tations from raw sEMG signals and engineered features,
respectively, and the two networks are progressively
integrated together via a 3-stage process in the pro-
gressive fusion module.

The major contributions of the proposed PFNet archi-
tecture are twofold:

(1) We built up two independent neural networks,
namely the feature learning network and the domain
knowledge network, to separately learn discrimi-
native high-level feature representations from raw
sEMG signals and the wavelet packet-based TFD
features that have been proven to be effective for
SEMG-based hand movement recognition in early
studies; thus, the hand movement recognition per-
formance can be improved with the help of both
deep feature learning and heuristically accumulated
domain knowledge.

(2) We employed a 3-stage process to progressive in-
tegrated domain knowledge-guided feature engi-
neering and deep feature learning in SEMG-based
hand movement recognition. In particular, feature-
level fusion was performed at first to fuse the high-
level feature representations learned at two different
depths of the feature learning network and the do-
main knowledge network together via two subnet-
works, and then, the output decisions of the two
subnetworks were fused together through decision-
level fusion. Such a 3-stage integration strategy is
believed to be capable of learning more diverse high-
level feature representations, which is helpful for
improving the hand movement recognition
performance.



Computational Intelligence and Neuroscience

The experimental results on five datasets not only proved
the effectiveness of integration of domain knowledge-guided
feature engineering and deep feature learning in SEMG-
based hand movement recognition, but also indicated that
our approach outperformed other state-of-the-art methods.

2. Materials and Methods

2.1. Datasets and Data Preprocessing. Experiments in this
study were carried out on 5 subdatasets of the NinaPro
repository [19], which provides publicly available multi-
channel sEMG signals recorded from intact subjects and
trans-radial amputees. Table 1 presents brief information of
the sSEMG datasets used in this study, and detailed de-
scriptions are as follows:

The first subdataset of NinaPro (denoted as NinaP-
roDBI) provides 10-channel sEMG signals collected from 53
hand movements performed by 27 healthy subjects. The
hand movements in NinaProDB1 were categorized into 12
finger movements (denoted as Exercise A), 17 wrist
movements and hand postures (denoted as Exercise B), 23
grasping and functional movements (denoted as Exercise C),
and the rest movement, and each hand movement was
repeated 10 times (i.e., 10 trials per hand movement) [20]. As
most of the existing studies on this NinaProDB1 excluded
the rest movement from their experiments [10,12,14,22], in
our experiments we also excluded the rest movement for the
convenience of performance comparison.

The second subdataset of NinaPro (denoted as NinaP-
roDB2) provides 12-channel sSEMG signals collected from 50
hand movements performed by 40 healthy subjects. The
hand movements in NinaProDB2 were categorized into 17
wrist movements and hand postures (i.e., as same as Exercise
B in NinaProDB1), 23 grasping and functional movements
(i.e., as same as Exercise C in NinaProDB1), 9 force patterns
(denoted as Exercise D), and the rest movement, and each
hand movement was repeated 6 times (i.e., 6 trials per hand
movement) [20].

The third subdataset of NinaPro (denoted as NinaP-
roDB3) provides 12-channel sSEMG signals collected from 50
hand movements performed by 11 trans-radial amputee
subjects. The hand movements in NinaProDB3 are exactly
the same as those in NinaProDB2, and each hand movement
was repeated 6 times (i.e., 6 trials per hand movement) [20].
According to Atzori et al. [20], during the data recording
process of NinaProDB3 three trans-radial amputee subjects
interrupted the experiment before its end due to fatigue or
pain, and two trans-radial amputee subjects used only 10
electrodes to collect SEMG signals due to insufficient space.
The data from these subjects were omitted in our experi-
ments to ensure that the number of hand movement rep-
etitions, as well as the number of SEMG channels for each
subject, was the same.

The fourth subdataset of NinaPro (denoted as NinaP-
roDB4) provides 12-channel sSEMG signals collected from 53
hand movements performed by 10 healthy subjects. The
hand movements in NinaProDB4 are exactly the same as
those in NinaProDB1, and each hand movement was re-
peated 6 times (i.e., 6 trials per hand movement) [21]. After

checking the data, we found that two subjects (i.e., subject 4
and subject 6) did not complete all hand movements, and
their data were omitted in our experiments.

The fifth subdataset of NinaPro (denoted as NinaP-
roDB5) provides 16-channel sEMG signals collected from 53
hand movements performed by 10 healthy subjects. The
hand movements in NinaProDB5 are exactly the same as
those in NinaProDB1, and each hand movement was re-
peated 6 times (i.e., 6 trials per hand movement) [21]. A
subset of 41 hand movements were classified in our ex-
periments, and the specifications of the selected hand
movements can be found in [21].

The sEMG signals in NinaProDB1 were recorded by Otto
Bock 13E200-50 electrodes at a sampling rate of 100 Hz, the
SsEMG signals in NinaProDB2 and DB3 were recorded by
Delsys Trigno Wireless electrodes at a sampling rate of 2k
Hz, and the sSEMG signals in NinaProDB4 were recorded by
Cometa Wave Plus Wireless sSEMG system at a sampling rate
of 2k Hz [20,21]. Because of the memory limitation, we
downsampled the sEMG signals in NinaProDB2-NinaP-
roDB4 from 2k Hz to 100Hz. The same experimental
configuration was also adopted in [14].

The raw sSEMG signals in each dataset were segmented by
sliding windows. As early studies [23,24] have indicated that
the maximum allowable time delay of real-time myoelectric
control systems is 300 ms, and for all experiments in this
study, we employed sliding windows that were no longer
than 200 ms to segment raw sEMG signals. Detailed in-
formation of the sliding window lengths and steps used in
this study will be presented in the results and discussion
section of this study.

2.2. Domain Knowledge-Guided Feature Engineering and
Feature Augmentation. Discrete wavelet transform (DWT)
is a time-frequency analysis approach that iteratively de-
composes the original discrete time series into wavelet co-
efficients in multiresolution sub-bands via a set of half-band
filters that are established based on a pair of orthogonal
wavelet basis functions [25]. As shown in Figure 1(a), at the
first wavelet level, a half-band low-pass filter and a half-band
high-pass filter decompose the original signals X into two
sequences of coefficients in the lower resolution space,
namely the scaling coefficients C4, which are the approxi-
mate representation of X, and wavelet coefficients Cp, which
are the detailed representation of X, respectively. Such
process is iteratively repeated on the decomposed scaling
coefficients at the subsequent wavelet levels, resulting in a
two-channel tree structure that subsamples the signals by 2
at each node.

The discrete wavelet packet transform (DWPT) is an
extension of DWT, in which not only scaling coefficients but
also wavelet coeflicients are decomposed into two sequences
of coefficients in the lower resolution space at each wavelet
level. As shown in Figure 1(b), when the wavelet level k=3,
the outputs of DWPT are composed of a total of 2°=8
sequences of DWPT coefficients (DWPTCs), which can be
regarded as the multiresolution representation of original
signals X in 8 sub-bands.
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TABLE 1: Brief information of the sSEMG datasets used in this study.
Datasets Num. of hand movements Num. of subjects Num. of SEMG channels Type of electrodes Numr.e(}))i tlftl i(::;esment
NinaProDBI1 [20] 53 27 (healthy) 10 Otto Bock 10
NinaProDB2 [20] 50 40 (healthy) 12 Delsys Trigno 6
NinaProDB3 [20] 50 11 (amputee) 12 Delsys Trigno 6
NinaProDB4 [21] 53 10 (healthy) 12 Cometa Wave 6
NinaProDB5 [21] 41 10 (healthy) 16 Thalmic MYO 6

“Num.” is short for number.
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FIGURE 1: A schematic diagram of (a) DWT and (b) DWPT with the wavelet level of 3, where L|2 denotes the half-band low-pass filter and
H|2 denotes the half-band high-pass filter. Co4 denotes the approximate representation (scaling coefficients) of C4, Cpa denotes the

detailed representation (wavelet coefficients) of C,4, and so on.

The DWPT has been widely used in sSEMG-based hand
movement recognition as a feature engineering technique
for the extraction of TFD features. Conventional shallow
learning methods usually extract statistic features, such as
energy, average value, standard deviation, skewness, and
kurtosis. Conventional shallow learning methods usually
extract statistic features, such as energy, average value,
standard deviation, skewness, and kurtosis from DWPTCs
as the input of their classifiers [26, 27], while most of the
state of the arts adopt the strategy of using images generated
from DWPTCs in all sub-bands to form the input of deep
neural networks [14, 18]. In our previous study [14], a total
of 11 engineered features and feature sets were evaluated as
the input of a CNN model for sEMG-based hand movement
recognition, and the results showed that the hand movement
recognition accuracy achieved by DWPTCs on different
datasets outperformed all other features and feature sets.

Based on the aforementioned domain knowledge, the
DWPTCs were extracted from raw sEMG signals in this
study to generate the input images of the domain
knowledge network. The DWPT hyperparameters used in
this study are exactly the same as those used in our
previous study [14]. In particular, we used the Daubechies
1 wavelet basis function, and the wavelet level k was set
to|log 2V |, where N is the length of input signals (i.e.,

length of the sliding window). For each sSEMG channel,
the resulting 28 DWPTC sequences in all sub-bands were
concatenated together to form a DWPTC vector, and the
DWPTC vectors from all sSEMG channels were stacked
into a DWPTC image.

Two DWPTC images extracted from each sliding win-
dow were further augmented by the algorithm proposed by
Jiang and Yin [28]. Such feature augmentation strategy,
which was also adopted in our previous study [14], enables
every SEMG channel to have a chance to be adjacent to every
other channel via channel reorganization, thus providing
additional spatial correlations between nonadjacent SEMG
channels for the deep learning model. Suppose the DWPTC
image extracted from each frame sliding window has a shape
of Dx C, where C is the number of sEMG channels, the
D x C DWPTC image was reorganized into an D x M image
after feature augmentation. When C=10, we have M =50,
and when C=12, we have M=72.

2.3. Proposed PFNet Architecture. Figure 2 demonstrates the
architecture of our proposed PFNet, which consists of a
feature learning network, a domain knowledge network, and
the progressive fusion module. Suppose N-frame sliding
windows are used to segment C-channel SEMG signals, the
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FIGURE 2: A schematic drawing demonstrating our proposed PFNet. The boxes marked with “Conv” and “LC” denote the convolutional

layers and the locally connected layers, respectively.

input images of feature learning network are N x C sSEMG
images, which are formed by stacking C-channel raw sSEMG
signals together, and the input images of the domain
knowledge network are D x M reorganized DWPTC images,
which has been discussed in the previous subsection.

2.4. Feature Learning Network. 'The feature learning network
performs feature learning on raw sEMG signals, and it is
composed of two convolutional layers with 3 x 3 filters, two
locally connected layers with 11 filters, and one fully con-
nected layer with 512 hidden units. The number of output
feature maps of every neural network layer in the feature
learning network was set to 64. The feature learning network

shares the same architecture with the first four neural
network layers of GengNet [12], which showed promising
SEMG-based hand movement recognition performance in
existing studies [12-14].

2.5. Domain Knowledge Network. The domain knowledge
network learns high-level feature representations from
reorganized DWPTC images. The network architecture of
domain knowledge network is slightly different from the
feature learning network, and it is composed of one con-
volutional layer with 1x1 filters, one convolutional layer
with 2 x2 filters, two locally connected layers with 1x1
filters, and one fully connected layer with 1024 hidden units.



The number of output feature maps of every neural network
layer in the domain knowledge network was also set to 64.

2.6. Progressive Fusion Module. Conventional fusion
methods for dealing with feature vectors obtained from
multiple sources can be categorized into feature-level fusion
and decision-level fusion, and the former concatenates the
feature vectors and feeds the resulting feature vector into the
classifier, while the latter builds up independent classifiers
for feature vector from each data source and then fuses the
decisions together to form the final decisions [29].

In this study, we proposed the progressive fusion module
as shown in Figure 3 for fusion of feature learning network
and domain knowledge network, which is able to obtain
more diverse high-level feature representations via a 3-stage
fusion process. Suppose Ff: and F¢ denote the flattened
feature maps learned by the 4th neural network layers (i.e.,
the 2nd locally connected layers) of feature learning network
and domain knowledge network, respectively, and Fg and F¢
denote the feature vectors learned by the 5th neural network
layers (i.e., the 1st fully connected layers) of feature learning
network and domain knowledge network, respectively, the
3-stage fusion process can be formulated as follows.

Ist-stage fusion (feature-level fusion):

»n =Hi(Fl[Fi6,), ()
2nd-stage fusion (feature-level fusion):

y, = H2<F§]|F§; 92). 2)

3rd-stage fusion (decision-level fusion):

Yfinal = Y19Y>- (3)

Here, || denotes the concatenation operation and @ denotes
the element-wise summation operation, H; (i = 1, 2) are two
subnetworks for feature-level fusion of high-level features
learned at two different depths of feature learning network
and domain knowledge network, and 8; and y; refer to their
parameters and output decisions, respectively. As shown in
equation (3), the output decisions of two subnetworks H,
and H,, which are in the form of softmax scores, are finally
summed up at the 3rd-stage fusion to obtain the final de-
cision (classification result).

For a more distinct view of the two subnetworks for
feature-level fusion in the 3-stage progressive fusion process,
we marked the 1st and 2nd subnetworks (i.e., H; and H,)
with blue and red lines, respectively, in Figure 3.

2.7. Neural Network Configurations and Hyperparameter
Settings. We applied batch normalization [30] to each
neural network layer of the PFNet to reduce the internal
covariate shift and rectified linear unit (ReLU) activation
function [31] after each neural network layer to fasten the
training process. As shown in Figure 3, we also applied
dropout regularization [32] after five neural network
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layers (i.e., the 2nd locally connected layers and the 1st
fully connected layers of the feature learning network and
the domain knowledge network, as well as the Ist fully
connected layer of the Ist subnetwork H;) to avoid
overfitting.

To prevent overfitting, for all experiments in this study
we employed a pre-training strategy that has been widely
used in sEMG-based hand movement recognition systems
[10,12-14,33]. In particular, during each experiment, we
firstly pre-trained a model using all available training data
and then used the pre-trained model as the initial model in
each fold of the validation. The pre-training and training
were based on stochastic gradient descent (SGD) algorithm
with batch size of 1000, and the number of training epochs
was set to 28. To improve convergence, we also applied a
learning rate decay strategy [34], which initialized the
learning rate at 0.1 and divided it by 10 at the 16th and 24th
epochs, respectively. For layers with dropout regularization,
the dropout rate was set to 0.5 during pre-training and set to
0.65 during training.

2.8. Evaluation Metrics. For the convenience of performance
comparison, the evaluation metrics used in this study were
the same as those used in existing studies on the NinaPro
dataset [10,12,14,20,22,33,35]. In particular, we followed the
intra-subject classification schemes proposed by the author
of NinaPro dataset [20,21], which used sSEMG signals from
approximately 2/3 of the hand movement repetitions per-
formed by each subject as the training set and sSEMG signals
from the remaining hand movement repetitions performed
by the same subject as the test set. The final hand movement
recognition accuracy on each dataset is obtained by aver-
aging the achieved accuracies over all subjects.

The selection of training and test set on different sub-
datasets of NinaPro can be described as follows:

NinaProDB1: the sEMG signals from the 1st, 3rd, 4th,
6th, 7th, 8th, and 9th repetitions of all hand movements
are used as the training set, while the SEMG signals
from the 2nd, 5th, and 10th repetitions of all hand
movements constitute the test set.

NinaProDB2, NinaProDB3, NinaProDB4, and
NinaProDB5: the sEMG signals from the 1st, 3rd, 4th,
and 6th repetitions of all hand movements are used as
the training set, while the sEMG signals from the 2nd
and 5th repetitions of all hand movements constitute
the test set.

3. Results and Discussion

3.1. Computational Time and Efficiency. All experiments in
this study were performed offline with MXNet [36] on a
NVIDIA GeForce GTX 1080 Ti GPU. In our experiments,
the hardware factors that affected the computational time
and training speed include not only GPU utilization per-
centage, but also the network throughput, as all of the offline
experimental data (i.e., sSEMG signals) are stored on a
network-attached storage (NAS) device; thus, it is hard to
estimate the computational time of our proposed PFNet for
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FIGURE 3: A schematic drawing demonstrating the progressive fusion module in our proposed PFNet. The boxes marked with “FC” denote
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highlighted by yellow boxes, and the 1st and 2nd subnetworks for feature-level fusion are marked with blue and red lines, respectively.

SEMG-based hand movement recognition in real-world
scenarios. Even so, we calculated the approximate compu-
tational time and efficiency for training, which are as follows.

The training of each fold (i.e., each subject) of intra-
subject evaluation took approximately 23-30 minutes on
NinaProDB1, 11-17 minutes on NinaProDB2, 18-20
minutes on NinaProDB3, 37-39 minutes on NinaProDB4,
and 3-4 minutes on NinaProDB5, and the training speed on
NinaProDB1, NinaProDB2, NinaProDB3, NinaProDB4,
and NinaProDB5 was approximately 3500 samples per
second, 3300 samples per second, 6400 samples per second,
3300 samples per second, and 3500 samples per second,
respectively.

3.2. Ablation Studies on the Proposed Method. In machine
learning, “ablation studies” usually refer to a procedure to
evaluate certain parts of the deep neural network, where the
other parts of the deep neural network are removed from the
evaluation. In this study, we conducted two ablation studies
on the proposed PFNet to verify its effectiveness, which can
be described as follows:

(1) Ablation Study 1: a performance comparison among
the proposed PFNet, PFNet without the domain
knowledge network and its input (denoted as
FLonly), and PFNet without the feature learning
network and its input (denoted as DKonly), to verify
the effectiveness of integration of domain knowl-
edge-guided feature engineering and deep feature
learning in sSEMG-based hand movement recogni-
tion. The neural network architectures of FLonly and
DKonly are illustrated in Figures 4(a) and 4(b),
respectively.

(2) Ablation Study 2: a performance comparison
among different approaches for fusion of feature
learning network and domain knowledge net-
work, including the proposed progressive fusion
module, the decision-level (i.e., score) fusion
approach, and two feature-level fusion
approaches.

For all experiments in these ablation studies, the sliding
window length was set to 200 ms, and the window step was
set to 10ms except for experiments on NinaProDB5, in
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FIGURE 4: A schematic drawing demonstrating the deep neural network architecture

s evaluated in the ablation studies, including (a) the

FLonly architecture, (b) the DKonly architecture for Ablation Study 1, and neural network architectures of (c) decision-level fusion, (d)

stagel feature-level fusion, and (e) stage2 feature-level fusion for Ablation Study 2.
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FIGURE 5: Average hand movement recognition accuracies achieved by the FLonly architecture, the DKonly architecture, and our proposed
PFNet on NinaProDB1-NinaProDB5, when the sliding window length was set to 200 ms.

which we followed the experimental configuration used by
Pizzolato et al. [21] and our previous study [14] that set the
window step to 100 ms.

Figure 5 demonstrates the average hand movement
recognition accuracies achieved by FLonly, DKonly, and our
proposed PFNet. The experimental results showed that our
proposed PFNet outperformed both FLonly and DKonly on
all datasets (i.e., NinaProDB1-NinaProDB5). In particular,
the average hand movement recognition accuracies achieved
by our proposed PFNet were 87.8+4.2%, 85.4+5.1%,
68.3+9.2%, 71.7 +7.4%, and 90.3+3.2% on NinaProDBI,
NinaProDB2, NinaProDB3, NinaProDB4, and NinaP-
roDB5, respectively, which were much higher than those
achieved by the FLonly architecture (i.e., 84.0+5.2%,
80.8+5.7%, 48.6+8.0%, 69.9+7.9%, and 72.7+4.1% on
NinaProDB1, NinaProDB2, NinaProDB3, NinaProDB4,
and NinaProDB5, respectively). Compared with FLonly, the
average hand movement recognition accuracies achieved by
the DKonly architecture were much closer to, but also
significantly outperformed by those achieved by the pro-
posed PFNet, which were 87.4+4.2%, 85.1+5.2%,
66.6+9.4%, 71.2+7.5%, and 89.6+3.7% on NinaProDBI,
NinaProDB2, NinaProDB3, NinaProDB4, and NinaP-
roDB5, respectively.

The experimental results in Ablation Study 1 showed that
the integration of domain knowledge-guided feature engi-
neering and deep feature learning is an effective way of
improving sEMG-based hand movement recognition. Al-
though the increase in input data may increase computa-
tional complexity, the computational time and training
speed presented in Section 3.1 are still acceptable for real-
world sEMG-based hand movement recognition systems.
Moreover, compared with other deep learning methods that
relied only on domain knowledge-guided feature

engineering [14, 18], the integration of domain knowledge-
guided feature engineering and deep feature learning ach-
ieves the balance between hand movement recognition
performance and computational complexity, which is
meaningful for real-time application scenarios.

In Ablation Study 2, we carried out a performance
comparison among different methods for fusion of feature
learning network and domain knowledge network, includ-
ing our proposed progressive fusion module, the decision-
level (i.e., score) fusion approach (as illustrated in
Figure 4(c)), a feature-level fusion approach (denoted as
stage 1 feature-level fusion, as illustrated in Figure 4(d)) that
is equivalent to PFNet without stage 2 fusion and stage 3
fusion, and a feature-level fusion approach (denoted as stage
2 feature-level fusion, as illustrated in Figure 4(e)) that is
equivalent to PFNet without stage 1 fusion and stage 3
fusion. For the decision-level fusion approach, the number
of hidden units of 2nd fully connected layer in both feature
learning network and domain knowledge network was set to
512, which is exactly the same as the number of hidden units
of the second last fully connected layers in the 1st and 2nd
subnetworks.

Figure 6 demonstrates the average hand movement
recognition accuracies achieved by decision-level fusion,
stage 1 feature-level fusion, stage 2 feature-level fusion, and
our proposed PFNet. According to the experimental results,
the 3-stage progressive fusion was able to achieve higher
sEMG-based hand movement recognition accuracies than
the conventional single-stage feature-level fusion (e.g., stage
1 feature-level fusion and stage 2 feature-level fusion) ap-
proaches or decision-level fusion approach. However, we
also found that the performance gap between the proposed
progressive fusion module and conventional fusion ap-
proaches was not significant. For example, stage 1 feature-
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FIGURE 6: Average hand movement recognition accuracies achieved by decision-level fusion, stage 1 feature-level fusion, stage 2 feature-level
fusion, and our proposed PFNet on NinaProDB1-NinaProDB5, when the sliding window length was set to 200 ms.

TaBLE 2: Average hand movement recognition accuracies in comparison with the state of the arts on NinaProDB1-NinaProDB5.

Machine- Type of Num. of Window length
Dataset learning (ML) Mgpmo del Input of ML model movements for
model classification 50 ms 100 ms 150 ms 200 ms
Random Shallf)w Incell 5 engineered 50 NA. NA. NA. 75.3%
forests [20] learning features
GengNet [12] CNN Raw sEMG 52 N.A. N.A. N.A. 77.8%
Atz[‘irI‘]N ¢ oNN Raw SEMG 50 NA. N.A.  666%+64%  N.A.
WeiNet [13] CNN Raw sEMG 52 81.7% 83.4% 84.4% 85.0%
HuNet 10]  CNN-  Phinyomark feature 52 N.A. NA. 86.8% 87.0%
NinaProDBI1 RNN set
marre MV-CNN . . . .
[14] CNN 3 feature sets 52 85.8% 86.8% 87.4% 88.2%
EVO]"[‘;‘;]CNN CNN Raw sEMG 52 N.A. N.A. N.A. 81.4%
ChengNet  \y  Multi-sEMG feature 52 NA. NA. NA. 82.5%
[16] image
Raw (V) 0, V) 0,
PFNet CNN SEMG + DWPTC 52 85.1+4.6% 86.1+4.4% 87.0+4.3% 87.8+4.2%
Random Shallgw 5 engineered 50 NA NA NA. 75.3%
forests [20] learning features
Atz[‘irI‘]N et CNN Raw sEMG 50 N.A. NA.  603+77%  NA.
ZhaiNet [37] CNN SEMG spectrogram 50 N.A. N.A. N.A. 78.7%
CNN-  Phinyomark feature N
Ninaproppy  HuNet [10] NN o 50 N.A. N.A. N.A. 82.2%
MV[iE]NN CNN 3 feature sets 50 80.6% 81.1% 82.7% 83.7%
EVOIV[;‘;]CNN CNN Raw SEMG 50 NA. 71.0% N.A. 71.6%
PFNet CNN Raw 50 82.4+56% 83.4+55% 84.4+5.6% 854+51%

sEMG + DWPTC
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TaBLE 2: Continued.
Machine- Type of Num. of Window length
Dataset learning (ML) MIf’pmo del Input of ML model movements for
model classification 50 ms 100 ms 150 ms 200 ms
svM [20] ~ Shallow 5 handcrafted 50 NA. N.A. N.A. 46.3%
learning features
NinaProDB3 M\Eli]N N CNN 3 feature sets 50 N.A. N.A. N.A. 64.3%
Raw
0, 0, 0, 0
PFNet CNN SEMG + DWPTC 50 64.8+8.9% 66.3+£9.0% 67.3+89% 68.3+9.2%
Random Shallow W features 53 N.A. N.A. N.A. 69.1%
forests [21] learning
NinaProDB4 Mv[ii]NN CNN 3 feature sets 53 N.A. N.A. N.A. 54.3%
Raw 0, 0, 0, 0,
PFNet CNN SEMG + DWPTC 53 60.0+82% 65.8+7.7% 69.1+7.5% 71.7+7.4%
syM 1] Shallow L BWT features 41 NA. NA. NA. 69.0%
learning
Stacking-
ShenNet 18] based > "D a_“m‘i o 40 NA. NA. NA. 72.1%
NinaProDB5 CNN ure mag
M\ﬁg]NN CNN 3 feature sets 41 N.A. N.A. N.A. 90.0%
Raw 0, 0, 0 0
PFNet CNN SEMG + DWPTC 41 89.1+3.6% 89.6+3.4% 90.2+3.3% 90.3+3.2%

N.A. denotes not applicable, and bold entries indicate our proposed method.

level fusion achieved the hand movement recognition ac-
curacies of 87.6 +4.3%, 85.2 +5.1%, 67.5+9.1%, 71.4 + 7.5%,
and 89.9+3.2% on NinaProDB1, NinaProDB2, NinaP-
roDB3, NinaProDB4, and NinaProDB5, respectively, which
were very close to those achieved by the PFNet. The subtle
performance gap between different fusion methods indicates
that the convolutional and locally connected layers at the
bottom of feature learning network and domain knowledge
network may play a more dominant role in sSEMG-based
hand movement recognition.

3.3. Comparison with the State of the Arts. We also compared
the average hand movement recognition accuracies achieved
by the proposed PFNet with those achieved by the state of
the arts. For a fair performance comparison, we only con-
sidered the state of the arts that used the same intra-subject
classification schemes as described in Section 2.4, and we
evaluated the hand movement recognition accuracies
achieved with sliding windows of 50 ms, 100 ms, 150 ms, and
200 ms. Window step settings were the same as those used in
the ablation studies, except for experiments on NinaProDB5
with 50 ms, 100 ms, and 150 ms sliding windows, in which
we set the window step to 10 ms.

Table 2 presents the hand movement recognition ac-
curacies achieved by our proposed PFNet and the state of the
arts on NinaProDB1, NinaProDB2, NinaProDB3, NinaP-
roDB4, and NinaProDB5. According to the experimental
results, our proposed PFNet achieved higher hand move-
ment recognition accuracies than all the state-of-the-art
deep learning methods [10-14, 16, 18, 22, 37, 38] and shallow
learning methods [20, 21] listed in Table 2 on NinaProDB2,
NinaProDB3, NinaProDB4, and NinaProDB5. On

NinaProDB1, our proposed PFNet was outperformed by
MV-CNN, which was proposed in our previous study [14].
On the other hand, it should be mentioned that MV-CNN is
a multi-view deep learning method that used three high-
dimensional feature sets as its input, and the performance
gap between PFNet and MV-CNN was insignificant on
NinaProDB1. These results indicate that our proposed
PFENet framework can effectively improve sSEMG-based hand
movement recognition with the help of both feature learning
and domain knowledge-guided feature engineering.

4. Conclusion

Aiming at improving SEMG-based hand movement rec-
ognition, this study proposed a progressive fusion network
(PFNet) framework, which learns high-level feature repre-
sentations from raw sEMG signals and discrete wavelet
packet transform coefficients (DWPTCs) via a feature
learning network and a domain knowledge network, re-
spectively, and then employs a progressive fusion module to
tuse the two networks together via a 3-stage process and
obtain the final decisions.

Ablation studies were conducted on five open-source
sEMG datasets (i.e., NinaProDB1-NinaProDB5), and the
experimental results proved the effectiveness of integration
of domain knowledge-guided feature engineering and deep
feature learning in sSEMG-based hand movement recogni-
tion, as well as the effectiveness of the proposed progressive
fusion module.

Moreover, we also carried out performance comparison
with the state of the arts on NinaProDB1-NinaProDB5. The
experimental results showed that the proposed PFNet could
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achieve the average hand movement recognition accuracies
of 87.8+4.2%, 85.4+5.1%, 68.3+9.2%, 71.7 +7.4%, and
90.3+3.2% on NinaProDB1, NinaProDB2, NinaProDB3,
NinaProDB4, and NinaProDB5, respectively, which out-
performed those achieved by the state-of-the-art methods on
most of the evaluated datasets. Compared with our recently
proposed method that used multiple engineered feature sets
as its input [14], our proposed PFNet could achieve higher or
almost the same hand movement recognition accuracies
with only one type of engineered feature.

Future improvement of the proposed PFNet framework
will focus on simplification of the deep neural network
architecture while maintaining its performance, as real-time
sEMG-based hand movement recognition systems usually
required a more lightweight machine-learning model with
fewer parameters and less computational complexity.

Data Availability

The sEMG signals supporting the findings of this study are
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[20, 21]. The processed data and trained deep neural net-
works used to support the findings of this study are available
from the corresponding author upon request.
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